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Abstract—In this paper, we propose a novel beamforming 
approach based on a dual-domain compressed sensing (CS) 
technique. We model the image as a combination of geometry 
information and residual details. The beamforming is formulated 
as depth-dependent optimization problems, solved successively in 
wavelet domain to capture the overall geometry, and in the image 
domain to preserve details. With a budget of few iterations, our 
approach preserves better features and produces less holey-tissue 
artifacts compared to single-domain reconstructions. Tested on 
simulated data, CIRS phantom and a cardiac scan, our 
beamforming requires typically three plane/spherical-wave 
transmissions to achieve comparable or better image quality than 
delay-and-sum (DAS) using eleven transmissions. We thus attain 
a theoretical frame rate over 1KHz at depth of 15cm. 

Keywords—Dual-domain compressed sensing, Iterative 
beamforming, Alternating direction multiplier method 

I. INTRODUCTION 

Compressed sensing (CS) techniques [1][2] have recently 
drawn great interest in the ultrasound community. Compared to 
the conventional sampling strategy, CS method is capable of 
reconstructing signals with many fewer measurements than the 
Nyquist rate. This is achievable through an efficient sparsity-
promoting signal representation that considerably reduces the 
number of degrees of freedom in the signal estimator. Such 
property makes CS techniques highly interesting for raw/RF 
data compression and sampling-rate reduction in ultrasound 
beamforming, potentially leading to more cost-efficient front-
ends (see [3][4][5][6]).  

Taking a step further, [7, 8] propose to combine a pulse-
echo propagation model into the CS framework, leading to a 
direct image reconstructor. Compared to the conventional 
delay-and-sum (DAS) beamformer, this approach produces 
competitive image quality with a reduced number of 
transmissions and thus enables higher frame rate.  

Despite these encouraging progresses, several image-
quality challenges, such as feature preservation and artifact 
reduction, still underlie current CS-based image 
reconstructions. Moreover, as an iterative reconstructor, the 
complexity of CS approaches remains prohibitive for practical 
imaging. In this work, we try to address improvements in these 
challenging areas.  

We propose herein a novel beamforming approach based 
on a dual-domain CS technique. It is a known fact that the CS-
based beamforming requires a good sparse representation of 

the image. Along this vein, we find it particularly interesting to 
model the image as a combination of geometry information and 
a residue of details. This allows beamforming to be 
successively carried out in wavelet domain to capture the 
overall geometry, and in the image domain for preserving 
features. Numerically, we propose the Alternating Direction 
Multiplier Method (ADMM) [9] for image reconstruction, as it 
not only fits our multi-domain strategy, but also produces 
reasonably accurate results with few iterations.  

We evaluate our approach on simulated data, CIRS speckle 
phantom, and a cardiac scan. We find that our method requires 
typically only three plane/spherical wave transmissions to 
achieve comparable or better image quality than DAS using 
eleven transmissions. Overall, we attain a theoretical frame 
rate over 1KHz at depth of 15cm. With a budget of few 
iterations, the approach preserves better features and produces 
less holey-tissue artifacts, compared to the CS beamforming 
using a single image-representation domain.  

II. METHOD 

A. Acoustic measurement modeling 

We assume a linear or a phased array transducer (see Fig. 
1), transmitting plane wave or diverging wave, and recording 
acoustic echoes by each of the transducer element (channel).   

 
Fig. 1 A linear or phased array transmitting plane-wave pulses and measuring 

per-channel acoustic-pressure data.  
Adopting a linear approximation of the pulse-echo process 

based on Born’s diffraction model [10], the spectrum ܯ෡௞(߱) 
of the per-channel data ܯ௞(ݐ) can be written as a convolution: ܯ෡௞(߱) = න ݂(߱)௏ ℎ௣௘(௞)(ݎԦ௞, ,Ԧଵݎ  Ԧଵ (1)ݎ݀ (Ԧଵݎ)ݑ(߱

for ݇ = 1, 2, … , ܰ. Here, ݂(߱) is the transfer function of the 
transducer, ℎ௣௘(௞)(ݎԦ௞, ,Ԧଵݎ ߱)  the pulse-echo transfer function of 
the ݇ -th transducer element, and ݑ  the (unknown) tissue 
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reflexivity to be reconstructed. ܸ, ݎԦଵ and ݎԦ௞ respectively denote 
the probed tissue area, an arbitrary point in ܸ, and the location 
of the ݇-th transducer element on the probe surface. In reality, 
only part of the measurements ܯ෡௞  within the transducer 
bandwidth are kept, which significantly reduces the number of 
samples.  

