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O B J E C T I V E S We sought to determine the feasibility of cardiac computed tomography (CT) to

detect significant differences in the extent of left ventricular dyssynchrony in heart failure (HF) patients

with wide QRS, HF patients with narrow QRS, and age-matched controls.

B A C K G R O U N D The degree of mechanical dyssynchrony has been suggested as a predictor of

response to cardiac resynchronization therapy. There have been no published reports of dyssynchrony

assessment with the use of CT.

METHODS Thirty-eight subjects underwent electrocardiogram-gated contrast-enhanced 64-slice multide-

tector CT. The left ventricular endocardial and epicardial boundaries were delineated from short-axis images

reconstructed at 10% phase increments of the cardiac cycle. Global and segmental CT dyssynchrony metrics

that used changes in wall thickness, wall motion, and volume over time were assessed for reproducibility. We

defined a global metric using changes in wall thickness as the dyssynchrony index (DI).

RESULTS The DI was the most reproducible metric (interobserver and intraobserver intraclass correlation

coefficients �0.94, p � 0.0001) and was used to determine differences between the 3 groups: HF-wide QRS

group (ejection fraction [EF] 22 � 8%, QRS 163 � 28 ms), HF-narrow QRS (EF 26 � 7%, QRS 96 � 11 ms), and

age-matched control subjects (EF 64 � 5%, QRS 87 � 9 ms). Mean DI was significantly different between the

3 groups (HF-wide QRS: 152 � 44 ms, HF-narrow QRS: 121 � 58 ms, and control subjects: 65 � 12 ms; p �

0.0001) and greater in the HF-wide QRS (p � 0.0001) and HF-narrow QRS (p � 0.005) groups compared with

control subjects. We found that DI had a good correlation with 2-dimensional (r � 0.65, p � 0.012) and

3-dimensional (r � 0.68, p � 0.008) echocardiographic dyssynchrony.

C O N C L U S I O N S Quantitative assessment of global CT-derived DI, based on changes in wall

thickness over time, is highly reproducible and renders significant differences between subjects most

likely to have dyssynchrony and age-matched control subjects. (J Am Coll Cardiol Img 2008;1:772–81)
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ardiac resynchronization therapy (CRT)
has gained wide acceptance as adjunctive
therapy with optimal medical treatment
for the subgroup of patients with refrac-

ory heart failure (HF) (1,2). However, approxi-
ately 30% of patients who receive CRT had either

o improvement or worsening of symptoms (3).
he degree of intraventricular (or left ventricular

LV]) dyssynchrony has been suggested to be a
ajor factor that affects CRT response (3,4).
This hypothesis has been supported by the results

f small studies that suggest an association between
he extent of LV dyssynchrony and clinical response
o CRT (5–18). With the improved spatial and
emporal resolution, cardiac computed tomography
CT) permits an accurate and reproducible
-dimensional (3D) assessment of LV contractile
unction (19). These functional datasets also permit
he analysis of wall thickness, wall motion, and
olume over time and thus may be used to assess
V dyssynchrony. To date, there have been no
ublished reports of LV dyssynchrony assessment
n which the authors used either CT or wall
hickness-based analysis.

Thus, the aims of this study were: 1) to evaluate
he reproducibility of various novel CT-based mea-
ures of LV dyssynchrony, including global and
egmental dyssynchrony metrics; and 2) to deter-
ine whether it is feasible to use a cardiac CT-

ased “dyssynchrony index,” which uses changes in
all thickness, to detect significant differences in

he extent of LV dyssynchrony between patients
eeting CRT criteria (HF-wide QRS), age-
atched control subjects, and a third group (HF-

arrow QRS).

E T H O D S

tudy population. For this case-control study, we
elected 38 patients, based on echocardiography
jection fraction (EF) and electrocardiography
ECG) QRS duration, from the CT databases
between March 2005 and July 2007) of Massachu-
etts General Hospital–MGH, Boston, Massachu-
etts, and Cardiocentro Ticino–FCCT, Lugano,
witzerland. All patients must have had an echo-
ardiogram, ECG, and multidetector CT per-
ormed. We queried our databases to find patients
ho met our criteria for HF-wide QRS criteria (EF
35%, QRS �120 ms), then we matched the
F-narrow QRS and control groups to age and

