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Abstract—In this contribution we refined our previously in-
troduced time domain compressive beamforming algorithm (t-
CBF). Our aim was to make t-CBF less greedy in terms of
memory usage to be able to adapt it to real life images. Along
the way, we also introduced necessary adjustments to further
sparsify our images and make the reconstruction more robust in
the presence of speckle. The wavelet transform was implemented
in t-CBF in different flavors both in terms of wavelet family and
decimated/undecimated algorithm. The cardiac dataset used in
this contribution corresponds theoretically to a single diverging
wave insonification. Compared to the performance of classic DAS
in the same setting, t-CBF yielded better contrast, less sidelobes,
and cleaner images.

I. INTRODUCTION

Some applications of ultrasound imaging require a high
frame rate to capture the movement of organs with precision.
Such an application is echocardiography, where a physician
captures images of a beating heart with an ultrasonic scanner
in order to detect a pathology related to its movement, or the
movement of its valves. Because such movements are quick,
a high frame rate is required to capture them [1].

The frame rate of pulse echo imaging is limited by a number
of factors including the number of focalized pulses used to
compute an image [2]. In the case of cardiac imaging where
a typical field-of-view (FOV) can go as deep as 14 cm, the
maximum frame rate achievable would be around 30-40 Hz
for 2D and around 1 Hz for 3D. The challenge is to decrease
the number of focalized pulses necessary per image.

Over the past few years, Compressive Sensing (CS) [3], [4]
has gained interest from the beamforming community as it
allows the reconstruction of images from less measurements
than conventional techniques such as Delay-and-Sum (DAS).
Whereas beamforming of medical ultrasound images is typi-
cally done in the time domain, CS was previously implemented
in the frequency domain [5]. The authors previously developed
a time domain compressive beamforming (t-CBF) technique
based on expressing beamforming as a matrix operation [6].
Images of bubbles in water at a very high frame rate (about
5 kHz) were demonstrated, as well as hyper-resolution of
point scatterers. In this paper, we propose to study how t-CBF
performs on images displaying a speckle pattern and in-vivo
data using a single diverging wave as the excitation pulse.

II. METHODS

A. Overview of the CS tools

CS is a popular technique that uses models and computa-
tional power to recover missing information in under-sampled
data providing that we can find a space in which that data is
sparse enough [7].

a) Sparsity: : A vector is said to be sparse if most of
its coefficients are equal to zero [8]. Mathematically, a vector
I ∈ RN is said to be S-sparse if all but S of its coefficients
are equal to zero.

b) Incoherence: : The acquisition space and the minimi-
zation space must be incoherent, that is sufficiently dissimilar
[8]. The coherence between two bases Φ and Ψ is usually
defined as the maximum absolute value of the cross-correlation
between the elements of the two bases [8]. In CS, we are
interested in incoherent bases or spaces.

We used the tools provided by CS to develop t-CBF, based
mainly on l1-minimization:

min
I∈RN

‖I‖l1 subject to ‖GI −R‖l2 ≤ ε (1)

where I is the image, R the raw data from the scanner, G
the beamforming matrix as described in [6], and ε controls
the accuracy of the reconstruction. This problem is commonly
known as Basis Pursuit Denoising (BPDN), and we used
SPGL1 [9] to solve it efficiently.

B. Matrix beamforming

Consider a homogeneous medium with a single point scat-
terer. The acquisition process is broken down into several
steps. First, the signal is transduced from an electrical impulse
to an acoustic pulse: this is modeled by the function hisys,Tx(t),
the index i corresponding to the index of the transducer. Then,
the acoustic wave propagates in the medium: this is taken
into account in the forward propagation function hfwd(tc, r).
The acoustic wave gets reflected by the scatterer and travels
back to the probe: this is the backward propagation hibwd(tc, r).
Finally, the signal is transduced from an acoustic pulse to an
electrical impulse: this phenomenon is modeled by htrans(t).
The functions hisys,Tx(t) and htrans(t) can be temporarily left
out of the development as they simply describe the impulse
response of the ensemble {scanner+probe}.

978-1-4799-8182-3/15/$31.00 ©2015 IEEE 2015 IEEE International Ultrasonics Symposium Proceedings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.1109/ULTSYM.2015.0176



Parameter fc bw λ Nelements p csound fs

Value 2.7 MHz 0.6 570 µm 80 λ/2 1540 m.s-1 32 MHz

TABLE I: Parameters used to build our model G.