We model ݂  by a Gaussian pulse modulated at the 
transducer frequency. With the plane/spherical-wave 
emission, ℎ௣௘ can be expressed in closed form (see e.g. [7, 8]). 
To simplify our notation, the linear operation in (1) can be 
summarized as 

ێێۏ
ۑۑے෡ேܯ⋮෡ଶܯ෡ଵܯۍ

ې
ถۻ

= ൦ܩଵܩଶ⋮ܩே൪ถ۵
 (2) ݑ

where ܩ௞  is the operator regrouping ݂  and ℎ௣௘(௞)  as (spatial-
variant) convolution kernel in (1). As a consequence, in 
discrete domain that we consider in the following, ۵  is 
represented by a (convolution) matrix. 

B. Image reconstruction 

Ideally, one needs to inverse (2) to estimate the image ݑ. 
Due to the ill-conditioning of the inverse problem, 
conventional CS reconstruction solves a sparsity-promoted 
optimization problem (3). The sparsity prior is expressed by an ݈ଵ -norm within a prescribed basis ܅ (e.g. wavelets) that is 
supposed to efficiently represent the image information. arg minܝ (ܝ)ܬ =  ଵଶ ԡ۵ܝ − ԡଶۻ + ௐߛ   , ԡଵܝ܅ௐԡߛ > 0 (3) 

In our case, our image ݑ  will be considered as a 
combination of two components:  ݑ = ௚ݑ +  ௚, or the geometry component, encodes the major structuralݑ ௥ (4)ݑ
information in the image. ݑ௥ , or the residue component, 
represents the residual details.  

This decomposition explicitly reflects the “multi-layer” 
nature of medical ultrasound image information. For example, 
cardiac scans usually includes large structural information such 
as cardiac walls, and details like valves, thrombus in the 
chambers, etc. Therefore, the separate modeling in (4) allows 
us to choose efficient information compression domains 
according to the nature of the represented information. In our 
case, we use wavelet bases for sparsifying ݑ௚. For representing 
the residue ݑ௥, we choose the image pixel basis. 

Consequently, our optimization problem is formulated as 
follows: arg minܝୀൣܪݎݑ,ܪ݃ݑ൧ಹ (ܝ)ܬ =  12 ฮ۵൫۲௚ + ۲௥൯ܝ − ฮଶۻ + +ฮଵܝ۲௚܅ௐฮߛ  ԡଵ  (5)ܝ଴ԡ۲௥ߛ

where ܝ = ,௚ுݑൣ ௥ு൧ுݑ
concatenates the geometry and residue 

components into a single vector. ۲௚ = [۷, ૙] and ۲௥ = [૙, ۷] 
are binary matrices such that ۲௚ܝ = ௚ݑ  and ۲௥ܝ = ௥ݑ  ܅ .

stands for the wavelet transform matrix. ߛௐ  and ߛ଴  are 
positive constants. 

It is clear that the optimization in (5) seeks for the best 
tradeoff between (i) the first term of data fitting using our 
model (2), and (ii) the second and third terms of ݈ଵ -
regularization that encode the sparsity prior of the geometry 
component in the wavelet bases, and of the residue component 
in the image basis.  

C. Numerical solver and implementation 

We propose to use ADMM iterative scheme [9] for solving 
(5). This scheme adopts a divide-and-conquer strategy such 
that it optimizes alternatively each term of (5) with an 
augmented Lagrangian relaxation. Hence, the ݈ଵ-minimizations 
in dual domains can be handled independently, which greatly 
simplifies our implementation.  

Moreover, we prefer using undecimated transform of 
orthogonal wavelets. This makes our wavelet bases ܅ into a 
tight frame such that 

ଵி ܅ு܅ = ۷. We have the redundancy 
factor ܨ = 4ௌ  with ܵ the number of wavelet scales. In plain 
words, the pseudo-inverse of ܅ boils down to its conjugate 
transpose up to a constant. 

 The ADMM scheme is summarized in Table I. Let us 

denote ۰ = ൣ۷ ۲௚ு܅ு ۲௥ு൧ு
, ௞ݒ = ௞ு,(ଵ)ݒൣ , ௞ு,(ଶ)ݒ , ௞ு,(ଷ)ݒ ൧ு

, 

and ݀௞ = ൣ݀(ଵ),௞ு , ݀(ଶ),௞ு , ݀(ଷ),௞ு ൧ு
. Here, ݇ = 0,1,2, …  indexes 

the iteration step. At ݇ -th iteration, ݒ(ଵ),௞ ௞,(ଶ)ݒ ,  and ݒ(ଷ),௞ 
record the primal solutions to the three (relaxed) terms of (5) 
respectively, while ݀(ଵ),௞ , ݀(ଶ),௞ and ݀(ଷ),௞ records the 
corresponding Lagrangian dual variables.  

