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Abstract—This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal

signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-

order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation

maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process.

We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal

event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity

constraint on the �-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs

large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an

electronic health record dataset.

Index Terms—Temporal signature mining, sparse coding, dictionary learning, nonnegative matrix factorization, stochastic gradient

descent, beta-divergence

Ç

1 INTRODUCTION

TEMPORAL event data are ubiquitous in nature and all
aspects of our everyday life. Examples are daily traces of

our activities, behaviors, and decisions, recording a complex
network of interactions that form part of our society. Other
examples include the

1. neural firing pattern of individual neurons in our
brains [19],

2. business transactions in the financial sector [10],
3. external event stimuli a robot interacts with [18], or
4. other event-related data from sensor measurements

for scientific, engineering, and business applications
[21], [4].

Finding latent temporal signatures is important in many

domains as they encode temporal concepts such as event

trends, episodes, cycles, and abnormalities. For example, in

the medical domain latent event signatures facilitate decision

support for patient diagnosis, prognosis, and management.

In the surveillance domain temporal event signatures aid in

detection of suspicious events at specific locations. Of
particular interest is the temporal aspect of information
hidden in event data that may be used to perform intelligent
reasoning and inference about the latent relationships
between event entities over time. An event entity can be a
person, an object, or a location in time. For instance, in the
medical domain a patient would be considered as an event
entity, where visits to the doctor’s office would be considered
as events.

Temporal event signature mining for knowledge dis-
covery is a difficult problem. The vast amounts of complex
event data pose challenges not only for humans, but also for
data and information analysis by machines. Two funda-
mental questions in addressing this challenge are: What is
an appropriate knowledge representation for mining long-
itudinal event data and how can we learn such representa-
tion from large complex datasets? An event knowledge
representation (EKR) should be commensurate with human
capabilities so complex event data can quickly be absorbed,
understood, and efficiently transformed into actionable
knowledge. In this regard, several problems need to be
addressed:

1. the EKR should handle the time-invariant repre-
sentation of multiple event entities as two event
entities can be considered similar if they contain the
same temporal signatures at different time intervals
or locations,

2. EKR should be flexible to jointly represent different
types of event structure such as single multivariate
events and event intervals to allow a rich represen-
tation of complex event relationships,

3. EKR should be scalable to support analysis and
inference on large-scale databases, and
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4. EKR should be sparse to enable interpretability of
the learned signatures by humans.

This paper proposes a novel Temporal Event Matrix
Representation (TEMR) and learning framework to perform
temporal signature mining for large-scale longitudinal and
heterogeneous event data. Basically, our TEMR framework
represents the event data as a spatial-temporal matrix,
where one dimension of the matrix corresponds to the type
of the events and the other dimension represents the time
information. In this case, if event i happened at time j with
value k, then the ði; jÞth element of the matrix is k. This is a
very flexible and intuitive framework for encoding the
temporal knowledge information contained in the event
sequences. Fig. 1 illustrates a simple example on represent-
ing the longitudinal medical record of a diabetic patient
over one year using our TEMR approach, where the vertical
axis corresponds to the different events (including proce-
dures, lab tests, primary care physician visits, and specialist
visits), the horizontal axis represents the time information
associated with these events. There is a dot in the matrix if
the corresponding event happened at the corresponding
time. Because of the analogy between matrix and image,
TEMR offers a flexible and intuitive way of encoding
comprehensive temporal knowledge, including event order-
ing, duration, and heterogeneity. With this representation,
we develop a matrix approximation-based technology to
detect the hidden signatures from the event sequences. We
prove theoretically the convergence of the proposed algo-
rithm. To improve the scalability of the proposed approach,
we further developed an online updating technology.
Finally, the effectiveness of the proposed algorithm is
validated on a real-world healthcare dataset.

It is worthwhile to outline the advantages of the
proposed approach.

First, on the knowledge representation level, TEMR
provides a visual matrix-based representation of compli-
cated event data composed of different types of events as
well as event intervals, which supports the joint representa-
tion of both continuous and discrete valued data.

