
  

Abstract – The literature of the last three decades is replete with 

automatic methods for retinal image analysis.  Acceptance has 

been limited due to post-processing or tuning requirements that 

may be just as time consuming as the original manual methods.  

The point of view herein is that by taking advantage of the human 

visual system and expert knowledge from the outset, the 

promised efficiencies of digital methods can be achieved in 

practice as well as in theory.  Thus, simple labeling of regions of 

interest that is accepted and easily performed in a few moments 

by the human can provide enormous advantage to an already 

well-developed algorithm. Three examples are provided:  drusen 

segmentation, image registration, and geographic atrophy 

segmentation, with applications to disease understanding.   
 

Index Terms — Image Analysis, Interactive Segmentation, Age-related 

Macular Degeneration (AMD), Autofluorescence, Stargardt Disease 

(STGD).  

I. INTRODUCTION 

 linical medical retinal research, in particular, and visual 

science in humans, in general, is based on minimally 

invasive testing with imaging serving as the surrogate for 

biopsy. Given the transparency of ocular tissue, retinal images 

are able to provide large amounts of valuable information. 

Image analysis of the retina can be performed in a variety of 

settings ranging from the standard digital fundus photograph 

to autofluorescence imaging and optical coherence tomography, 

all of which provide unique information to the viewer. 

Combined analysis of imaging data from multiple methods can 

reveal heretofore-unexpected relationships. 

     Herein we summarize the development and application of 

several digital tools for retinal image analysis, particularly the 

images of age-related macular degeneration (AMD) and its 

juvenile form, Stargardt disease (STGD).   

      Extensive drusen area, as seen on the fundus photograph, is 

the greatest risk factor for the progression of AMD (1). When 

examiners are asked to mentally aggregate the amount of 
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drusen occupying a given macular subfield (2), as in the 

International System, where drusen areas were estimated to 

within 10% to 25% or 25 to 50%, and so on (3), these 

semi-quantitative estimates prove difficult for human observers. 

Clearly, there is a pressing need to implement more precise 

techniques to improve the quality of data being gathered in 

clinical trials and epidemiological studies.    

     

 Fig. 1. Comparison of Drusen Segmentation by the Interactive Method vs. 

2 Expert Drawings. The drusen in the original image (A) were identified by the 

interactive method (green) in (B), a  retinal expert manually in (E) (yellow), and 

traced manually in (G) by a second retinal expert (orange).  (C) shows the 

interactive results overlaid on the first expert’s. The remaining yellow regions are 

false negatives (7.0%). (F) The overlays are reversed. The remaining green 

regions are the false positives (6.5%). Thus, although there is almost exact 

agreement in total drusen area (34.6% vs. 34.1%), pixel-by-pixel agreement is not 

exact (sensitivity, 0.80; specificity, 0.81%). Comparing experts’ drawings  in (H) 

and (I), disagreements are comparable.  The second expert drawing has a 

sensitivity of 0.70 and a specificity of 0.91 relative to the first expert drawing 

 

In addition to standard fundus photography, autofluorescence 

(AF) imaging with the scanning laser ophthalmoscope (SLO) 

has played a greater role in understanding AMD. It is already 

clear that the autofluorescence of RPE lipofuscin, which 

contains known fluorophores including A2E, is related to 

AMD (4,5), and  focally increased AF (FIAF) is demonstrated 

in a broad range of AMD patients (6, 7). Lipofuscin is also 
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imaged by AF as it accumulates in the flecks of juvenile 

macular degeneration (4).  or Stargardt disease (STGD) 

Fundus AF images are recorded with a confocal SLO (model 

HRA/HRA2; Heidelberg Engineering, Dossenheim, Germany), 

which uses blue laser light at 488 nm for illumination and a 

barrier filter at 500 nm to limit the captured light to 

autofluorescent structures.  

     Digital image analysis techniques face significant obstacles 

in drusen identification (8-11).  First, the inherent nature of the 

reflectance of the normal macula is non-uniform. There is less 

reflectance centrally and increasing reflectance moving out 

towards the arcades. Local threshold approaches to drusen 

segmentation met with only partial success because the 

background variability limited the extent to which purely 

histogram-based methods could succeed. This increased the 

need for operator intervention and has been the main obstacle 

to automating drusen segmentation.  

