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ABSTRACT

This paper introduces a novel approach for accomplishing mammographic feature analysis through
overcomplete multiresolution representations. We show that efficient representations may be identified from
digital mammograms and used to enhance features of importance to mammography within a continuum
of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable
multiscale representation: The hexagonal wavelet transform.

Mammograms are reconstructed from transform coefficients modified at one or more levels by local and
global non-linear operators. Multiscale edges identified within distinct levels of transform space provide
local support for enhancement In addition, we show that transform coefficients, modified (globally within
each level) by an adaptive non-linear operator (histogram specification), can make more obvious unseen or
barely seen features of mammography without requiring additional radiation. In each case, multiscale edges
and gain parameters are id€ ntified adaptively by the measure of energy within each level of scale space

We demonstrate that features extracted from multiresolution representations can provide an adaptive
mechanism for accomplishing local contrast enhancement We suggest that multiscale detection and local
enhancement of singularities may be effectively employed for the visualization of breast pathology without
excessive noise amplification. By improving the visualization of breast pathology we can improve chances
of early detection (improve quality) while requiring less time to evaluate mammograms for most patients
( lower costs).

1. INTRODUCTION

Many cancers escape detection due to the density of surrounding breast tissue. For example, differences
in attenuation of the various soft tissue structures in the female breast are small, and it is necessary to
use low levels of X ray energy to obtain high contrast in mammographic film Since contrast between the
soft tissues of the breast is inherently low and because relatively minor changes in mammary structure
can signify the presence of a malignant breast tumor, the detection is more difficult in mammography
than in most other forms of radiography. The radiologist must search for malignancy in mammographic
features such as microcalcifications, dominate and stellate masses, as well as textures of fibrous tissues
(fibroglandular patterns).

A primary breast carcinoma can metastasize when it consists of a relatively small number of cells, far
below our present threshold of detection. The importance of diagnosis of breast cancer at an early stage
is critical to patient survival. Despite advances and improvements in mammography and mammographic
screening programs, the detection of minimal breast cancer (those cancers 1.0 cm or less in diameter)
remains difficult At present, mammography is capable of detecting some cases through indirect signs, par-
ticularly through the presence of characteristic microcalcifications It has been suggested that as normally
viewed, mammograms display only about 3% of the information they [1] The inability to detect
these small tumors motivates the multiscale imaging techniques presented in this paper.
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Digital image processing techniques have been applied previously to mammography. The focus of
past investigations has been to enhance mammographic features while reducing the enhancement of noise.
Gordon and Rangayyan [9] used adaptive neighborhood image processing to enhance the contrast of features
relevant to mammography. This method enhanced the contrast of mammographic features as well as noise
and digitization effects. Dhawan [6, 7, 8] has made significant contributions towards solving problems
encountered in mammographic image enhancement. He developed an adaptive neighborhood-based image
processing technique that utilized low-level analysis and knowledge about a desired feature in the design
of a contrast enhancement function to improve the contrast of specific features. Recently, Tahoces [26]
developed a method for the enhancement of chest and breast radiographs by automatic spatial filtering. In
their method, they used a linear combination of an original image and two smoothed images obtained from
the original image by applying different spatial masks. The process was completed by nonlinear contrast
stretching. This spatial filtering enhanced edges while minimally amplifying noise.

Methods of feature enhancement have been key to the success of classification algorithms. Lai [10]
compared several image enhancement methods for detecting circumscribed masses in mammograms. They
compared an edge-preserving smoothing function [22], a half-neighborhood method [23], k-nearest neigh-
borhood, directional smoothing [5] and median filtering [2], and in addition proposed a method of selective
median filtering.

In the fields of image processing and computer vision, transforms such as windowed Fourier transforms
that can decompose a signal into a set of frequency intervals of constant size have been applied to many
applications, including image compression and texture analysis. Because the spatial and frequency reso-
lutions of these transforms remain fixed, the information provided by such transforms is not local within
each interval. A wavelet transform [3, 4, 16, 17, 18, 19] is a decomposition of a signal onto a family of func-
tions called a wavelet family. It decomposes an image onto a set offrequency channels having a constant
bandwidth in logarithmic scale. The wavelet transform provides a precise understanding of the concept of
multiresolution. In wavelet analysis, the variation of resolution enables transform coefficients to focus on
the irregularities of a signal and characterize them locally.