This experiment leads to two conclusions: there is a one to
one correspondence between a scatterer in the medium and the
resulting wavefront the scanner acquires, and if we consider a
distribution I(r) of scatterers in the medium, then convolving
in time the different terms aforementioned and summing over
space gives the raw data Rij , after discretization:

Rij =

Nx∑
k=1

Nz∑
l=1

·
(
hfwd(tc; k, l)⊗

tc
hibwd(tc; k, l)

)
(j)Ikl (2)

where j is the time index such that t becomes tj = j∆t
where ∆t = 1

fs
, fs being the sampling frequency of the

system. k and l are the spatial indexes such that the spatial

variable r becomes rkl =

(
xk
zl

)
=

(
k∆x
l∆z

)
where ∆x

and ∆z are the grid spacing in azimuth and depth respectively.
Hence, Rij is the coefficient (i, j) in the raw data matrix R,
and Ikl is the coefficient (k, l) in the image matrix I . We
assume that multiple scattering is negligible which is a classic
approximation in medical ultrasound imaging called the BORN
approximation [10].

Equation 2 is a tensor product between a bi-dimensional
matrix I = (Ikl)k,l and a four-dimensional tensor G =
(Gijkl)i,j,k,l. Using this notation, we have:

Gijkl =

(
hfwd(tc; k, l)⊗

tc
hibwd(tc; k, l)

)
(j) (3)

For a plane wave excitation, we find that:

Gijkl =
δ
(
tj − zl

c −
‖rkl−ri‖

c

)
2π‖rkl − ri‖

(4)

We added to the model a gaussian bandwidth bw around a
central frequency fc corresponding to the parameters of the
probe we used, as shown in table I. The interested reader can
refer to [6] for more details.

C. Compressing speckle

The model was used to recover images of point scatterers in
[6]. Those images were naturally sparse in the pixel domain.
However, most US images are not. They need to be transposed
in a domain where they can be well described with few non-
zero coefficients. One of the best promoters of sparsity is the
wavelet transform [11].

The wavelet transform famously provides us with sparse
representations of many types of images. It is widely used
in image compression, in the JPEG2000 format for example
[11]. It separates details in an image at various scales, from
the bulk of the image. As a crude example, let us consider
figure 1 (left). This random texture is not sparse. Figure 1
(center) shows its wavelet transform. On figure 1 (right), a

Fig. 1: Left: Original image, random texture. Center: Wavelet
transform (HAAR family, level 2 decomposition) of the image.
Right: reconstruction of the image from less than 10% of the
highest coefficients of the wavelet transform. Energy retained:
99.9%, zeros: 93.8%.

reconstruction from the highest 6.2% coefficients of its wavelet
transform is shown. The original image and its compressed
version are virtually indiscernible.

We adapted t-CBF to incorporate the wavelet transform and
equation 1 became:

min
I∈RN

‖ΨI‖l1 subject to ‖GI −R‖l2 ≤ ε (5)

where Ψ is the wavelet transform. This problems amounts to
minimizing the l1-norm of the wavelet transform of I under
the constraint ‖GI−R‖l2 ≤ ε. We expect the performance of
t-CBF to improve in terms of intensity recovered and number
of iterations before convergence.

The choice of a good flavor of the wavelet transform will
be discussed in the next section.

D. Decreasing the size of G

As stated in [6] the size of G can be prohibitive, even to
recover small images. As a result we need to find a way
to decrease the size of G and to make sure that it can fit
in the RAM in its entirety before using t-CBF in real-life
applications. The tool we used to that end is the HILBERT
transform.

The HILBERT transform of f ∈ RR is defined by [12]:

H{f(x′)} (x) =
1

π

∫ +∞

−∞

f(x′)

x′ − x
dx′ (6)

where the divergence at x = x′ is allowed for by taking the
CAUCHY principal value of the integral. It is the convolution of
f(x) with −1/πx. Because of the properties of the FOURIER
transform of this function, if f is real valued it can be easily
proven that the HILBERT transform amounts to discarding the
negative frequencies of the signal. This is very advantageous
because it allows us to decrease the sampling frequency
substantially as explained below.

Consider the spectrum of the real-valued gaussian pulse
that we used to model our ultrasonic pulse (figure 2). The
sampling frequency is imposed by the difference between the
minimal frequency −fmax and the maximal frequency fmax.
This is SHANNON’s theorem [13]. However when we consider
the spectrum of the transformed H{f(x′)} (x), we notice that
the difference between the minimal and maximal frequencies
is much smaller. In fact, it corresponds to the bandwidth of



Fig. 2: (left) Spectrum of the gaussian pulse emitted by
an ultrasonic probe. The sampling frequency has to be at
least 2fmax. (right) Spectrum of the same signal processed
with the HILBERT transform. The negative frequencies are
discarded, leading to a complex signal that requires a smaller
sampling frequency imposed by its bandwidth.

a. b.

c. d.

Fig. 3: Numerical phantom recovered with t-CBF: a. without
wavelet transform, b. with first order spline wavelets, c. with
HAAR wavelets, d. with third order spline wavelets.

the signal. In our case, it allows us to decrease the sampling
frequency after HILBERT transform by a factor of 8 to 10.