     Another major obstacle to drusen identification is that of 

boundary definition: soft, indistinct drusen have no precise 

boundary, and thereby the solution to their segmentation, by 

definition, cannot be precise. Indeed, expert manual drawings 

themselves are necessarily variable, and in such cases we have 

found that specificity and sensitivity calculations for expert 

manual drawings of two retinal experts can demonstrate 

significant inter-observer differences (12). See Fig 1. Therefore, 

accuracy in digital drusen segmentation relative to expert 

graders can only reasonably be held to a comparable standard. 

 

II. MATHEMATICAL MODELS OF MACULAR IMAGES  

 

Concept of Background Leveling 

 

The non-uniform reflectance of the normal background of the 

fundus and photographic illumination cause the apparent 

intensity of drusen to differ with location. While human 

observers can compensate, computers cannot, limiting the use 

of digital methods for drusen measurement.  

      If the variability in reflectance could be converted to a 

uniform background, global threshold selection could be 

applied for uniform object identification, avoiding the obstacles 

that have foiled local thresholding. This is the concept behind 

background leveling, which involves correction of the macular 

image in multiple regions, exploiting the specific geometry of 

macular reflectance. This concept is quite general, with 

applications beyond the analysis of ophthalmic images, and 

appears to be original in both the medical and imaging 

literature [US Patent # 7,248,736 B2, July, 2007]. The first step 

in the application of background leveling was to demonstrate 

that the mathematical model, consisting of quadratic 

polynomials in several zones with cubic spline interpolation in 

blending regions between the zones, could approximate the 

global macular image background of a normal photograph or 

autofluorescence image with sufficient accuracy to allow its 

reconstruction and leveling (13-17). The next step was to show 

that the model, operating on user-defined subsets of 

background data in abnormal images, was still capable of 

accurately leveling the background for reliable segmentation of 

drusen (16, 17). Details of the model with interactive 

background input selection follow.  

     The general quadratic in 2 variables is fit by least-squares 

methods to any chosen background input of green-channel gray 

levels. Thus, the model consists of quadratics, 1 for each zone, 

with cubic spline interpolations at the boundaries.   The model 

covers the full 6000 micron diameter macular grading zone 

with 4 zones in the 3000 micron diameter fovea/parafovea:  a 

600-micron central disc, three annular zones (600-1000, 

1000-2000, and 2000-3000 micron diameter), and two outer 

annular zones (3000-4500 and 4500-6000 micron). The two 

outer zones are each subdivided into four quadrants, giving 8 

outer zones, and thus 12 zones in all. Local models are obtained 

in each region by fitting the local background, as determined by 

the two-threshold Otsu method (see infra). The resultant global 

model is formed from the 12 local models with appropriate 

radial and angular cubic spline interpolations at interfaces. 

     To provide initial input to the background model, the 

automatic histogram-based thresholding technique known as 

the Otsu method (18) is employed in each zone. Briefly, let the 

pixels in the green channel be represented in L gray levels [1, 

2,...., L]. Suppose we dichotomized the pixels into 2 classes, C0 

and C1, by a threshold at level k. C0 denotes pixels with levels 

[1,…, k] and C1 denotes pixels with levels [k+1,…, L]. Ideally, 

C0 and C1 would represent background and drusen. The Otsu 

method uses the criterion of between-class variance and selects 

the threshold k that maximizes this variance. The Otsu method 

can be generalized to the case of 2 thresholds k and m, where 

there are 3 classes, C0, C1, and C2, defined by pixels with levels 

[1,…, k], [k+1,…, m], and [m+1,…, L], respectively. The 

criterion for class separability is the total between-class 

variance giving three desired classes:  C0 (dark, 

non-background sources, e.g., vessels and pigment), C1 

(background) and C2 (drusen).  In particular, for each region 

there is an initial choice of background, C1, for input to the 

background model.  Before final background selection, 

however, the operator interactively modifies the Otsu method 

by drawing regions of interest for two other options: region 1, 

where multiple large, soft, ill-defined drusen are present, the 

upper (drusen) thresholds were each reduced by three gray 

levels; region 2, where few drusen (less than 5% estimated) are 

present, the drusen class C2 is subdivided again by the single 

threshold Otsu method, with the higher values becoming the 

new C2 and the lower values included in C1.  These brief 

drawings determine C1 (the background) for input to the model.  