ender. The control group had both normal LV

unction and QRS duration. Patients were classified p
s the following groups: 1) HF-wide QRS: EF
35%, QRS �120 ms (echocardiography and
CG criteria for CRT); 2) HF-narrow QRS: EF
35%, QRS �120 ms; or 3) age-matched control

ubjects: EF �55%, QRS �120 ms. The study was
pproved by both institutional review boards.
cquisition of CT and measurement. All subjects un-
erwent standard ECG-gated contrast-enhanced
4-slice cardiac multidetector CT for routine CT
oronary angiography per departmental protocol.
he CT images were acquired during an inspiratory
reath-hold with patients in the supine position.
ntravenous beta-blockers for heart rate �65 beats/
in and sublingual nitroglycerin were used if not

ontraindicated. Image acquisition was performed
ith either Sensation 64 (Siemens Medical Solutions,
orchheim, Germany) or GE MSCT LightSpeed
CT (General Electric Healthcare, Milwaukee, Wis-

onsin) with the following parameters: 0.6-
o 0.625-mm slice thickness, tube voltage
20 kVp, maximum tube current 850 mAs,
antry rotation time 330 to 350 ms. Pitch
as dependent on patient’s heart rate, and

ube modulation was optional. Test bolus
njection and total iodinate contrast were
iven at a rate of 5 ml/s, followed by saline
nfusion, with total contrast volume depen-
ent on scan range.
After the scan, axial multiphase refor-
ats (5% to 95%, 10% interval, total of 10

hases) were constructed with the Leo-
ardo (Siemens Medical Solutions) or GE
dvantage workstation (General Electric
ealthcare, Paris, France). All patient in-

ormation was de-identified, and the axial
ultiphase reformats dataset was recorded

n a compact disc and sent to MGH Cardiovascular
T Core Lab for off-line postprocessing analyses.
All measurements were performed by 2 indepen-

ent readers (Q.T. and A.S.). The axial CT images
ere reformatted into 8-mm thick short-axis im-

ges of the LV using QMassCT (Medis Medical
maging Systems, Leiden, the Netherlands). The
ndocardial and epicardial boundaries of the LV
ere delineated manually in a semiautomated fash-

on (automated detection by the software algorithm
ith extensive manual correction for each phase and

ach slice of the left ventricle) and excluded the LV
utflow tract, apical cap, and papillary muscles (Fig.
). Observer 1 performed the reconstructions and
easurements on all patients once. For interob-

erver and intraobserver reproducibility, Observer 2

A B B

A N D

2D �

3D �

CAD �

CRT �

therap

CT �

DI � d

ECG �

EF � e

HF �

ICC �

coeffi

LV �
erformed the reconstructions and measureme
R E V I A T I O N S

A C R O N YM S

two-dimensional

three-dimensional

coronary artery disease

cardiac resynchronization

y

computed tomography

yssynchrony index

electrocardiography

jection fraction

heart failure

intraclass correlation

cient
nts in



J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 , N O . 6 , 2 0 0 8

N O V E M B E R 2 0 0 8 : 7 7 2 – 8 1

Truong et al.

CT Dyssynchrony Using Wall Thickness

774
Figure 1. Method of Assessing Dyssynchrony With Wall Thickness Analysis by Cardiac CT

(A) Left ventricular (LV) model displaying short axis slices with endocardial (white) and epicardial (red dots) casts. (B) Endocardial (red) and epicardial (green)
tracing of 1 short-axis image, segmented into 6 standardized segments. Left ventricular wall thickness is depicted as the radial distance between the endocardial
and epicardial contours (yellow lines). (C) Serial short axis images depicted at 10% phase increments of the cardiac cycle at 1 slice level of the mid-ventricle.
Representative graphs showed the time-to-maximal LV wall thickness at 1 ventricular slice in (D) a healthy “control” with EF 66%; (E) “HF-narrow QRS patient”
with nonischemic cardiomyopathy and EF 31%; (F) “HF-wide QRS patient” with ischemic cardiomyopathy, EF 33%, and LBBB; and (G) “HF-wide QRS patient” with
nonischemic cardiomyopathy, EF 19%, and LBBB. The graphs displayed the wall thickness of the 6 standardized segments of the LV myocardium over 1 cardiac
cycle at a single ventricular slice level. The time-to-maximal wall thickness of the 6 segments is more variable in the HF-wide QRS patients than control and HF-
narrow QRS, suggesting a greater degree of dyssynchrony. A � anterior; AL � anterolateral; AS � anteroseptal; CT � computed tomography; EF � ejection frac-

tion; HF � heart failure; I � inferior; IL � inferolateral; IS � inferoseptal; LBBB � left bundle branch block.
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0 randomly selected patients, and Observer 1
epeated this process in 20 patients 1 month later,
espectively.
erivation of CT-basedmetrics of LV dyssynchrony. The

ollowing global and/or segmental dyssynchrony met-
ics were defined by the following measurements:
ime-to-maximal wall thickness, time-to-maximal
all motion, and time-to-minimum volume.