Second, on the algorithmic level, we propose a doubly
sparse convolutional matrix approximation-based formula-
tion for detecting the latent signatures contained in the
datasets. Moreover, we derive a multiplicative updates
procedure to solve the problem and proved theoretically its
convergence. We further propose a novel stochastic
optimization scheme for large-scale longitudinal event

signature mining of multiple event entities in a group. We
demonstrate that appropriate normalization constraints on
the sparse latent factor model allow for automatic rank
determination.

Third, on the experimental level, we have validated our
approach using both synthetic data and a real-world
Electronic Health Records (EHRs) dataset which contains
the longitudinal medical records of over 20k patients over
one year period. We report the results on the detected
signatures, convergence behavior of the algorithm, and the
final matrix reconstruction errors.

The rest of this paper is organized as follows: In Section 2
we outline some related work. Section 3 describes the
proposed TEMR as well as the optimization approach in
detail. Section 4 presents the experimental validation results
on both synthetic datasets. Section 5 introduces a case study
on real world dataset, followed by the conclusions and
future work in Section 6.

2 RELATED WORK

This section reviews some previous work related to this
paper, which is divided into two parts. The first part reviews
work on the topic of knowledge representations for
temporal data mining. The second part outlines related
work on nonnegative matrix factorization (NMF) and its
various extensions.

2.1 Temporal Knowledge Representations

There are two types of temporal data, continuous and
discrete. For knowledge representation of continuous time
data, one of the most popular approaches is to transform the
multivariate continuous time series into discrete symbolic
representations (string, nominal, categorical, and item sets).
For example, Lin et al. [12] summarized existing time series
representations as data adaptive, such as Piecewise Linear
Approximation (PLA), Adaptive Piecewise Constant Ap-
proximation (APCA), the Singular Value Decomposition
(SVD), and Symbolic Aggregate approXimation (SAX), and
non-data adaptive, such as the standard Discrete Fourier
transform (DFT), Discrete Wavelet Transform (DWT), and
Piecewise Aggregate Approximation (PAA).

For knowledge representation of discrete time series data,
Moerchen et al. [14], [16], [15] proposed a novel Time Series
Knowledge Representation (TSKR) as a pattern language
(grammar) for temporal knowledge discovery from multi-
variate time series and symbolic interval data, where the
temporal knowledge representation is in the form of
symbolic languages and grammars that have been formu-
lated as a means to perform intelligent reasoning and
inference from time-dependent event sequences.

The TEMR framework we propose in this paper provides
another alternative way to represent the temporal knowl-
edges contained in discrete time data. Compared to the
existing symbolic and grammar-based representations, our
approach is more intuitive and easy to understand. Because
we can always illustrate a matrix as an image, the
relationships among all different types of events can clearly
be observed using TEMR.

2.2 Nonnegative Matrix Factorization + Extensions

One key application of the TEMR framework in this paper
is detecting latent event signatures using doubly sparse
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Fig. 1. An example of a diabetic patient’s electronic record over one year.
The x-axis corresponds to the day index, the y-axis represents different
types of recorded events, which can be categorized into four groups
including procedures (CPTs), lab results (LABs), visits to primary care
physician (PCP), and visits to specialists (SPEC). The dots in the figure
indicate the corresponding events happening at corresponding dates.



convolutional matrix approximation technologies, which is
closely related to Nonnegative Matrix Factorization techni-
ques. NMF is a popular method for extracting the latent
factors from nonnegative data matrix. One of the seminal
works to make NMF so popular is Lee and Seung [11],
where NMF was used to discover the part-based represen-
tation of facial images. Since then, many extensions have
been proposed. Hoyer [8], [9] and Eggert [5] introduced
sparse NMF by adding a sparsity inducing regularizer to
the standard NMF objective, where the sparsity regulariza-
tion further improves the model interpretability for efficient
data representation. To address the dynamic nature of the
data, convolutional NMF (cNMF) models have been pro-
posed in Smaragdis [20] and O’Grady and Pearlmutter [17]
to extract the latent sound objects from acoustic signals.
Recently, in order to improve the scalability of NMF,
several online optimization strategies have been proposed,
such as Cao et al. [1], Mairal et al. [13], and Wang et al. [6].

The algorithm we propose in this paper is closely related
to those NMF works as we also detect temporal signatures
from a nonnegative event matrix using cNMF techniques.
However, it is different from the existing works in the
following aspects:

1. We apply cNMF on discrete time event sequences,
while traditionally cNMF is used for detecting
patterns from acoustic continuous signals.