Table I. ADMM numerical algorithm of (5) 

Iterate till convergence (݇ = 0,1,2, … ): 

1. Solve ݑ௞ାଵ ݑ௞ାଵ = ൦ ܨ1 + 1 ۷ ૙૙ 12 ۷൪ ۰ு(ݒ௞ + ݀௞) 

2. Solve ݒ(ଵ),௞ାଵ ቂ۷۷ቃ ۵ு۵[۷ ௞ାଵ,(ଵ)ݒ[۷ + = ௞ାଵ,(ଵ)ݒ௞ߤ ቂ۷۷ቃ ۵ுۻ + ௞ାଵݑ)௞ߤ − ݀(ଵ),௞) 

3. Solve ݒ(ଶ),௞ାଵ ݒ(ଶ),௞ାଵ = STఊೈ/ఓೖ[۲܅௚ݑ௞ାଵ − ݀(ଶ),௞] 
4. Solve ݒ(ଷ),௞ାଵ ݒ(ଷ),௞ାଵ = STఊబ/ఓೖ[۲௥ݑ௞ାଵ − ݀(ଷ),௞] 
5. Update ݀௞ାଵ ݀௞ାଵ = ݀௞ − ௞ାଵݑ۰ +  ௞ାଵݒ

 

Above, the augmented Lagrangian relaxing parameter ߤ௞ > 0  forms a non-decreasing sequence. STఉ(ݒ)  represents 
the component-wise soft-thresholding operator such that: STఉ(ݒ) ≔ ൜(|ݒ| − (ߚ ∙ |ݒ|/ݒ |ݒ| > 0ߚ |ݒ| ≤  ߚ

In addition, the linear system in step 2 is solved by a few 
iterations of conjugate gradient descent. 

Initially (݇ = 0), our geometry component is set to the 
back-propagated image ۵ுۻ, while the residue is set to zero. 



Then, stages 2, 3 and 4 in Table I find the (relaxed) sub-
solutions to the data-fitting term, the geometry component and 
the residue component of (5), respectively. After updating the 
dual variables in stage 5, the image solution at the next 
iteration is found in stage 1 by merging the three sub-solutions. 
The iteration stops when convergence is reached, or when a 
prescribed maximum number of iterations is attained. 

For a typical transducer of 128 elements, a sensing depth up 
to 15cm, and a discretized-image pixel size of half of the 
wavelength, solving (5) on the entire image domain requires a 
memory size of several hundred gigabytes due to the huge size 
of the matrix ۵. To make the solver practically tractable, we 
propose to partition the image ݑ into (overlapping) stripes of 
depth of 10mm or 20mm. The numerical solver runs locally on 
each of the stripes before merging the results:  ݑ = ∑ ௝ܹݑ[௝]௝∑ ௝ܹ௝  is the solution to the ݆-th stripe, on which we apply  an [௝]ݑ 
axial window (e.g. Gaussian) ௝ܹ  that attenuates the border 
artifacts. This depth-dependent solver leads to a memory 
footprint of a few gigabytes, and therefore turns out to be 
tractable on a common PC. 

III. RESULTS AND DISCUSSION 

A. Results on simulated phantom 

We simulate, with Field-II, a linear probe with 128 
transducer elements. The probe transmits a single planar-wave 
pulse and senses a 20mm-by-10mm area ( [60, 80] ൈ[−5,5] ݉݉ଶ). The area includes a frame of random speckle 
enclosing 18 isolated diffusers. Their amplitudes range linearly 
from -50dB to 0dB. The transducer central frequency is 6MHz 
and the sampling frequency is 40MHz.  

The spectral measurements are obtained in the Fourier 
domain of the per-channel data within the bandwidth. In total, 
we keep less than 3% of the available Fourier coefficients. We 
restrict ourselves within a limited time-budget on the number 
of iterations that does not exceed 20. This corresponds to about 
6 min of computation in our Matlab implementation on an 
Xeon 2.80 GHz PC. 

Our ߛ଴ is set as a fraction to the maximum amplitude in the 
back-propagation, i.e., ߛ଴ = 10ିோబԡ۵ுۻԡஶ  with ܴ଴ = −2.7 ௐ is likewise defined (with exponent ܴௐߛ . = −2.7) but in the 
wavelet bands of the back-propagation. We use Haar basis as 
our wavelets. 