In this paper we introduce a novel method for accomplishing adaptive contrast enhancement [11, 12, 13].
We describe a method of image enhancement that uses non-separable analyzing functions to compute a
multiscale representations. Mammograms are then reconstructed from transform coefficients modified
at each level by local and global non-linear operators. We show preliminary results that suggest such
methods can emphasize significant features in digital mammography and improve the visualization of
breast pathology.

2. OVEItCOMPLETE REPRESENTATIONS FOR. MULTISCALE ANALYSIS

The novelty of our approach includes the application of wavelet transforms to accomplish multiscale
feature analysis and detection. Using wavelets as a set of basis functions, we may decompose an image
into a multiresolution hierarchy of localized information at different spatial frequencies. Wavelet bases are
more attractive than traditional hierarchical bases because they are orthonormal (traditionally), linear,
continuous, and continuously invertible. The multiscale representation of wavelet transforms suggest a
mathematically coherent basis not only for existing multi-grid techniques, but also for embedding non-linear
methods. We suggest that these representations may increase the capacity and reliability of autonomous
systems to accomplish classification of known abnormalities.

In contrast to ad-hoc approaches, the methods presented in this paper suggest the development of a
practical diagnostic tool embedded in a unified mathematical theory. By this virtue, wavelet methods
can exceed the performance of previous multiresolution techniques that have relied mostly on traditional
methods of time-frequency analysis such as the Wigner distribution (1932) and Gabor's sliding-window
(1946) transforms.

The multiresolution wavelet representation provides a natural hierarchy in which to embed an interac-
tive paradigm for accomplishing scale-space feature analysis. Similar to traditional coarse to fine matching
strategies, the radiologist may first choose to look for coarse features (e.g. dominant masses) within low
frequency levels of the wavelet transform and later examine finer features (e.g. microcalcifications) at

560 ISPIE Vol. 1898 Image Processing (1993)

Downloaded from SPIE Digital Library on 30 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



higher frequency levels. Choosing wavelets (or analyzing functions) that are simultaneously localized in
both space and frequency, results in a powerful methodology for image analysis. The inner-product of a
signal I with a wavelet 'b ((1, 'h) = (2ir)1 (), "b)) reflects the character of f within the time-frequency

region where is localized ('si and J are the Fourier transforms of the analyzing function and the signal,
respectively). If t/.' is spatially localized, then two-dimensional features such as shape and orientation are
preserved in the transform space and may characterize a feature through scale-space. We may "extract"
such features by applying geometric constraints within each level of the transform. We reduce the corn-
plexity of the reconstructed marnrnograrn by selecting a subset of features that satisfy certain geometric
constraints. For example, we may choose to focus on only those features oriented in the horizontal di-
rection. Subsequent image reconstructions may use the context provided by previously enhanced features
to examine (diagnose) additional features emergent at other scales and orientations. Thus, fine vertical
features may be selected and analyzed in the context of previously classified large horizontal features.
Our strategy provides a global context upon which subtle features within finer scaIes may be classified
incrementally through a precomputed hierarchy of scale-space.

Our approach to feature analysis and classification is motivated in part by recently discovered biological
mechanisms of the human visual system [28]. Both multiorientation and multiresolution are known features
of the human visual system. There exist cortical neurons which respond specifically to stimuli within certain
orientations and frequencies. In practice we exploit the mathematical properties of wavelet transforms
including linearity, continuity, and continuous invertibility to make features more obvious. In the next
section we show these properties can accomplish adaptive contrast enhancement of digital mammography.

3. HEXAGONAL SAMPLING SYSTEMS

Let Xa(t) = Xa(ti , t2) be a 2-D analog wavefor:m, then a sampling operation in 2-D can be represented
by a lattice formed by taking all integer linear combinations of a set of two linearly independent vectors
vi = [v11 v21]T and v2 = [112 V22] . Using vector notation we can represent the lattice as the set of all
vectors t = [t1 t1T generated by

t=Vn, (1)
where n — [n1 1T is an integer-valued vector and V = [vi v2J is a 2 x 2 matrix, known as the sampling
matrix. Because v1 and v2 are chosen to be linearly independent, the determinant of V is nonzero. Note
that V is not unique for a given sampling pattern and that the two matrices representing the same sampling
process are related by a linear transformation represented by a unimodular matrix [15].

Sampling an analog signal Xa(t) on the lattice defined by (1) produces the discrete signal x(n) —
Figure 1(a) shows a hexagonal sampling lattice defined by the pair of sampling vectors

vi = [2T1] and v2 = [_Ti], (2)

where T1 = and 1'2 = . The lattice is hexagonal since each sample location has exactly six nearest
neighbors when 1'2 = T1/.

