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Abstract—We present a new technique to delineate lumen 
borders in intravascular ultrasound (IVUS) volumes of images 
acquired with a high-frequency Volcano (Rancho Cordova, 
CA) 45MHz transducer. Our technique relies on projection of 
IVUS sub-volumes onto orthogonal directional brushlet 
functions. Through selective projection of IVUS sub-volumes 
images and their Fourier transforms, tissue-specific 
backscattered magnitudes and phases identified within brushlet 
coefficients. We take advantage of such characteristics and 
construct 2.5-dimensional (2.5-D) magnitudes-phase histograms 
of coefficients in the transformed complex brushlet domain that 
contain distinct peaks corresponding to blood and non-blood 
regions. We exploit these peaks to mask out coefficients that 
represent blood regions and ultimately detect the luminal 
border after spatial regularization employing a parametric 
deformable model. We quantify our results by comparing them 
to manually traced borders by an expert on 2 datasets, 
containing 108 frames. We show that our approach is well 
suited for isolating coherent (i.e. plaque) structures from 
incoherent (i.e. blood) ones in IVUS pullbacks and detecting the 
lumen border, a challenging problem particularly in images 
acquired with high frequency transducers.  

I. INTRODUCTION 
FTEN, patients with chest pain and high cardiac risk 
factors undergo percutaneous coronary intervention 
(PCI) procedures. As a result, a catheter is inserted 

from the femoral artery toward potential sites of coronary 
occlusions to open up blocked artery with a stent or inflating 
a balloon. An interventional cardiologist may also deploy an 
IVUS catheter to acquire cross sectional images of arterial 
walls and atherosclerotic plaque structures. During such a 
procedure, hundreds to thousands of IVUS images are 
recorded. Therefore automatic detection of arterial wall and 
luminal borders has become a subject of study for the past 
decade. We can categorize each developed algorithm based 
on its application, domain of analysis, transducer center 
frequency, dimensionality, and employed technique as listed 
in Table I.  
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Generally speaking, detection of vessel wall borders is 
less difficult than lumen borders since the vessel media 
consists of smooth muscle cells and does not reflect IVUS 
signals. It therefore appears as a dark region on IVUS 
images, which can be used as a marker to detect the vessel 
wall. In contrast, due to high scattering from red blood cells 
inside the lumen, detection of a luminal border is a more 
formidable challenge especially when a high-frequency 
transducer is used. Our group previously presented a 
multiscale brushlet based technique to filter IVUS images 
and characterize blood speckle patterns as a preprocessing 
step for lumen border detection [10]. We demonstrated that 
brushlet coefficients provided information about blood and 
non-blood regions and could be used to isolate static (i.e. 
plaque) patterns from dynamic (i.e. blood) ones over whole 
pullback acquisitions. We later used brushlet coefficients 
along with two geometrical features to classify blood regions 
in a supervised fashion [11]. In this paper, we show that 
tissue-specific backscattered magnitudes and phase 
information can be classified using brushlet coefficients, due 
to indirect projection of 3D IVUS sub-volumes through their 
Fourier transforms. We then use this property to establish a 
framework that is able to delineate luminal borders 
automatically without any use of thresholding parameters.  

 
Table I. List of existing algorithms and their specifications. 

(VW: Vessel   Wall, L: Lumen) 
Authors 
[Ref. #] 

Implementation 
Technique 

Application Domain of 
Analysis 

Tcx. Center 
Frequency 

(MHz) 
Sonka et al 

[1] 
2D graph search VW &L Cartesian  30 

Shekhar et 
al [2] 

3D deformable 
model 

VW &L Cartesian 30 

Plissiti et 
al [3] 

2D deformable 
model 

VW &L Cartesian 30 

Cardinal et 
al [4] 

3D PDF-based 
fast marching 

VW &L Polar 20 

Unal et al 
[5] 

2D/3D statistical 
shape model 

VW &L Polar 20 

Hibi et al 
[6] 