IME-TO-MAXIMAL WALL THICKNESS. Wall thick-
ess was computed as the radial distance in milli-
eters between the endocardial and epicardial bor-

ers. The time from R-wave to maximal wall
hickness was determined for each of the 6 stan-
ardized segments for all slices. For the global
nalyses, 2 metrics were derived: 1) the standard
eviation (SD) of the time-to-maximal wall thick-
ess of the 6 segments per slice averaged for all
lices, which we defined as the dyssynchrony index
DI); and 2) the maximum difference in time-to-
aximal wall thickness of all 3 pairs of opposing
alls for all slices. For the segmental analyses, the
aximum difference in time-to-maximal wall

hickness of each of the opposing wall pairs was
nalyzed separately. On average, 540 data points (9

3 slices, 6 segments, 10 phases) were analyzed per
atient for each of the global wall thickness metrics;
nd 180 data points (9 � 3 slices, 2 segments, 10
hases) were analyzed for the segmental ones.

IME-TO-MAXIMAL WALL MOTION. Wall motion
ndicated the amount of movement of the wall and
s computed by using the centerline algorithm as the
adial distance from the centerline between the
ndocardial contours in the end-diastolic and end-
ystolic phases, with the end-diastolic phase as a
eference. Modified from cardiac magnetic reso-
ance imaging (15), we determined the time from
-wave to maximal wall motion for each of the 6

tandardized segments for all slices. Similar to the
all thickness analyses but using endocardial
oundaries only, the average of the SD and maxi-
um difference in time-to-maximal wall motion of

ll segments and slices were calculated for global
nalyses, and the maximum difference in time
etween each of the 2 opposing walls was analyzed
eparately for segmental analyses. On average, 480
ata points (9 � 3 slices, 6 segments, 9 phases) were
nalyzed for global wall motion metrics, and 160
ata points (9 � 3 slices, 2 segments, 9 phases) were
nalyzed for segmental wall motion metrics.

IME-TO-MINIMUM VOLUME. Volume was com-
uted by using modified Simpson’s method of disks

ith the LV endocardial area. Modified from 3D c
chocardiography (14), we used data from endocardial
ontours. The time from R-wave to minimum systolic
rea was determined for all slices. The SD of these
ime-to-minimum volume is the derived global metric
sing volume. On average, 90 data points (9 � 3 slices,
0 phases) were analyzed per patient for this metric.
chocardiographic assessment. All patients under-
ent standard 2-dimensional (2D) echocardiography

or dimensions, volumes, and EF that used commer-
ially available hardware and software (Vivid 7, Gen-
ral Electric Vingmed Ultrasound, Horten, Norway).
n 14 patients, 2D and 3D echocardiography dyssyn-
hrony assessments were obtained. Speckle tracking
D datasets were analyzed off-line using a software
ackage (EchoPac 6.0.1, GE Vingmed Ultrasound).
eal-time 3D echocardiography was performed with
3V transducer and off-line analysis with 4D-LV

oftware (Tom Tec Imaging Systems, Unterschleis-
heim, Germany).

LV diameters, volumes, and EF were measured by
-mode and biplane method of discs according to the

uidelines of the American Society of Echocardiogra-
hy (20). Speckle tracking 2D analysis, defined as the
D of the time to the first peak negative value of the

ongitudinal deformation, was performed from apical
iews (4-chamber, 2-chamber and long-axis) as pre-
iously described in details (9,21–23). The 3D echo-
ardiography systolic dyssynchrony index was evalu-
ted according to Kapetanakis et al. (14).
tatistical analysis. Continuous variables were ex-
ressed as mean � SD. Nominal variables were
xpressed as percentages. Differences in patient
haracteristics between the 3 groups were deter-
ined using analysis of variance for continuous and