Let the Fourier transform of Xa(t) be defined by

Xa(1) = J xa(t)exp(_jTt)dt,

where = [i 1i2]T. Similarly, let the Fourier transform of the sequence x(n) be defined as

X(w) = x(n)exp(—jwTn), (3)
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Figure 1: (a) A hexagonal sampling lattice in the spatial domain. (b) Hexagonal sampling lattice in the
frequency domain.

where c.' = [w1 2]T. In [20], Mersereau showed that the spectrum of the sequence x(n) and the spectrum
of the signal Xa(t) are related by

X(w) =
IdetVI EXa(V_T( — 2irk)), (4)

where k is an integer-valued vector and VT denotes (V)T. Alternatively, we can define the Fourier
transform of the sequence x(n) as

then equation (4) may be written as

X(Z) = X(VT)), (5)

where

1X() =
k

U = 27rV_T

(6)

(7)

Thus, equation (6) can be interpreted as a periodic extension of Xa(I) with periodicity vectors u1 =
[ ui u2lIT and u2 = [u12 22}T, where U = {u1 U2]. The set of all vectors generated by = Un defines
a lattice in the frequency domain known as the modulation or reciprocal lattice. Thus, the spectrum of a
sequence x(n) can be viewed as the convolution of the spectrum of Xa(t) with a modulation lattice defined
by U. Figure 1(b) shows the reciprocal lattice corresponding to the sampling vectors defined in equation
(2), that is the lattice defined by the pair of modulation vectors

#- 0U1 = andu2 =
T; T2

Two important operations in analysis/synthesis filter banks are upsampling and downsampling. Next,
we consider these operations in the context of hexagonal sampling systems.
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Figure 2: (a) Integer sampling lattice. (b) Sampling sublattice.

4 TTPSAMPTTNG AND DOWNSAMPTTNG TN TTEXAGONAL SYSTEMS

y(n) = {
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1 detK)—1

Y(w)=
IdetKI 1=0
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Let A denote the integer lattice defined by the set of integer vectors n, and let AK denote the sampling
sublattice generated by the subsampling matrix K, that is the set of integer vectors m such that m = Kn.
Note that in order to properly define a sublattice of A, a subsampling matrix must be nonsingular with
integer-valued entries. In general, a sublattice of A is called separable if it can be represented by a diagonal
matrix K, otherwise it is called nonseparable. Figure 2 shows an integer sampling lattice A and a sampling
sublattice AK, for the separable subsampling matrix

(8)

With A and AK defined this way, we can view the operations of upsampling and downsampling as follows:

. The process of upsampling maps a signal on A to a new signal that is nonzero only at points on the
sampling sublattice AK . The output of an upsampler is related to the input by

x(K1n), if K1n E A,
0, otherwise.

It is easy to show [27] that the Fourier transform relates the output and input of an upsampler by

Y(w) = X(KTw),
where X() is defined as in (3). Figure 3 shows the block diagram of an upsampler and the process of
upsampling for the subsampling matrix defined on (8).

. The process of downsampling maps points on the sublattice AK to A according to

y(n) = x(Kn), (9)
and discards all other points. We can show [27] that the Fourier transform relates the output and input of
an downsampler by

X(KT(w 2irk1)).,

where each of the Idet K( vectors k1 = [k11 k12]T is associated with one of the cosets of KT Notice that
a coset of a sublattice AK is defined as the set of points obtained by shifting the entire sublattice by an
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Figure 3: (a) TJpsample operator. (b) Downsample operator. Mapping of samples under upsampling and
downsampling, (c) and (d) respectively. (Left) input signal, (right) output signal.

integer shift vector k. There are exactly Jdet KI distinct cosets of AK, and their union is the integer lattice
A. Each shift vector k1 associated with a certain coset is known as a coset vector. For example, one choice
for the k1 given the sampling sublattice defined on (8) is

k0 =[], k1 =[], Ic2 =[?]and k3 =[]. (10)

Figure 3 shows the block diagram of a downsampler and the process of downsampling for the subsampling
matrix defined on (8).

Note that the relations derived above are based on the Fourier transform defined in equation (3).
However, a more general definition is described in equation (5). This formulation takes into account the
lattice structure used to sample an original 2-D analog waveform an allows the Fourier transform relation
between the input and output of an upsampler and a downsampler to be written as

and

respectively, where K is defined as in equation (8) and

Y(1) = Xy(KT), (11)

k = UK_Tk1. (13)

In the next section, we consider the analysis/synthesis filter bank problem in hexagonal sampling
systems.
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1 detKl—1

IdetKI i=
Xv(K_T — (12)
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Figure 4: A two-dimensional 4-channel analysis/synthesis filter bank.