3D 
spatio/temporal 

analysis 

Blood noise 
reduction 

Polar 40 

Ballocco et 
al [7] 

3D 
spatio/temporal 

analysis 

Blood noise 
reduction 

Cartesian 30 

Rotger et 
al [8]  

3D, Adaboost 
classifier 

Blood 
detection 

Longitudinal 
Cut 

Unknown 

O’Malley 
et al [9] 

3D support vector 
machine (SVM) 

Blood 
detection 

Polar 40 

 

II. DATA COLLECTION  
We collected IVUS grayscale images from two patients 

using a single element mechanically rotating 45 MHz 
Revolution™ transducer and an s5™ imaging system 
manufactured by VOLCANO (Rancho Cordova, CA). The 
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catheter was inserted on top of a guide wire from the femoral 
artery toward the potential site of coronary arterial occlusion 
(i.e. right coronary artery (RCA), left anterior descending 
(LAD), left circumflex (LCX)) via the aorta. During image 
acquisition, the catheter is pulled back from distal to 
proximal locations with a speed of 0.5mm/sec, acquiring 30 
frames/second. Ultimately, each grayscale IVUS frame was 
constructed consisting of 500 radial lines that span 360o and 
500 samples/line after decimation and interpolation in radial 
and lateral directions, respectively. The original images, 
acquired in polar coordinates, were mapped to Cartesian 
coordinates to construct typical IVUS image matrices.  

III. METHODOLOGY 
We designed our approach based on what typically 

interventional cardiologists do to visually delineate the 
lumen border. They usually go back and forth among 
consecutive frames to be able to visually locate the lumen 
contour on a single frame. By doing so, blood speckle and 
plaque embody visually incoherent and coherent spatial 
patterns, respectively, suggesting a 3D processing approach. 
3D brushlet analysis has been successfully employed to 
segregate static and dynamic textured structures within 
volumes of images in different applications [10-12].  

A. Brushlet Analysis 
We are particularly interested in orthogonal localized 
exponentials basis functions since they enable us to 
characterize valuable information about the direction of 
textures at different scales, frequencies, and locations. For 
this reason, authors in [13] introduced Brushlet basis by 
dividing the real axis into subintervals an ,an+1[ ]  of length ln  
and constructing the complex orthonormal basis function 
un , j x( )  using two localized windowed functions bn x( )  and 

v x( )  as follows: 

u
n , j

x( ) = b
n
x −

l
n

2( )en , j x( ) + v x − a
n

( )e
n , j

2a
n
− x( )

− v x − a
n +1

( )e
n , j

2a
n +1

− x( ) 1( )
 

where en , j x( ) = 1
ln
e
−2 iπ j

x − an( )
ln  . Figure 1 illustrates the 

windowing functions as well as the imaginary and real parts 
of un , j x( ) . Given any one-dimensional signal f  in L2 R( ) , 

its Fourier transform f̂  can be projected onto the brushlet 

basis as , where λn , j  are the 

brushlet coefficients. It has been shown that the projection of 
f̂  onto the brushlet basis can be implemented in an efficient 

fashion using a folding technique and fast Fourier transform 
(FFT) [14]. 
 

B. IVUS Signal Modeling In Fourier Domain and 
Assumptions 

Consider the measurements of an IVUS transducer during 
pullback. In this case, each acquisition line, f , contains 
information regarding tissues and flowing blood. We can 
distinguish the differences in the temporal patterns 
associated with each tissue and blood by differentiation 
between their distinct responses to IVUS signal. Hence, we 
take in the relative magnitudes and phases into the definition 
of the sources (i.e. blood and non-blood) and represent them 
in the transformed domain as: 
 

  

where ϕ n , j  and α
n , j

are the resulting phase and amplitude of 

tissue response  to ultrasound signal. Using Eq. 3 we 
rewrite Eq. 2 and obtain: 
 

  
α

n , j
e

− iωϕ
n , j ŝ

j

∑
n

∑ = λ
n , j

u
n , j

j

∑
n

∑ (4)  