hi-square for categorical variables. Interobserver
nd intraobserver agreements of global and segmen-
al LV dyssynchrony metrics were assessed with the
ntraclass correlation coefficient (ICC), Pearson’s
orrelation coefficient, and Bland-Altman graphs.
he paired t test was used to determine the signif-

cance for mean absolute and relative differences.
he significance of differences in DI between the 3
roups was determined with analysis of variance.
wo group comparisons were performed with un-
aired t tests. Stratified analyses within HF-wide
RS group were performed using unpaired t tests.
orrelation between DI and echocardiography dys-

ynchrony measures were assessed with Pearson’s
orrelation coefficient. A 2-tailed p value �0.05 was
onsidered significant. Statistical analysis was per-
ormed with STATA 10 (Stata Corp., College
tation, Texas) and SPSS 16.0 (SPSS Inc., Chi-

ago, Illinois).
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E S U L T S

he patient demographics, ECG findings, and
chocardiography parameters are shown in Table 1.
here are no significant differences with respect to

ge, gender, body mass index, and the presence of
raditional cardiac risk factors (diabetes, hyperten-
ion, or coronary artery disease [CAD]) between
he 3 groups. As expected, ECG and echocardiog-
aphy parameters are significantly different between
he 3 groups, except for the heart rate during the
T scan acquisition. The average heart rate during

he CT scan was 68.1 � 10.0 beats/min. Addition-
lly, the HF-wide QRS group has worse New York
eart Association functional class status compared
ith HF-narrow QRS and controls.
eproducibility of CT-based metrics of LV dyssyn-
hrony. Table 2 depicts the interobserver and in-
raobserver variability of CT dyssynchrony metrics
erived from assessment of wall thickness, wall
otion, and volume in a global and/or segmental

asis. Overall, global dyssynchrony measurements

acteristics of the 3 Groups

HF-Wide QRS
EF <35%, QRS >120 ms

(n � 16)

HF
EF <35

63 � 15

11 (69)

26.3 � 3.7

4 (25)

8 (50)

9 (56)

ss (%)

0

7 (44)

9 (56)

163 � 28

7 (44)

7 (44)

scan (beats/min) 69.2 � 10.4

meters

22 � 8

) 63.1 � 8.5

56.8 � 8.7

) 274.1 � 117.8 2

206.5 � 88.5 1

D � coronary artery disease; CT � computed tomography; EF � ejection fraction
r; NS � nonsignificant.
ICC range 0.71 to 0.95) were more reproducible g
han segmental metrics (ICC range 0.06 to 0.91).
f the global metrics, the measurements of changes

n wall thickness (ICC range 0.90 to 0.95) were
ore reproducible than measurements utilizing

hanges in wall motion (ICC range 0.80 to 0.92) or
olume (ICC range 0.71 to 0.78).
omputed tomography dyssynchrony index. The
lobal LV dyssynchrony metric using changes in LV
all thickness over time (average of the SD of 6

egments per slice, using all slices) had the best
eproducibility with excellent interobserver and in-
raobserver reproducibility (ICC of 0.94 and 0.95,
espectively, both p � 0.0001) and was defined as the
T dyssynchrony index (DI). The correlation coefficient

r � 0.93, p � 0.0001) between individual DI measure-
ents by Observer 1 and 2 was excellent (Fig. 2A). No

ystematic bias was observed between the 2 observers’
easurements by Bland-Altman analysis (Fig. 2B).
The mean DI was significantly different between

he 3 groups (p � 0.0001) (Fig. 3). For the
F-wide QRS group, the mean DI was 152 � 44
s, range 62 to 226 ms. For the HF-narrow QRS

row QRS
RS <120 ms

� 11)

Control
EF >55%, QRS <120 ms

(n � 11) p Value

� 18 60 � 11 NS

(82) 9 (82) NS

� 5.7 25.4 � 1.9 NS

(27) 1 (9) NS

(73) 7 (64) NS

(55) 5 (45) NS

(36) 11 (100) �0.001

(36) 0

(27) 0

� 11 87 � 9 �0.0001

0 0 0.003

0 0 0.003

� 13.8 67.7 � 3.9 NS

� 7 64 � 5 �0.0001

� 8.2 49.4 � 3.2 0.0001

� 9.4 27.5 � 7.0 �0.0001

� 73.5 85.8 � 20.4 �0.0001

� 74.5 31.5 � 11.4 �0.0001

heart failure; NYHA � New York Heart Association; LBBB � left bundle branch
Table 1. Patient Char