III. RESULTS

A. Choosing a wavelet family

There are several flavors of the wavelet transform: different
wavelet families (HAAR, DAUBECHIE, splines, etc). To deter-
mine which family is the most suitable to our problem, we ran
t-CBF on a numerical phantom displaying speckle and point
scatterers. We focused on compactly supported wavelets and a
first order decomposition. The results are presented in figure 3.
First, we did not sparsify with wavelets. Then we moved on to
first order spline wavelets, HAAR wavelets, and finally third
order spline wavelets.

B. Decimated or undecimated wavelets?

The wavelet transform can use decimation at each decom-
position level (classic definition) or not. The latter type is

a. b.

c.

Fig. 4: Numerical phantom recovered with t-CBF: (left)
with the classic decimated wavelet transform, (right) with
the undecimated wavelet transform.

known as the undecimated wavelet transform. We applied t-
CBF to a numerical phantom displaying lesions, cysts, and
speckle. We selected HAAR wavelets, decomposed at level 1,
and ran t-CBF with the classic decimated wavelet transform
first and then the undecimated wavelet transform. The results
are presented in figure 4.

C. in-vivo cardiac imaging

The previous improvements allowed us to work with data
coming from a commercial US scanner. We used a hardware
modified iU22 from Philips (Best, The Netherlands) that
allows us to collect the raw data before any kind of processing
is applied to the signal.

Because the pulse sequence we use is not standard the
scanner’s software was also modified to emit diverging waves.
The modification had not been approved for use on human
subjects at the time this article was written. For that reason,
we used a mathematical trick to produce the data we used for
reconstruction. Starting from a cardiac dataset we acquired
using a classic pulse sequence made of several focalized
transmit waves, we applied the virtual transducers principle
[14] to calculate the synthetic aperture data [15]. From there,
it was straightforward to calculate the response to a diverging
wave.

IV. DISCUSSION

A. Choice of a wavelet family

The choice of a wavelet family is inherent to the type of
images we need to reconstruct. Different structures in an image
can be represented efficiently in different wavelet bases. For



a. b.

c.

Fig. 5: a. DAS image with 1 diverging transmit wave, b. DAS
with 11 diverging transmit waves, and c. t-CBF image with 1
diverging transmit wave.

those reasons, there is probably not an absolute best basis
choice to apply t-CBF.

First, section III-A shows that using wavelets helps improve
the aspect of the speckle pattern. On figure 3a. we can see
that the speckle has a lot of zero-valued pixels and its texture
is off. Figures 3b., c., and d. have a smoother speckle pattern
that looks more similar to what sonographers are accustomed
to.

Then, the resolution seems to be affected by the size of the
support of the wavelet basis. More compact supports lead to
better resolution: the more compact HAAR wavelets used in
figure 3c. lead to better resolution of the point scatterers.

For those reasons, we decided to use HAAR wavelets for
the remainder of this work.

B. To decimate or not to decimate?

Decimation speeds up minimization. Undecimation intro-
duces redundancy as well as smoothness which is a desirable
property in our case. In III-B a quick comparison of figure 4a.
and c. leads to the following observations.

First, the contrast in the cysts and the lesions is better
with undecimated wavelets. The lesions and cysts are well-
separated from regular tissue.

Then, the resolution of the point scatterers is better when
using undecimated wavelets. The image reconstructed using
decimated wavelets shows a great reduction of the resolution
as we go deeper into the tissue. It even seems to be better than
the DAS image in figure 4b.

Finally, figure 4a. displays harsh intensity transitions while
figure 4c. is much smoother.

Those results corroborate with similar experiments we con-
ducted on different types of phantoms. It suggests that using
undecimated wavelets is beneficial to t-CBF.

C. Cardiac images

The results presented in section III-C are a first glance at
how t-CBF can perform in a real-life scenario. The t-CBF
image showed in figure 5c. is much cleaner than the DAS
images. It allows us to locate structures that are not easily
discernible on the DAS images, such as the left ventricular
wall. The other structures are preserved and clear. Those re-
sults are very encouraging and the next step is to now perform
the acquisition with a diverging transmit wave directly.

V. CONCLUSION

We demonstrated that t-CBF could be used on a cardiac
dataset. First, we proposed a way to sparsify the image, mak-
ing the recovery of speckle patterns by t-CBF more robust. We
studied a few wavelet families and selected the most relevant.
Then, we investigated the advantages and drawbacks of using a
decimated or undecimated wavelet transform. Finally we used
the HILBERT transform on our dataset as well as to calculate
the matrix G in order to decrease its size and make t-CBF
applicable to real life images.
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