2. We add sparsity regularizations on both the mined
signatures and the combination coefficients because
we detect those signatures from sparse discrete
event sequences, while the traditional cNMF does
not have such constraints.

3. We use a more general �-divergence to measure the
matrix reconstruction loss, while most traditional
cNMF works use Frobenius norm loss, which is a
special case of the �-divergence loss.

4. We derived an efficient online optimization scheme
to make our algorithm more scalable.

3 TEMPORAL EVENT SIGNATURE MINING

In this section, we will introduce the details of how to detect
temporal event signatures with our TEMR representation.
First, we will introduce some preliminaries.

3.1 Preliminaries

Suppose we have a event matrix X 2 IRn�t, where n is the
number of different event types, t is the length of the event
sequence. As mentioned in Section 3.2, we assume X is the
superposition of the one-side convolution of a set of hidden
patterns F ¼ fFðrÞgRr¼1 across the time axis. We define the
one-side convolutional operator ? as follows:

Definition 1 (One-Sided Convolution). The one-sided con-
volution of F 2 IRn�m and g 2 IRt�1 is an n� t matrix with

ðF ? gÞij ¼
Xt
k¼1

gj�kþ1Fik: ð3:1Þ

Note that gj ¼ 0 if j � 0 or j > t, and Fik ¼ 0 if k > m.

Thus, we can see that one-side convolution is the operation
between a matrix and a vector. This operator is specially
designed for detecting signatures composed of all events;

thus there is no convolution on the vertical axis. Fig. 2 gives
us an intuitive graphical illustration of the procedure of one-
side convolution, where the bottom image is obtained
through the one-side convolution of such signature on top-
left and the time vector on top-right.

Another important definition is the matrix �-divergence.

Definition 2 (�-divergence [7]). The �-divergence between two

matrices A and B with the same size is

d�ðA;BÞ ¼
1

�ð� � 1Þ
X
ij

�
A�
ij þ ð� � 1ÞB�

ij � �AijB
��1
ij

�
;

ð3:2Þ

where � � 0 is a constant.

For completeness, by making use of the limit theory, we
define d�ðA;BÞ for � ¼ 0 and � ¼ 1 as follows:

d0ðA;BÞ ¼ lim
�!0

X
ij

Aij

B��1
ij

1� � �
A�
ij �B

�
ij

�

 !
þ

A�
ij

� � 1

¼
X
ij

ðAij=Bij þ ðlogBij � logAijÞ � 1Þ;
ð3:3Þ

d1ðA;BÞ ¼ lim
�!1

X
ij

Aij

A��1
ij �B

��1
ij

� � 1
þ
B�
ij �A

�
ij

�

 !
¼
X
ij

AijðlogAij � logBijÞ þ ðBij �AijÞ:
ð3:4Þ

�-divergence is a very general divergence:d0ðA;BÞ,d1ðA;BÞ,
d2ðA;BÞ correspond to the Itakura-Saito distance, generalized

Kullback-Leighbler divergence, euclidean distance, respectively.

3.2 Mining Signatures from a Single Event
Sequence

Now coming back to our problem, we have the TEMR
representation of the event matrix; the goal is to detect the
latent temporal signatures from this event matrix using
matrix approximation techniques.
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Fig. 2. A graphical illustration of one-side convolution. The top left figure
shows the temporal signatures, and the top right figure is the time axis,
where we use green bars to represent the position where the pattern
appears. The bottom figure is the one-side convolution result, where
each dotted line rectangle corresponds to a pattern.



Recall that we suppose that the event matrix X is
constructed by the superposition of the one-side convolu-
tion of a set of hidden signatures F ¼ fFðrÞgRr¼1 across the
time axis. Then, we propose to detect those patterns by
minimizing the following objective:

J ¼ d� X;
XR
r¼1

FðrÞ ? gðrÞ

 !
; ð3:5Þ

where G ¼ fgðrÞgRr¼1 is the set of convolutional coefficients.
The problem our algorithm aims to solve is

min
F ;G

J

s:t: 8r ¼ 1; 2; . . . ; R;FðrÞ � 0;gðrÞ � 0;
ð3:6Þ

where gðrÞ 2 IRt is the coding matrix for pattern FðrÞ. In this
paper, we consider a nonnegative matrix X, and we also
require fFðrÞ;gðrÞgRr¼1 to be nonnegative.1 With the defini-
tion of � divergence (3.2), we have

@J
@F
ðrÞ
ik

¼
Xt
j¼1

�
Y ��1
ij �XijY

��2
ij

� @Yij
@F
ðrÞ
ik

; ð3:7Þ

where we define

Y ¼
XR
r¼1

FðrÞ ? gðrÞ: ð3:8Þ

Combining (3.1) and (3.8), we have @Yij=@F
ðrÞ
ik ¼ g

ðrÞ
j�kþ1.