In Fig. 2, the dual-domain approach is compared to single 
wavelet-basis based CS beamforming, single image-basis 
based CS beamforming and DAS. It can be seen that wavelet-
based restoration preserves structural information well but is 
limited in contrast sensitivity (i.e., up to -35dB). Contrast of 
isolated diffusers is better preserved using image basis (i.e., up 
to -47 dB). The tissue frame, however, suffers from holey-
tissue artifacts. Dual-domain reconstruction overcomes these 
limitations and seems to combine the advantages of both 
domains. Finally, comparing to DAS result, all CS-based 
methods produce better contrast within the frame. Our display 
window ranges from -60dB to 0dB. 

(a) (b) (c) (d) 

Fig. 2 Image (20mm x 10mm) reconstructed from a simulated Field-II scan 
using a linear probe (6 MHz) with a single plane-wave TX. The simulated 
data consist of a rectangular tissue frame enclosing 18 diffusers of amplitudes 
ranging from -50 dB to 0 dB. No more than 20 iterations are used in the 
solvers. (a) CS-beamforming in the wavelet domain; (b) CS-beamforming in 
the image domain; (c) Dual-domain CS-beamforming; (d) DAS beamformed 
result. 

B. Results on speckle phantom 

 Fig. 3(a) shows our result on the CIRS speckle phantom 
([15, 40] ൈ [−15, 15] ݉݉ଶ) using 3 plane-wave transmissions 
only (oriented to -5, 0, and 5 degrees). We have set a stripe 
height of 10mm, no more than 20 iterations, and ܴ଴ = −2.7, ܴௐ = −3.0.  

Compared to DAS with 11 plane-wave transmissions (Fig. 
3(b)), the CS-based beamforming shows better axial resolution 
as well as better lesion contrast in both near and far fields. The 
improvement is even more significant when comparing to DAS 
with the same number of transmissions (3 TX, Fig. 3(c)). 

We also show the amplitudes of the geometry component ݑ௚ and of the residue ݑ௥ respectively in Fig. 3(d) and (e). It can 
be seen that ݑ௚ captures the majority of the mostly contrasted 
signals i.e., cysts, lesions and isolated diffusers. The residual 
amplitudes on those signals, as well as the remaining speckles 
in the near field and on the sides are preserved by ݑ௥, which 
has a porous appearance. Apparently, these results are in 
consistency with our previous observation on the simulated 
phantom (Fig. 2). 

C. Results on cardiac scan 

Additionally, we apply our method on cardiac data 
acquired by a phased-array probe. Our transducer includes 80 
elements, and transmits pulses of diverging spherical waves at 
central frequency 2.6 MHz, focused at 10mm behind the probe 
surface. 

Fig. 4(a) shows our result on a 4-chamber scan with 3 
divergent-wave transmissions (oriented to -9, 0, and 9 degrees). 
The reconstruction is conducted on overlapping stripes of 
height of 10mm. In each stripe, less than 2% of the total 
available Fourier coefficients are used. We have set ܴ଴ =ܴௐ = −2.75. 

Compared to DAS of 11 transmissions in Fig. 4(b), our 
result provides a better resolution, a comparable contrast in the 
chambers, and a better contrast in the far field.  

In this case, we achieve a theoretical frame rate over 1KHz 
at depth of 15cm. 



  

(a) (b) 

 

(c) 

  

(d) (e) 

Fig. 3 CIRS speckle phantom reconstruction using a linear probe (6 MHz). (a) 
Dual-domain CS-beamforming with 3 transmissions and no more than 20 
iterations; (b) DAS with 11 transmissions; (c) DAS with 3 transmissions; (d) 
the geometry component of the dual-domain solution; (e) the residue 
component of the dual-domain solution. 

 

 

(a) 

 

(b) 

Fig. 4 Four-chamber scan. (a) Dual-domain CS-beamforming with 3 
transmissions and no more than 20 iterations; (b) DAS with 11 transmissions. 

IV. CONCLUSION 

In this paper, we propose a dual-domain compressed 
sensing (CS) beamforming technique, based on adapted 
representations of geometry information and residual details in 
an ultrasound image. With a budget of few iterations (typically 
20), our approach preserves better features and produces less 
holey-tissue artifacts compared to single-domain approaches. 
Three plane/spherical-wave transmissions are used in our 
experiments to achieve comparable or better image quality than 
delay-and-sum (DAS) using eleven transmissions, attaining a 
theoretical frame rate over 1KHz at depth of 15cm.  

In the future, we will continue our study by focusing on 
further improvement of the algorithm performance. This would 
be obtained either by using better iterative numerical schemes, 
or from a more efficient implementation. 
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