We call two functions s1  and s2  disjoint orthogonal if the 
frequency supports of their Fourier transforms, ŝ1 and ŝ2 , 
are disjoint. In other words the point-wise product: 
ŝ p . ŝq = 0, ∀p ≠ q,∀N . Our working assumption is that this 
is a legitimate assumption in our IVUS application because 

                               (a)                                                                       (b)                                                                       (c) 
Fig. 1. Windowing functions b x( )  and v x( ) (a). The  ε  parameter controls the localization degree of brushlet function in time and 

frequency domains. Real part (b) and imaginary part (c) of analysis un , j  brushlet function with ln = 32 ,ε = 16 , j = 8.  
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each frequency bin is a function of only and only one 
tissue’s response, which in our case would be blood or non-
blood. Since brushlet basis are orthonormal, we can 
reorganize Eq. 4 in the following form: 

  
λ

n , j
= α

n , j
e− iωϕn , j ŝ

n , j
,u

n , j
j

∑
n

∑ (5)  

Looking at Eq. 5, we realize that the phase of brushlet 
functions results in orientation selectivity in transformed 
space when separable tensor product is used while image 
phases and amplitudes associated with tissue responses are 
proportionally preserved in brushlet coefficients. We further 
hypothesize that the magnitude and phase of brushlet 
coefficients provide informative features for coherent (non-
blood) and incoherent (blood) patterns so we can estimate 
the lumen border in transformed domain via selection of 
specific clusters of phases-magnitudes combinations 
avoiding any thresholding and reconstruction. In the rest of 
this section we present a classification framework to 
associate frequency-based clusters of brushlet coefficients 
with each tissue type (blood or non-blood). 
 

C. Construction of 2.5-D Magnitude-Phase Histogram in 
Complex Brushlet Space 

Once the IVUS sub-volumes of size X,Y ,Z( )  are 
projected onto brushlet basis, we end up with sub-volumes 
of brushlet coefficients in the transformed domain. 
Corresponding to lower frequencies, we showed that the 
coefficients in the innermost cubes contain the most 
informative features regarding blood and non-blood textures. 
They can be summed up to span 360o of spatially oriented 
information and construct the complete arterial wall and 
plaque in transformed domain [10,11]. We follow the same 
procedure and each IVUS frame in brushlet space, F̂ , 
contains all spatial coefficients. Taking the union of summed 

coefficients 
 
F̂ = α ke

− iϕ k

k =1

X ×Y

 , we can write: 

F̂ r, t( ) = α r, t( )e− iϕ r , t( ) , r = 1, ..., X, t = 1, ...,Y (6)  

The magnitude and phase associated with each coefficient 
can be written as: 

 α r, t( ),ϕ r, t( )( ) = F̂ r, t( ) ,F̂ r, t( )( ) (7)   
A 2.5-D histogram can be constructed for every pair of 
α r, t( ) ,ϕ r, t( )( )  in α ,ϕ( )  domain as follows. First, we 

define a mask for α ,ϕ( ) : 

Mα ,ϕ ,Δα ,Δϕ
r, t( ) =

1 :
lnα r, t( ) − lnα <

Δα

2

ϕ r, t( ) − ϕ <
Δϕ

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 : o.w.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(8)  

We are taking the difference between computed magnitude 
and phase of brushlet coefficients, α r, t( )  and 

ϕ r, t( )within 
Δ

α

2
 of α and 

Δ
ϕ

2
 of ϕ in the histogram, 

respectively, where Δα  and Δϕ  are the magnitude and phase 
resolution widths of the histogram. Then, the histogram can 
be defined as follows: 

h α ,ϕ( ) = Mα ,ϕ ,Δα ,Δϕ
r, t( ) F̂ r, t( )

r ,t
∑ (9)  

Our main interest is the locations of the histogram peaks and 
the surrounding region. As these shall be used to generate 
binary masks to label blood and non-blood regions. 
 