5. ANALYSIS/SYNTHESIS FILTER BANKS IN HEXAGONAL SYSTEMS

This section focuses on perfect reconstruction filter banks in hexagonal sampling systems and wavelets
that can be obtained by iterating such filter banks. Parts of this material are described in Simonceffi [25],
but are reviewed here for completeness of presentation.

There are a wide variety of analysis/synthesis (A/S) filter banks for two dimensional systems. In
this section we restrict our focus to analysis/synthesis filter banks in which each channel shares the same
subsampling matrix K and the number of channels equals Idet KI. Figure 4 shows a 4-channel analy-
sis/synthesis filter bank. We further restrict our study to the separable sublattice defined in equation (8)
since this choice will enable us to apply the A/S filter bank recursively [25] to each of the sub-band signals
yj(fl) shown in Figure 4.

Consider a 4-channel analysis/synthesis filter bank with K defined as in (8), then using (12) we can
show that the Fourier transform of yj(ri) may be written as

1 detKl—1
i@) = d t K E F(K_T k)X(K_T kr), (14)e

where the subindex V has been suppressed for simplicity. Similarly, using (11) we have that the Fourier
transform of á(n) is given by

IdetKI—1

t@) = (15)

Therefore, combining equations (14) and (15) we obtain an overall filter bank response of

1 ldetKI—1 detKl—1

;t@) =
Jdet K)

X(f - k)
[

G()F( -
k)]

. (16)

Combining equations (7), (10) and (13) for the values of T1 and '2 in equation (2) yields the following set
of vectors k , that is,

k= ,k= ,andk= . (17)

From equation (17) it is clear that one term of the sum in equation (16) corresponds to the linear
shift invariant (LSI system response, and the remaining terms correspond to the system alias. The
analysis/synthesis filter bank for which the system aliasing terms in equation (16) are canceled is generally
known as a quadrature mirror filter (QMF) bank.
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We can choose the filters to eliminate the aliasing terms in equation (16)

Fo(f) = Go(-Z) = H(1) =
Fi(1) = G1(—) = exp(jfZTs1)H(1Z — k),
F2() = G2(—) = exp(_jTs2)H(1 —

F3() = G3(—) = exp(—jfTs3)H( — kg),

where s1 , s2 and 83 must satisfy the following equations

1 + ej()Tsl , e_i(k)Ts2 + e_j()T83 = 0,
1 + e_j()Ts2 = 0, e_j()T81 e_j(l4)TS3 = 0,
1 + e_j()Ts3 0, e_i(k)Tsl + e_j()Ts2 0.

Therefore, a suitable choice for the vectors Sigiven the vectors k in equation (17) is

1 1/2 1/2
Si = , S2 = //2 ' and 83 =

—vi/2
After canceling all of the aliasing terms in equation (16) the remaining LSI system response becomes

k() = X()E JH( — k)I2

Note that the aliasing cancellation is exact, and independent of the choice of H(), and the design problem
is reduced to finding a filter satisfying the constraint

t H(-
k)I2 4. (18)

A low-pass solution for H() in the above equation results in a band-splitting system which may
be cascaded hierarchically through the low-pass band of the QMF bank to produce a multiresolution
decomposition in two dimensions. Simonceffi [25] describes a simple frequency-sampling design method
that produces hexagonal QMFs with small regions of support for which perfect reconstruction was well
approximated. Figure 5(a) shows an idealized diagram of the partition of the frequency domain resulting
from a 2-level multiresolution decomposition of hexagonal filters.

6. OVERCOMPLETE MTJLTIRESOLTJTION REPRESENTATIONS IN HEXAGONAL SYSTEMS

In this section we discuss the mathematical formulation of overcomplete multiresolution representations.
In particular, we would like to find equivalent filters for the stage of the traditional A/S system shown
in Figure 5(b).

It can be easily shown that subsampling by K followed by filtering with Fo(fZ) is equivalent to filtering
by Fo(K) followed by subsampling. Hence, the first two steps of low-pass filtering in Figure 5(b) can be
replaced by a filter with Fourier transform Fo()Fo(Kl), followed by subsampling by K2.