The background is then leveled by subtracting the model, with 

appropriate offset, and segmentation results from a uniform 

threshold. (see Fig 2 for application to a normal AF scan). 

 

Autofluorescence Image Analysis 

      

In order to make quantitative assessments of abnormal AF 

relative to the image background in the setting of significant 

background variability, the AF image can be “leveled” to an 

image with a uniform background with a mathematical model 

similar to that just described for fundus photographs (Fig 2).   

Because a consistently small fraction of pixels in a normal 



leveled image fell 2.0 σ above the image mean, we used this as 

a working definition of focally increased AF (FIAF). 

 

 
 

Fig 2. Mathematical Model and Segmentation of a Normal AF Scan. (A) 
Right eye showing significant background/ illumination variability and foveal 

decreased fluorescence due to luteal pigment. (B) Twelve-zone mathematical 

model of the AF background in (A), presented as a contour graph. Note how the 

model captures the background variability of the original scan. It is essentially 

smooth throughout. The contour lines are closer together in the fovea where the 

background is more highly variable. (C) The image in (A) leveled by subtracting 

the model in (B). The background of the leveled image is now homogenous, with a 

mean gray level of 126 +/- 11.6 (SD). The global threshold of 2.0 standard 

deviations above the mean defining increased was applied to the entire leveled 

image and yielded the increased FAF shown in pink (0.28% of the 6000-micron 

zone), a reasonable selection. Thresholding the unleveled image (A) would cause 

major errors, due to the illumination variability.  

III. USER INTERACTIVE TOOLS FOR CLINICAL STUDIES 

 

Image Registration Tool 

 

The purpose of image registration is to spatially align two or 

more retinal images for simpler clinical review of disease 

progression by researchers and physicians. Since these images 

come from separate screening events and are often taken at 

changing fields of view, accurate image registration becomes 

essential.  Our completely automated method developed for 

retinal image registration (19), involves first detecting corner 

points by a Harris detector (20) and then assigning a main 

orientation for each corner point. After this, a local 

neighborhood from each corner point is chosen to extract 

intensity invariant feature descriptors (IIFD), which undergo 

bilateral matching. Incorrect matches are removed, the location 

of each match is refined, and finally, the transformation mode 

is selected. Details of these steps can be found in the IEEE 

International Symposium manuscript by Chen et al. (19). If the 

characteristics of the two images are too diverse, then the user 

can direct the algorithm to consider only the vasculature.  

 

Drusen and Autofluorescence Segmentation Tools 

 

User interactive background leveling as just described produces 

an image in which drusen or AF abnormalities appear on a 

uniform background for global thresholding.  This is 

implemented in a GUI (21). 

 

Geographic Atrophy Segmentation Tool 

 

GA segmentation in AF images via our interactive operator 

selection tool (watershed method) is described in a companion 

paper (Interactive segmentation for geographic atrophy in 

retinal fundus images, N  Lee et al., these proceedings). 

IV. APPLICATIONS 

 

Age-related Macular Degeneration (AMD) 

 

Many correlations have been made between pathologic changes 

on autofluorescence images and stages of AMD, with markedly 

decreased autofluorescence over large areas having been 

associated with geographic atrophy (GA). Furthermore, 

excessive lipofuscin accumulation in the RPE, seen in focally 

increased autofluorescence (FIAF), has been proposed to be a 

marker of RPE disease and photoreceptor cell degeneration (5). 

Through image registration and automated techniques for 

drusen identification, extended to analysis of FIAF lesions, 

improved correlation of such lesions with clinical stages can be 

obtained (7).  