-Nar
%, Q
(n

Patient characteristics

Age, yrs 57

Gender, male (%) 9

BMI, kg/m2 26.0

Diabetes (%) 3

Hypertension (%) 8

CAD (%) 6

NYHA functional cla

I 4

II 4

III 3

ECG parameters

QRS duration (ms) 96

LBBB (%)

Paced rhythm (%)

Heart rate during CT 67.0

Echocardiography para

EF (%) 26

LV dimensions, mm

End-diastole (EDD 55.3

End-systole (ESD) 47.8

LV volumes, cm3

End-diastole (EDV 16.5

End-systole (ESV) 63.6

BMI � body mass index; CA ; HF �
roup, the mean DI was 121 � 58 ms, range 58 to



2
D
D
(
g
t
g
n
�
b

D
d
0
d
1
b
c
t
p
e

a
m
C
m
d
a
t
i
m
5
D
m
u
w
o

D

T
C

viati

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 , N O . 6 , 2 0 0 8

N O V E M B E R 2 0 0 8 : 7 7 2 – 8 1

Truong et al.

CT Dyssynchrony Using Wall Thickness

777
03 ms. For the age-matched controls, the mean
I was 65 � 12 ms, range 43 to 78 ms. The mean
I was significantly greater in the HF-wide QRS

p � 0.0001) and HF-narrow QRS (p � 0.005)
roups when compared with control subjects, but
here was no statistical difference between the 2 HF
roups (p � 0.131). In secondary analyses there was
o significant correlation between DI and EF (r �
0.27, p � 0.167) and only modest correlation

etween DI and QRS duration (r � 0.51, p � 0.007).
Among patients with wide QRS (Table 3), mean
I was significantly greater in those whose QRS

uration was above the median of 161 ms (p �
.04) and those with paced rhythm (p � 0.001) but
id not differ when stratified by median EF of
9.5%, the presence of CAD, left bundle branch
lock, or New York Heart Association functional
lass. Within this group of patients with wide QRS,
here also was no difference in mean DI between
atients with end-diastolic and end-systolic diam-

Table 2. Interobserver and Intraobserver Reproducibility of CT-

Dyssynchrony Metrics

Mea
Diff

(

Time-to-maximal wall thickness

Global

Average of SD of 6 segments of all slices (DI) 5.8

Maximum difference of all 3 pairs of opposing
walls

40.4

Segmental

Maximum difference of 2 opposing walls

Anterior-inferior 47.4

Inferoseptal-anterolateral 36.2

Anteroseptal-inferolateral 23.8

Time-to-maximal wall motion

Global

Average of SD of 6 segments of all slices 0.6

Maximum difference of all 3 pairs of opposing
walls

29.2

Segmental

Maximum difference of 2 opposing walls

Anterior-inferior 29.7

Inferoseptal-anterolateral 19.7

Anteroseptal-inferolateral 8.5

Time-to-minimum volume

Global

SD of all slices 16.2

Dyssynchrony metrics were defined using wall thickness, wall motion, and volu
the maximal difference measurements. All p values for the mean actual differenc
and intraobserver reproducibility of each measure were reported as ICC with all p
of the SD of 6 segments of all slices was defined as DI.
DI � dyssynchrony index; ICC � intraclass correlation coefficient; other abbre
ters and end-diastolic and end-systolic volume p
bove the median compared to those below the
edian (data not shown).
orrelation of DI with echocardiography dyssynchrony
easures. Of the 14 patients with CT, 2D echocar-
iography, and 3D echocardiography dyssynchrony
ssessments, the mean DI was 87 � 48 ms, range 43
o 217 ms; mean 2D echocardiography speckle track-
ng strain was 51 � 47 ms, range 18 to 166 ms; and

ean 3D echocardiography dyssynchrony was 5.3 �
.2 ms, range 1.2 to 20.0 ms. The correlation between
I and 2D echocardiography dyssynchrony assess-
ent when speckle tracking longitudinal strain was

sed was good (r � 0.65, p � 0.012). Similarly, there
as good correlation between DI and 3D echocardi-
graphy dyssynchrony (r � 0.68, p � 0.008).