D. Segmentation of Coefficients and Recovery of 
Regional Peak Correspondences 

In order to localize the histogram peaks, we used a K-mean 
classifier to cluster the data in (9) α

peak
,ϕ

peak( ) . The 
partitioning algorithm minimizes the sum of point-to-
centroid distances, summed over all clusters. We assigned 
each point to the nearest cluster centroid and updated all 
centroids iteratively. Once the magnitudes and phases 
corresponding to the Q principal peaks were found, we 
computed, , masks based the following L2  norm in the 
histogram space, 

 

  

∀ α
peak
l ,ϕ

peak
l( ), l = 1,..., K{ }

Q
α peak

l* ,ϕ peak
l* r,t( ) = 1; min

l
α r,t( ) −α peak

l( )2
+ ϕ r,t( ) −ϕ peak

l( )2
(10)

0 ; o.w.

⎧
⎨
⎪

⎩⎪

 

where (10) is minimum over all  and is the number of 
tissues (classes). Note that the number of classes defined for 
the K-means classifier may not be necessarily the same as 
the number of peaks that we observe in the histogram. We 
expected that the magnitudes and phases of brushlet 
coefficients would provide some information about tissue 
types. Hence, α

peak
,ϕ

peak( )  corresponds to an approximate 
magnitude-phase for a tissue (class). In Eq. (10), we tried to 
identify specific α

peak
,ϕ

peak( )  among all magnitudes and 

            (b)                                 (c)                                  (d) 
Fig. 2. Constructed magnitude-phase histogram (a), output of 
K-means classifier for two classes (b,c), automated detected 
phantom wall (c).  
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phases derived from the brushlet coefficients, α ,ϕ( ) , and 
estimated the corresponding regions by masking the 
coefficients that exhibited the closest magnitude and phase 
to the approximated one. Once the desirable mask 
corresponding to blood regions was found (i.e., the one that 
contains zeros around the surface of the transducer, as 
illustrated in Figure 2(c)), a parametric deformable model is 
employed to detect the luminal wall after spatial 
regularization (i.e. removal of small objects).  
 

IV.  EXPERIMENTAL RESULTS AND QUANTIFICATION 
 
In the first experiment, we studied the feasibility of our 
proposed technique by acquiring IVUS frames from a 
phantom cylinder using circulating flowing human blood. 
Figure 2 shows a selected constructed magnitude-phase 
histogram, binary masks for the two classes, and finally the 
automated detected phantom wall border. Secondly, we 
evaluated the algorithm performance on 205 IVUS frames 
acquired from two patients during catheterization procedure. 
Figure 3, illustrates a constructed magnitude-phase 
histogram for a single IVUS frame and automated detected 
luminal border along with manual traced contour by an 
expert. While the peaks are not as well separated as in the 
case of the phantom data they still provide good estimate of 
the relative magnitudes and phases for blood and non-blood 
regions and hence the detection of the lumen border in vivo. 
We quantified the results comparing the automated detected 
borders with manually traced contours by an expert.  
Statistics including true positive (TP), false positive (FP), 
and root mean square error (RMSE) rates are reported in 
Table II.  
 
Table II.  Quantification of automated detected lumen borders 

compared with corresponding expert manual tracings.  
Case # TP FP RMSE 

1 88% 4% 20 
2 86% 1% 26.42 

V. SUMMARY AND CONCLUSION 
In this paper, we presented a 3D segmentation framework 

for automatic detection of luminal borders in IVUS 
grayscale images by constructing the relative magnitude-
phase histogram of complex brushlet coefficients. These 
preliminary results demonstrated that our algorithm 
performed well, compared to manually traced borders by an 

expert. We plan to improve the spatial regularization part in 
the future and extend the approach to full vessel 
segmentation with different tissue layers.  
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                                                     (a)                                                                               (b)                                         (c) 
Fig. 3. Constructed magnitude-phase histogram for a single IVUS frame acquired in vivo (a), automated (red) and manual (green) 
traced borders imposed on two original grayscale IVUS images (b,c).  
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