In general, equivalent filters for the stage (i> 1) of a cascade of analysis filters are given by

= F0(K), F) = F1(Ki1)flF0(K),

F) = F2(K11f)flF0(K), F(1) =F3(K1)llF0(K),
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Figure 5: (a) Partitions of the frequency domain resulting from a 2-level multiresolution decomposition
using hexagonal filters. The upper left frequency diagram represents the spectrum of the original image.
(b) Corresponding two-stage 4-channel analysis/synthesis filter bank.

followed by subsampling by K. The synthesis filters are obtained in a similar way. By removing the
operations of downsampling and upsampling from the resulting equivalent A/S system we obtain an over-
complete multiresolution decomposition of hexagonal filters. In this case, perfect reconstruction is also
possible from equation (18).

7. HEXAGONAL FILTERINGJ?OR RECTANGULARLY SAMPLED IMAGES

In this section we discuss how hexagonal filtering may be applied to rectangularly sampled images We
assume that our original rectangularly sampled images are defined in an N x N array, where N is some
power of 2. To map an original image into a hexagonal sampling lattice we first interpolate the image
vertically by a factor of 2 and horizontally by a factor of 3 using bilinear interpolation. The resulting
image is then masked by the function M(n) =: (1 + (_1)Th2)/2 and mapped into a hexagonal sampling
lattice. Filtering was implemented by a hexagonal version of the Fast Fourier Transform (HFFT) [21].
Complete details on our implementation of the HFFT can be found in [24]. After processing, the resulting
hexagonal multiresolution decomposition is then mapped back into a rectangular sampling lattice using an
interpolation procedure similar to the one outlined above.

8. ADAPTIVE MULTIRESOLUTION CONTRAST ENHANCEMENT

In this section we describe a general method to accomplish multiscale contrast enhancement. Let W [x]
denote the operation of filtering x(n) with the equivalent filter Ef,where i indicates the level (scale) of the
decomposition and j = 0, 1, 2, 3 indicates the sub-band filter within each level. Then, the sub-band images
of an L-level multiresolut:ion decomposition are given by

y=W[x]. (19)

Similarly, let W71 [y] to indicate the operation of filtering image y(n) with the equivalent filter Gj. Then,
an L-level multiresolution reconstruction may be written as

LM
x = W[y] + :> W;1[y]. (20)

i=1 j=1
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By combining equations (19) and (20) we obtain the general expression for an L-level multiresolution
decomposition and reconstruction

LM
x = WjJ [WLO{x}} + E E w;1 [W1{x]] . (21)

i=1 j=1

Non-linear techniques for image enhancement may be applied within the context of multiresolution
representations. Below we present a general formula for processing sub-band images to accomplish adaptive
contrast enhancement of digital mammography. Let f be a user defined function designed to emphasize
features of importance within a selected level i. Then, enhanced sub-band images may be given by

= f(:)• Thus, we obtain an enhanced image á from its multiresolution representation by replacing in
equation (20) selected sub-band images y with their enhanced counterparts . In particular, the image
enhancement techniques described below are applied only to band-pass sub-band images of a multiresolution
representation. In general, by defining the function f, we can denote specific enhancement schemes for
modifying sub-band image coefficients within distinct levels of scale-space.

&1. Local enhancement techniques

A problem for image enhancement in digital mammography is the ability to emphasize mammographic
features while reducing the enhancement of noise. Multiscale representations localize mammographic lea-
tures. In {12, 13], we suggested a local enhancement technique for digital mammography based on multiscale
edges. Here, enhanced sub-band images = f(y) are given by

_f 4,. ife�T,y2 — g: y, if e >

where e is the the edge set corresponding to y , and gj and Tj are the local gain and threshold at level
i, respectively. Hence, multiscale edges e are used as an "index" to increase the local gain of sub-band
image coefficients and to emphasize significant features "living" within level i of the transform space:
Experimentally, we have found that an effective strategy to adaptively select the threshold is to make TJ
proportional to the standard deviation of pixel values in y , that is

=\f : Yn1,n2-my2
. fl11fl21

where 71 iS a proportionality constant determined experimentally, m is the mean value of y and N is
the size of the image. Notice that for each band-pass image the standard deviation of its pixel values is
directly related to the energy of the image within that band. Similarly, g may be adaptively selected by

I _ 72

a

where 72 is a proportionality constant determined experimentally.