I S C U S S I O N

his is the first study to use 64-slice multidetector
T to quantify the degree of LV dyssynchrony. We

d Dyssynchrony Metrics

Interobserver Variability Intraobserver

tual
ce

Percentage
Difference

(%) ICC

Mean Actual
Difference

(ms)

Pe
Di

7.0 0.06 � 0.26 0.94 1.8 � 24.3 0.0

22.7 0.10 � 0.32 0.90 30.4 � 113.1 0.1

70.8 0.15 � 0.55 0.76 1.9 � 125.2 0.0

54.4 0.11 � 0.47 0.78 54.1 � 158.6 0.1

38.1 0.08 � 0.45 0.80 8.4 � 106.7 0.0

8.9 0.01 � 0.36 0.83 7.0 � 18.4 0.0

33.0 0.09 � 0.42 0.86 20.2 � 133.8 0.0

15.0 0.13 � 0.96 0.16‡ 4.5 � 176.3 0.0

80.9 0.08 � 0.75 0.68 25.3 � 163.9 0.1

40.1 0.04 � 0.60 0.74 18.0 � 94.5 0.0

5.6 0.26 � 0.40* 0.78 12.3 � 23.1 0.1

a global and/or segmental basis. All global and segmental metrics included data
d percentage difference calculations were nonsignificant, except for *p � 0.01 and
.01, except for ‡p � 0.36 and §p � 0.45. The time-to-maximal wall thickness globa

ons as in Table 1.
Base

Variability

n Ac
eren
ms)

rcentage
fference
(%) ICC

� 2 2 � 0.23 0.95

� 1 3 � 0.50 0.92

� 1 1 � 0.40 0.87

� 1 6 � 0.48 0.75

� 1 3 � 0.34 0.91

� 2 9 � 0.23 0.92

� 1 7 � 0.47 0.80

� 2 1 � 0.45 0.06§

� 1 3 � 0.83 0.66

� 1 8 � 0.43 0.84

� 2 9 � 0.36† 0.71

me in from all slices, including
e an †p � 0.03. Interobserver
� 0 l metric using the average
rovide an initial description of novel quantitative
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T analyses using changes in wall thickness, wall
otion, and volume over time for the assessment of

yssynchrony. Our data demonstrate that global
etrics are more reproducible than segmental ones

nd that wall thickness analysis is more reproduc-
ble than wall motion and volume methods. As a
roof of principle, we further demonstrate that
he DI, for which both endocardial and epicardial
oundaries are used for wall thickness analysis, is
ignificantly greater in subjects with heart failure
nd wide QRS compared with age-matched
ontrols.
eproducibility of CT dyssynchrony metrics. We pro-
ide a systematic assessment of the intraobserver

Interobserver Correlation and Bland-Altman Graphs of DI

server correlation scatterplot of the individual DI measurements
er 1 and 2. The solid line is the linear regression line. (B) Bland-
ph plotted to assess for bias and limits of agreement between
rements by Observer 1 and 2. The solid line is the bias (mean of
nces) between the measurements by Observer 1 and 2. The
es are the upper and lower limits of agreement (bias � 2 SD of
dyssynchrony index.
nd interobserver reproducibility of global- and a
egmental-based measures of LV dyssynchrony. Our
ata demonstrate that global metrics of LV dyssyn-
hrony are more reproducible than segmental-based
etrics. Computed tomography dyssynchrony metrics

ased on wall thickness measurements were more
eproducible compared with metrics based on wall
otion and volume. The most reproducible CT dys-

ynchrony metric was the DI (ICC �0.94, p �
.0001 for both intraobserver and interobserver repro-
ucibility), which is based on the measurement of
hanges in wall thickness over time. In contrast to
ublished data in which the authors used cardiac
agnetic resonance imaging and 3D echocardiogra-

hy, which incorporated only the endocardial borders
or dyssynchrony assessment (14,15), this DI is novel
ecause it is the first dyssynchrony metric based on
all thickness, a measure that uses both endocardial

nd epicardial boundaries. Of note, this metric that
ses wall thickness could be performed with cardiac
agnetic resonance imaging, which also has excellent

emporal resolution. Wall thickness analysis may allow
or a more precise assessment of differences in wall
echanics and myocardial contractile force, allowing

or comprehensive assessment of dyssynchrony.
ifferences in CT dyssynchrony index between groups.
ur study demonstrates that it is feasible to detect

ignificant differences in LV dyssynchrony between
atients in the HF-wide QRS group, who fulfilled
CG and echocardiography criteria for CRT, and

ge- and gender-matched controls. The DI was
ignificantly greater in the HF-wide QRS group
152 � 44 ms) compared with control subjects (65