      We specifically studied the relationship between FIAF and 

subsequent development of GA in AF images 2 to 3 years apart 

(22). GA was first segmented by our tool and masked from the 

image to be leveled by the model. After leveling the 

background of the remaining initial image, the mean and SD σ 

of the resultant leveled image were used to define the threshold 

for FIAF. The threshold was set at 2.0 σ above the mean to 

determine the total FIAF in the image. The FIAF contained 

within the 250-micron border zone of the initial GA lesion was 

determined.      The initial and final AF images were registered 

with our tool. Because they were precisely superimposed, the 

area of GA from the initial image could be seen as a core of GA 

within the GA in the final image.  

      The positive predictive value (PPV) of FIAF, the 

probability that any pixel with FIAF would become part of the 

new GA (NGA) in the final image, was calculated. Negative 

predictive value (NPV), which is the chance that pixels without 

FIAF would not become atrophic, was also calculated. For both 

PPV and NPV, relative values were determined, which more 

accurately reflected the strength of the association by 

calculating it relative to chance (19).   Compared with the 

relative PPV of chance of 1.0, the mean relative PPV of 

increased FAF was 1.15 +/- 0.28. The mean relative NPV was 

1.00 +/- 0.02. Because the relative predictive values of FIAF 

were generally no greater than chance, these results suggested 

that FIAF is not a strong focal risk factor for development or 

extension of GA.  

 

Stargardt Disease (STGD) 

 

We evaluated STGD progression & lipofuscin levels via our 

automated autofluorescence (AF) image analysis. We  analyzed 

the relationship between focally increased autofluorescence 

(FIAF) and progression to geographic atrophy (GA) and focally 

decreased autofluorescence (FDAF) in serial, registered 

autofluorescence (AF) scans of 10 patients with STGD (20 eyes 

40 scans, mean follow-up 2.0 years) .   We found that GA 

progressed uniformly and centrifugally in a transition zone 

with minimal FIAF.  Few (mean 4.0%) excess lipofuscin 

deposits (FIAF) progressed to GA or FDAF, despite significant 



progression of GA (median 30%/yr) and FDAF (mean 25%/yr).  

There was no correlation between total initial FIAF load and 

subsequent rate of total GA or FDAF progression. As a spatial 

predictor, when normalized to the relative positive predictive 

value (PPV) of chance (1.0), the mean relative PPV of 

increased FAF for progression of FDAF was 0.56 +/- 0.40, and 

for GA 0.30 +/- 0.27.    

          We conclude that Stargardt disease manifestations of 

GA and focally decreased AF are not spatially predicted by 

elevated lipofuscin levels imaged with autofluorescence, 

suggesting alternate mechanisms to the generally accepted 

theory of lipofuscin toxicity. Instead, FIAF and FDAF tend to 

undergo focal remodeling, or even transition of FDAF back to 

FIAF. Indeed, FDAF tends to develop, not coincident with, but 

adjacent to initial FIAF (Fig 3). Similarly, as reviewed 

previously, we found for AMD that increased autofluorescence 

does not predict the spatial progression of geographic atrophy.  

Taken together, our results challenge the lipofuscin based 

theories of pathogenesis of two important retinal 

degenerations. These results could only have been obtained by 

applying precise registration and segmentation tools such as 

described herein.  

 

 

 
 
Fig 3. Stargardt Disease.   Progression/remodeling of autofluorescence. 

A. AF image 2002, original. B. Focally increased autofluorescence (FIAF) and 

FDAF detected by the model. C. AF image 2007, original, registered to the image 

from 2002. . D. FIAF and FDAF in 2007, both more scattered and peripheral in the 

later image, with remodeling of the FDAF centrally. In particular there is some 

decreased autofluorescence (yellow arrowhead) in 2002 which now falls in the 

yellow outlined area in D, an island of mottled but not decreased autofluorescence 

within the larger new FDAF.    E.  FDAF is divided into new (not present in 2002) 

and old (present in 2002). F. To see the relation of FIAF to new FDAF formation, 

the FIAF from 2002 is overlaid on the new FDAF in 2007   New FDAF arises both 

inside and outside the initial FIAF ring, but little coincides.  Despite significant 

growth of FDAF, only 4.8% of FIAF pixels turn to FDAF in 5 years, relative to 

7.1% of randomly chosen pixels. New FDAF appears adjacent to initial FIAF but 

is not coincident with it:   an FIAF lesion is less likely to turn to FDAF than 

another randomly chosen point.  
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