For the hexagonal wavelet transform, sub-band images y, y and y partition orientations into 60,
0 and -60 degree bands, respectively. Multiscale edges ei, 4 and 4 at level i are simply obtained by
computing the hexagonal-maxima at 60, 0 and -60 degrees, respectively.
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Global enhancement techniques

Histogram equalization of sub-band images provides a global method to accomplish multiresolution en-
hancement. We simply define the function f as

r
f(y) — J p(w)dw + yrnin,

Ymin

where py(W) Py(')(Yrna yrnin), and py(W) 15 the probability density function of y. Notice that 1(y)
is a single-valued, monoton]Lcally increasing function in the range [Yrnin, ?Jrnax] and satisfies f(Yrnsn)
Ymin, f(Yrnax) Yrnax

An advantage of using multiscale analysis for mammographic enhancement is that we can incrementally
and selectively focus on features of importance to mammography. If the function f is defined to enhance
a single scale, then a focused enhancement of the features "living" within that scale shall be accomplished
in i econstruction We may combine additional representations from any subset of levels and visuahze
inciementally, mammographic features of specific size and/or shape Thus, by analogy to current clinical
practice, the technique can provide a powerful computational framework for building a computer assisted
diagnostic (CAD) tool.

9. EXPERIMENTAL RESULTS

Preliminaryresults have shown that the adaptive multiscale processing techniques described above, can
make more obvious unseen or barely seen features of a mammogram without requiring additional radiation.
In our study, film radiographs of the breast were digitized at 100 micron spot size, on a Kodak laser film
digitizer, with 10-bit quantization (contrast resolution). Each digital image was cropped to a matrix size
of 512 x 512 before processing.

Figure 6(a) shows a digital mammogram with a large mass. Figure 6(b) shows the result of hexagonal
wavelet processing for an eight level decomposition. In this case, the transform coefficients within each
level (excluding the DC cap) were independently histogram equalized.

Note that the subtle features including calcifications and penetration of fibroglandular structures into
the mass tissue are clearly visible. The geometric shape of calcifications are made more visible and improved
definition is seen in the extralobular ductules.

Mathematical models of phantoms were constructed to validate our enhancement techniques against
false positives arising from possible artifacts. These models included features of regular and irregular
shapes and sizes ofinterest in mammographic imaging, such as microcalcifications, cylindrical or spiculated
objects and conventional masses. Techniques for "blending" a normal mammogram with the images of
mathematical models, were developed. The purpose of these experiments was to test our processing
techniques on inputs known "a priori" using mammograms where the objects of interest were deliberately
obscured by normal breast tissues. The "imaging" justification for "blending" is readily apparent; a cancer
is visible in a mammogram because of its (slightly) higher X-ray attenuation which causes a lower radiation
exposure on the film in the appropriate region of a projected image. Figure 7(b) shows an example of a
mammogram whereby the mathematical phantom shown in Figure 7(a) has been blended into a clinically
proven cancer free mammograrn. The image shown was constructed by a judicious choice of multiplication
weights, adding the amplitude of the mathematical phantom image followed by local smooth filtering of
the resultant combined image.

Figure 7(c) shows the result after reconstructing the mammogram from hexagonal wavelet coefficients
modified by multiscale edges identified by the adaptive selection technique described in Section 3.1.3. In
this example, local contrast enhancement was obtained for a six level hexagonal wavelet decomposition.
Processing of the blended mammogram introduced no noticeable artifacts and preserved the shape of the
known mammographic features (calcifications, dominant masses, and spiculated lesions). Areas containing
these features in the processed mammogram were cropped and enlarged for clarity. Local (multiscale)
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emphasis resulted in a significant improvement in contrast for each feature included in the blended mam-
mogram, as shown in Figures 7(d) and 7(e).

While these results are exciting and suggest a strong promise of reliability, we emphasize that they are
preliminary. We plan to carry out a more forma1 analysis including an receiver operator curves (ROC)
study in the near future. The study shall include over 350 pathology proven case studies and shall measure
the performance of these methods in terms of quality (diagnostic error) and cost (time) for both general
radiologist and specialist in mammography.

10. SUMMARY AND DISCUSSION

We have presented a methodology for accomplishing adaptive contrast enhancement by multiscale
representations. We have demonstrated that features extracted from multiresolution representations can
provide an adaptive mechanism for the local emphasis of salient and subtle features in digital mammogra-
phy. The consistency and reliability suggested by our preliminary studies makes these techniques appealing
for computed aided diagnosis and screening mammography. Screening mammography examinations are
certain to grow substantially in the next few years, and analytic methods that can assist general radiologists
in reading mammograms shall be of great importance.
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Figure 6: (a) Mammogram with fibroadenoma. (b) Space-frequency histogram equalization.
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