Thus, we can update F
ðrÞ
ik by

F
ðrÞ
ik  F

ðrÞ
ik

Pt
j¼1 XijY

��2
ij g

ðrÞ
j�kþ1Pt

j¼1 Y
��1
ij g

ðrÞ
j�kþ1

 !�ð�Þ

; ð3:9Þ

where �ð�Þ is the learning rate defined as

�ð�Þ ¼

1

2� � ; � < 1

1; 1 � � � 2
1

� � 1
; � > 2:

8>>><>>>: ð3:10Þ

On the other hand, we have @J
@g
ðrÞ
k

¼
Pn

i¼1

Pt
j¼1ðY

��1
ij �

XijY
��2
ij ÞF

ðrÞ
i;j�kþ1; therefore

g
ðrÞ
k  g

ðrÞ
k

Pn
i¼1

Pt
j¼1 XijY

��2
ij F

ðrÞ
i;j�kþ1Pn

i¼1

Pt
j¼1 Y

��1
ij F

ðrÞ
i;j�kþ1

 !�ð�Þ

: ð3:11Þ

We have the following theorem (which is proven in the
Appendix, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2012.111) to guarantee the convergence of
the updates.

Theorem 1. Starting from some initial guess on fFðrÞ;gðrÞgRr¼1

and iteratively updating them with (3.9) and (3.11) will finally
converge to a stationary point.

Proof. See the Appendix, available in the online supple-
mental material. tu

3.2.1 Complexity Analysis

For the storage complexity, during the iterations, it is
conventional to hold X and Y in the memory, which costs
OðsX þ sY Þ space, where sX and sY are the number of
nonzero elements in X and Y. We also need to hold FðrÞ and
gðrÞ when updating themselves, which brings an additional
Oð�sF þ �sgÞ space. Here ,�sF and �sg are the averaged number
of nonzero elements over fFðrÞgRr¼1 and fgðrÞgRr¼1. So, the
total storage complexity is OðsX þ sY þ �sF þ �sgÞ.

For computational complexity, we need Oð�sF �sgÞ time to
compute Y, Oð2�sF �sgÞ time to update each FðrÞ at every
iteration, thus updating all F ¼ fFðrÞgRr¼1 over one step
costs Oðð2Rþ 1Þ�sF �sgÞ time, and the complexity for updat-
ing all G ¼ fgðrÞgRr¼1 over one iteration is the same. Thus, the
total computational complexity for OSC-NMF over
T iterations is Oðð4Rþ 2ÞT �sF �sgÞ.

3.2.2 Imposing the Sparsity Constraints

As shown in Fig. 1, the patient EHR matrices are very
sparse. Therefore, it is natural to assume that the learned
temporal pattern matrices and the convolutional coeffi-
cients are also sparse. Similarly to [5] and [8], we can
enforce the sparsity constraints by adding ‘1 regularization
terms to the objective in (3.5). As a consequence, we can
solve for the optimal patterns and codes by minimizing the
following objective:

J 1 ¼ d� X;
XR
r¼1

FðrÞ ? gðrÞ

 !
þ �1

XR
r¼1

kFðrÞk1 þ �2

XR
r¼1

kgðrÞk1;

ð3:12Þ

where �1 > 0 and �2 > 0 are the regularization parameters,
and

kFðrÞk1 ¼
X
ij

��F ðrÞij ��; ð3:13Þ

kgðrÞk1 ¼
X
i

��gðrÞi ��: ð3:14Þ

Then, the problem we want to solve becomes

min
F ;G

J 1

s:t: 8r ¼ 1; 2; . . . ; R;FðrÞ � 0;gðrÞ � 0:
ð3:15Þ

Similarly to the previous section, we can get the update
rules for F and g as follows:

F
ðrÞ
ik  F

ðrÞ
ik

Pt
j¼1 XijY

��2
ij g

ðrÞ
j�kþ1Pt

j¼1 Y
��1
ij g

ðrÞ
j�kþ1 þ �1

 !�ð�Þ

; ð3:16Þ

g
ðrÞ
k  g

ðrÞ
k

Pn
i¼1

Pt
j¼1 XijY

��2
ij F

ðrÞ
i;j�kþ1Pn

i¼1

Pt
j¼1 Y

��1
ij F

ðrÞ
i;j�kþ1 þ �2

 !�ð�Þ

: ð3:17Þ

We can also observe that the storage and computational
complexities of OSC-NMF after imposing those sparsity
constraints remains the same as simple OSC-NMF.

However, as pointed out by Eggert and Korner [5],
purely solving problem (3.15) may cause a scaling problem
as we can always scale F and G to get the same cost
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1. It is not difficult to get the signatures when there are negative values in
X. We can just drop the nonnegativity constraints on F , and this is similar
as Semi-NMF [3] to NMF.



function value. To avoid this, we propose a normalization
invariant formulation of problem (3.15) in the following.

3.2.3 Normalization Invariant Formulation

For the normalization invariant sparse OSC-NMF, we need
to minimize the following objective with nonnegativity
constraints:

J n
1 ¼ d� X;

XR
r¼1

bFðrÞ ? gðrÞ

 !
þ �1

XR
r¼1

kbFðrÞk1 þ �2

XR
r¼1

kgðrÞk1;

ð3:18Þ

where bFðrÞ is the rth normalized signature matrix. In this

paper, we will consider two types of normalization.

. Individual normalization. Each signature matrix is
normalized to unit Frobenius norm, i.e.,

bF ðrÞij ¼ F ðrÞij
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ij

F
ðrÞ
ij

2
s

: ð3:19Þ

. Total normalization. Each pattern matrix is normal-
ized by the total Frobenius norm of all the signature
matrices, i.e.,

bF ðrÞij ¼ F ðrÞij
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

r

X
ij

F
ðrÞ
ij

2
s

: ð3:20Þ

Using the same trick as in [5], we can update F and G by

F
ðrÞ
ik  F

ðrÞ
ik

Pt
j¼1

�
Xij þ bYij bF ðrÞ2ik

� bY ��2
ij g

ðrÞ
j�kþ1 þ �1

bF ðrÞ2ikPt
j¼1

� bYij þXij
bF ðrÞ2ik

� bY ��2
ij g

ðrÞ
j�kþ1 þ �1

0@ 1A�ð�Þ

;

ð3:21Þ

g
ðrÞ
k  g

ðrÞ
k

Pn
i¼1

Pt
j¼1 Xij

bY ��2
ij

bF ðrÞi;j�kþ1Pn
i¼1

Pt
j¼1

bY ��1
ij

bF ðrÞi;j�kþ1 þ �2

 !�ð�Þ

; ð3:22Þ

where

bYij ¼XR
r¼1

Xt
k¼1

gj�kþ1
bF ðrÞik ¼ XR

r¼1

bFðrÞ ? gðrÞ

" #
ij

: ð3:23Þ

We can see that this normalization invariant formulation
does not bring any extra storage burden, but brings an extra
Oð2R�sF Þ computational overhead at each iteration.

Algorithm 1 summarizes the whole procedure of the
proposed OSC-NMF. Note that on line 5 the criterion we used
for checking algorithm convergence is to examine the
absolute difference of the objective function losses between
two consecutive steps is less than a certain convergence
threshold.

Algorithm 1. OSC-NMF (Individual)
Require: X;F ;G; r; T ; �; �
Ensure: F � 0;G � 0

1: Initialize F ;G
2: for i ¼ 1 to T do

3: Update F via Eq. (3.21)

4: Update G via Eq.(3.22)
5: if (converged) then

6: break

7: end if

8: end for

9: return R� ¼ fW;Hg

3.3 Mining Signatures from Multiple Event
Sequences

In many real-world scenarios, we are not only interested in
discovering the signatures within a single event sequence,
but also in detecting signatures from multiple event
sequences. For example, in the medical domain, the event
sequence of a single patient is usually very sparse. In this
case, it makes more sense to detect signatures from a group
of patients with similar disease conditions rather than a
single patient.