12 ms, p � 0.0001). Moreover, there was a clear
iscrimination between these groups because all but
patient in the wide QRS group had a higher DI,

eflecting a greater extent of LV dyssynchrony,
hen compared with control patients. This measure
ad good correlation with validated 2D (9, 21–23)
nd 3D echocardiography (14) dyssynchrony mea-
ures (r � 0.65 and r � 0.68, respectively), although
here currently is no gold standard for dyssynchrony
ssessment (24).

We believe this CT-based LV DI may charac-
erize patients, CRT eligibility beyond currently
sed measures of EF and QRS duration. Our data
rom secondary analyses among those with EF �
5% suggest that DI does not correlate with the
egree of LV dysfunction (r � �0.27, p � 0.167)
nd only moderately correlates with QRS duration
r � 0.51, p � 0.007). Additionally, in our sub-
roup analysis of HF-wide QRS patients, there was
o difference in DI between patients with ischemic
Figure 2.

(A) Interob
by Observ
Altman gra
the measu
the differe
dashed lin
nd nonischemic cardiomyopathy; thus, our mea-
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ure is not likely to be influenced by whether there
re regional wall motion abnormalities as opposed
o global hypokinesis. We also found that those
atients who were paced during the CT scan had
reater DI than those who were not (p � 0.001),
hich gives us further support that DI is a measure
f dyssynchrony because right ventricular pacing is
nown to be associated with dyssynchrony (25,26).
oreover, although it may appear that DI as a

tandard deviation measure of wall thickness may
epresent measurement “noise” because impaired
all thickness may appear to be more difficult to
easure in HF patients with systolic dysfunction

han in control patients with normal myocardial
hickening, this is not likely to be the case. In the

F-narrow QRS group, 4 of 11 patients had low
I values in the same range as the normal control

roup with DI �78 ms, so our measure of DI
annot simply be attributed to measurement “noise”
ue to impaired LV thickening. As depicted in
igure 1, the HF patient with narrow QRS (Fig.
E) had an EF of 31%, which is comparable with
he HF patient with left bundle branch block (Fig.
F) whose EF was 33%. Thus, we do not believe
ur metric is a measurement of “noise” because of
ow EF; instead, we believe it represents a difference
n dyssynchrony.

In HF patients with narrow QRS duration, the
ole of dyssynchrony and CRT remains uncertain
27). In our study, the mean DI in the HF-narrow
RS group (121 � 58 ms) is intermediate between

he HF-wide QRS (152 � 44 ms) and the control
roup (65 � 12 ms, p � 0.0001), suggesting that
ome patients in this population may be identified
s having a large degree of dyssynchrony using this
etric (Fig. 3). However, CRT usage in this

opulation remains controversial (27) and this met-
ic will need to be validated in future studies in HF
atients with wide QRS duration first.
ssue of temporal resolution. The temporal resolu-
ion of the 64-slice CT technology used in this
tudy is relatively limited at 165 to 175 ms. For this
emporal resolution 10% RR interval reconstruc-
ions (10 phases) for a mean heart rate of 68
eats/min during scanning is adequate. Although
ome authors propose to reconstruct at 5% incre-
ents of the RR interval (20 phases), the presumed

ncrease in temporal resolution would be artificial.
lthough we are not advocating the use of 64-slice
T for dyssynchrony, we designed this study as a

proof of principle” to see whether we could detect a
ifference in DI between 2 extremes: HF-wide QRS

nd controls. Yet despite the poor temporal resolution,
e were still able to discern a significant difference
p � 0.0001) between patients most likely to have
yssynchrony (HF-wide QRS) and matched con-
rols. Thus, if we are able to discern a difference
hen we use the 64-slice CT scanner, then we

hould be able to discern a difference when we use
ewer CT scanner technology (i.e., dual-source
T), where the temporal resolution has dramati-

ally improved to 83 ms with single segment recon-
truction and reported to be up to 42 ms with a

Figure 3. Box and Whisker Plot of DI Using Changes in LV Wall
of the 3 Groups

Mean DI was significantly different between the 3 groups and was
in the HF-wide QRS group, followed by the HF-narrow QRS, and the
control group (152 � 44 ms vs. 121 � 58 ms vs. 65 � 12 ms, respe
p � 0.0001). HF � heart failure; LV � left ventricular; other abbrevi
in Figure 2.