More formally, we consider the case where the event
matrices are composed of n event sequences. We use X ¼
½X1;X2; . . . ;Xn� to represent the event sequence group,
with Xl representing the lth event sequence in this group. In
the following we will extend our one-side convolutional
NMF to this scenarios.

If we still denote the latent event signature set as
F ¼ fFðrÞgRr¼1, then the problem we want to solve becomes2

min
F ;fGcgCc¼1

J 3

s:t: 8r ¼ 1; . . . ; R; l ¼ 1; . . . ; n1;

FðrÞ � 0;g
ðrÞ
l � 0;

ð3:24Þ

where G ¼ fgðrÞl g
n1

i¼1 is the convolution coefficients for the
data, n1 is the size of the group. Then, the objective we want
to minimize is

J 3 ¼
Xn1

l¼1

d� Xl;
XR
r¼1

FðrÞ ? g
ðrÞ
l

 !
þ �1

XR
r¼1

kFðrÞk1

þ �2

Xn1

l¼1

XR
r¼1

��gðrÞl ��1
: ð3:25Þ

By defining Yl ¼
PR

r¼1 FðrÞ ? g
ðrÞ
l , we can obtain the update

rules for F and G as follows:

F
ðrÞ
ik  F

ðrÞ
ik

Pn1

l¼1

Pt
j¼1 XlijY

��2
lij

g
ðrÞ
lj�kþ1Pn1

l¼1

Pt
j¼1 Y

��1
lij

g
ðrÞ
lj�kþ1

þ �1

0@ 1A�ð�Þ

; ð3:26Þ

g
ðrÞ
lk
 g

ðrÞ
lk

Pn
i¼1

Pt
j¼1 XclijY

��2
clij

F
ðrÞ
i;j�kþ1Pn

i¼1

Pt
j¼1 Y

��1
clij F

ðrÞ
i;j�kþ1 þ �2

0@ 1A�ð�Þ

: ð3:27Þ

If we want to find normalized signatures, we can use the
same trick as in [5] and derive the following update rules:

F
ðrÞ
ik  F

ðrÞ
ik

P
l;j

�
Xlij þ bYlij bF ðrÞ2ik

� bY ��2
lij

g
ðrÞ
lj�kþ1

þ �1
bF ðrÞ2ikP

l;j

� bYlij þXlij
bF ðrÞ2ik

� bY ��2
lij

g
ðrÞ
lj�kþ1

þ �1

0@ 1A�ð�Þ

;

ð3:28Þ
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2. Here, we directly give the sparsity constrained objective as the
nonsparse case just corresponds to �1 ¼ �2 ¼ 0.
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where bYl ¼
PR

r¼1
bFðrÞ ? g

ðrÞ
l .

3.3.1 Complexity Analysis

Similarly to OSC-NMF in the single event sequence case, we
can analyze that the storage complexity of group OSC-NMF
is Oðnð�sX þ �sY þ ��sgÞ þ �sF Þ, where n is the size of the group,
�sX; �sY are the averaged number of nonzero elements in
fXlgnl¼1 and fYlgnl¼1, and ��sg is the averaged number of
nonzero elements of all fgðrÞl g

R;n
r¼1;l¼1. The total computational

complexity is Oðð4Rþ 2ÞTn�sF��sgÞ. For normalized cases, we
just need an extra Oð2R�sF Þ time for signature normalization.

Algorithm 2 summarizes the procedure of the group
OSC-NMF algorithm.

Algorithm 2. OSC-NMF (Group)

Require: X ;F ;G; r; T ; �; �
Ensure: F � 0;G � 0

1: Initialize F ;G
2: for i ¼ 1 to T do

3: Update F via Eq. (3.28)

4: Update G via Eq. (3.29)

5: if (converged) then

6: break

7: end if

8: end for

9: return R� ¼ fW;Hg

3.3.2 A Stochastic Learning Scheme

It can be seen that group OSC-NMF is storage and time
consuming if the group size n is very large. In this case, we
can adopt the stochastic (online) learning scheme in [6], i.e.,
at each time t, the algorithm only (randomly) receives one or
a small number of matrices X t from the data pool, then
proceeds with the following steps:

. Estimate the convolution coefficients Gt for X t based
on the current F t. This can be done by starting from
some random initialization of Gt, then iterating with
(3.27) (or its normalized version).