Table 3. Subgroup Analyses of HF-Wide QRS Group

HF-Wide QRS
Subgroups n

Mean DI � SD
(ms)

QRS �161 ms (median) 8 174 � 38

QRS �161 ms (median) 8 130 � 40

Echocardiography

EF �19.5 (median) 8 151 � 24

EF �19.5 (median) 8 153 � 60

CAD 9 149 � 50

No CAD 7 154 � 42

LBBB 7 133 � 47

No LBBB 9 167 � 37

Paced rhythm 7 187 � 35

Not paced 9 125 � 28

NYHA functional class

II 7 142 � 50

III 9 160 � 40
Thickness

greatest
n the
ctively;
ations, as
p Value

0.04

0.91

0.84

0.12

0.001

0.42
ECG � electrocardiograpy; SD � standard deviation; other abbreviations as in Tables 1 and 2.
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ean temporal resolution of 60 ms when multiseg-
ent reconstruction algorithms are used (28). This

emporal resolution is comparable to that of 3D
chocardiography and cardiac magnetic resonance
maging and would be in the appropriate range for
yssynchrony assessment. With the better temporal
esolution scanners, modifying our method by using
% RR interval reconstructions (20 phases) instead
f 10% would be adequate. Further research with
mproved CT temporal resolution scanners is needed
o determine the utility of cardiac CT to identify
ubjects who may or may not benefit from CRT.
otential role of CT and clinical implications. Advan-
ages of CT over other noninvasive imaging mo-
alities are less operator dependence, rapid imaging
ime, and most importantly simultaneous visualiza-
ion of the coronary venous anatomy. Coronary
enous anatomy imaging before device implanta-
ion is a unique feature to CT and may have the
otential to integrate anatomic with functional data
o guide optimal lead placement by targeting re-
ions of most delayed activation and avoiding re-
ions of myocardial scar.

A disadvantage of CT is the exposure to radiation
nd the consequent potentially increased risk of can-
er. Although the issue of radiation and the risk of
ancer from CT performed in low-risk normal pa-
ients for the evaluation of potential CAD is of recent
oncern (29), in our high-risk group of refractory HF
atients with 50% 5-year mortality (30), judicious use
f CT may have a favorable benefit-risk profile when
eing used to help guide appropriate use of CRT, a
ife-saving treatment. With the increasing use of gated
ardiac CT preprocedurally to image the coronary
inus and cardiac veins to facilitate LV lead placement
31,32), functional data for dyssynchrony assessment
s readily available for analysis to the physician at no
dditional cost of radiation to the patient and without
need for an extra test. As advanced CT technology

ontinues to improve temporal resolution, minimize
adiation, and expedite post-processing analyses, fur-
her research with CT is warranted in this patient
Task Force on Practice Guidelines diac resynchronizat
tudy limitations. The major limitation of the study
s the small sample size. Thus, our findings should
e interpreted as a “proof of principle,” which
emonstrates the feasibility of this new method
sing CT and wall thickness analysis for assessing
yssynchrony. Because of a lack of a gold standard,
lthough we believe that greater DI represents a
reater extent of mechanical dyssynchrony, we can-
ot be certain of the causality. Additionally, our
tudy did not address whether DI correlates with
RT response, and further prospective studies with
igher temporal resolution CT scanners are needed to
alidate this metric. Furthermore, our subgroup anal-
sis may be underpowered, and larger studies will need
o ensue to further identify predictors of DI.

O N C L U S I O N S

ardiac CT permits the derivation of global- and
egmental-based measures of LV dyssynchrony.

e describe here a novel, reproducible quantitative
T-based method for dyssynchrony assessment
sing changes in wall thickness (i.e., DI) that allow
or the detection of differences between subjects
ho most likely have dyssynchrony and age-
atched control subjects. These results justify fur-

her research, specifically, prospective studies that
se advanced CT technology with improved tem-
oral resolution, to determine whether DI may
redict response to CRT. Additionally, the ability
o define the coronary venous anatomy beforehand
s a unique feature of CT over other noninvasive

odalities and provides a dual purpose—coronary
eins and dyssynchrony assessment—for its poten-
ial use as a single imaging modality for CRT.
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