. Integrating X t and Gt with the previously received
data and their estimated convolution coeffients to
update F with (3.26) (or its normalized version).

With this scheme, when estimating Gt at step t, we need
Oðntð�sX þ �sY Þ þ �sF Þ space, with nt being the size of X t and
usually nt � n1. We also need Oðntð2Rþ 1Þ�sF��sgÞ computa-
tional time. For updatingF from (3.26) (or (3.28)), we need to

sum over all received data matrices for both numerator and
denominator, thus we can save the summation results on the
nominator and denominator in the previous step. Therefore,
we just need to compute the corresponding summation terms
on X t. For each round of updating F, we need Oðntð�sX þ
�sY þ ��sgÞ þ 2�sF Þ space and Oðntð2Rþ 1Þ�sF��sgÞ time. To con-
clude, the total storage complexity for this online scheme is
Oðntð�sX þ �sY þ ��sgÞ þ 3�sF Þ and the total computational com-
plexity is Oðð4Rþ 2ÞTnt�sF��sgÞ. For normalized cases, we just
need to add additional Oð2R�sF Þ computational time for
pattern normalization.

4 EXPERIMENTS ON SYNTHETIC DATA

In this section, we will present the experiments of our
proposed algorithm on several synthetic datasets.

4.1 Data Sets

We have created four sets of synthetic datasets. Each set
consists of data matrices encoded with our proposed TEMR
framework. All synthetic data matrices have 30 rows and
120 columns. The data matrices encode events as binary
activation units in the form of a single 1-or-0 valued pixel,
where a value of 1 (black) denoted an event realization and 0
(white) no event activity. Each row of the matrix refers to a
particular event-type-level category and each column to a
single time unit scale (e.g., days).

The first set of data is constructed to test the effectiveness
of our individual OSC-NMF approach, which consists of
Moerchens’s TSKR event-interval-test-pattern [14], [15], [16]
that has been abstracted from a tutorial figure. The pattern
comprises a trivariate interval event sequence, where Tones

(e.g., A, B, C) represent different event interval durations,
Chords represent coincidences of Tones, and Phrases represent a
partial ordering of the Chords. The pattern is shown in Fig. 3.

We have converted Moerchen’s TSKR test pattern to our
geometric TEMR, where an event interval is encoded with a
start and end event. Moerchen’s test pattern in TEMR form is
shown in Fig. 3 (see right box, TEMR). In Fig. 4 (see left and
middle boxes) we show two example scenarios of Moerchen’s
event-interval-test-pattern. The red box corresponds to the
partially ordered Phrase (AB-ABC-AC) and the green box to
(AB-BC-AC) accordingly.

The right figure in Fig. 4 shows a dataset consisted of
various temporal concepts and operators including

1. synchronicity (red box),
2. trend of decreasing coincidences (green box),
3. trend of increasing coincidences (blue box),
4. concurrency (orange box).
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Fig. 3. TSKR and TEMR examples of Moerchen’s event interval test pattern. Left: TSKR enables to distinguish between the partial ordering of so-
called Chords. Such partial orderings form Phrases. Two Chord configurations are contained (i.e., AB-ABC-AC and AB-BC-AC). Right: TEMR can
be used to emulate the same test pattern by representing an event interval with two consecutive events. The dotted arrows indicate the event interval
that is marked by the colored solid squares, which denote the start and end of the interval.



The second dataset is designed for testing the robustness
of individual OSC-NMF in the scenario where there are
noisy events and different pattern elasticities contained in
the data. The dataset is shown in Fig. 5, where the data in
left figure contain a event sequence with one temporal
signature surrounded with noisy events, and the data in
right figure contain one signature with varying elasticity
and noisy events surrounded.

The third set of data is constructed for testing the
effectiveness of our group OSC-NMF approach, which is
consisted of three data matrices that are shown in Fig. 5. The
group dataset contained common and individual temporal
event patterns. The red box shows temporal event pattern 1,
which occurs in all three data samples. The green box shows
temporal event pattern 2, which also occurs in all three data
samples with multiple occurrences. The blue box shows
temporal event pattern 3 that only occurs in the left and
middle data samples. The orange box shows temporal event
pattern 4 that only occurs in the left data sample. All patterns
span a time window of seven days and an event-type
dimension of 30.

The fourth dataset is created for examining the robustness
of group OSC-NMF in the cases where there are noisy events
and varying pattern elasticities. We have two data cate-
gories. One contains pattern I and II shown in Figs. 7a and
7b, the other contains pattern III and IV shown in Figs. 7c
and 7d. We constructed 1,000 samples for each category, and
the two patterns randomly appear 10 times each for every
sample. For the datasets of testing noise tolerance, we
randomly add different levels of events to each data matrix.
For the datasets of testing pattern elasticity tolerance, we
randomly add 0.3 percent noisy events, and then randomly
change the levels of pattern elasticities.

4.2 Experimental Results

We conduct three sets of experiments to examine 1) the
effectiveness of individual OSC-NMF shown in Algorithm 1,
2) the robustness of individual OSC-NMF shown in

Algorithm 2, 3) the effectiveness of group OSC-NMF in
Algorithm 2 as well as the stochastic training strategy.

4.2.1 The Effectiveness of Individual OSC-NMF

We examine the effectiveness of individual OSC-NMF by
analyzing the reconstruction performance of the learned
representation on Synthetic Dataset A shown in Fig. 4. Our
intention for the experiments is to examine two questions:
1) Can our TEMR framework learn shift invariant inter-
pretable latent temporal signatures? 2) Is the model sensitive
to an optimally chosen rank? For this set of experiments we
used the following parameter settings: � ¼ 0:5; � ¼ 0:5. The
number of iterations were set toT ¼ 100 and the convergence
threshold to 10�9. For the Synthetic Datasets I and II we have
used m ¼ 35 and a rank of R ¼ 2 and R ¼ 10 to account for
the number of true signatures in the data and their durations.
For Synthetic Dataset III we have used a m ¼ 3 and a rank of
R ¼ 4 and R ¼ 11 accordingly, where R ¼ 11 is an over-
complete specified rank. For each case, the first rank (i.e.,
R ¼ 2; R ¼ 4) was chosen based on the known number of
distinct temporal signatures in the data. The second rank (i.e.,
R ¼ 10; R ¼ 11) was chosen as an overcomplete rank where
the prespecified number of basis elements exceeds the
number of true latent factors in the data. We ran 25 trials to
evaluate the mean performance and standard error.

Fig. 8 shows the results of this set of experiments. One
can observe that the algorithm successfully learned the
correct bases set even though the rank was specified to
be overcomplete. The sparse code (H) and the sparse bases
(W) that were learned from Synthetic Datasets I, II, and III
showed interpretable shift invariant sparse activation
patterns. By looking at the activation codes one knows
exactly when a particular latent temporal signature oc-
curred in the data. Also the induced sparsity constraints on
our model in conjunction with the nonnegativity constraints
enable easy interpretation of the model. The experimental
results demonstrate that our framework is able to learn shift
invariant latent event signatures of different complexity.
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Fig. 4. Synthetic Dataset A. Left: Moerchen’s event interval test pattern as outlined in Fig. 3 and separated with a large window of no event activity.
Middle: Moerchen’s event interval test pattern showing an alternation between Chord configurations 1 (red box) and 2 (green box). Right: From left to
right, the red box shows a synthetic test pattern of synchronicity, the green box shows an event pattern trend of decreasing coincidence activity, the
blue box shows an event pattern trend of increasing coincidence activity, and the last orange box shows the event pattern of concurrency. Other
temporal operators and concepts such as order, duration, and periodicity are implicitly represented within the red, green, blue and orange enclosed
patterns. Note that the synthetic datasets do not have a labeled event category specified.

Fig. 5. Synthetic Dataset B. This dataset has two samples. The first sample (on the left) contains one repeating signature ABC but is corrupted with
some noise events. The second sample (on the right) contains one signature ABC but is elasted to different length, and there are also some noisy
events within or around.



Note that the signatures implicitly encode missing event
values as no event activity is simply encoded with zeros
within TEMR. Table 1 shows quantitative results of the
reconstruction performance for Datasets I, II, and III, where
we use three measures to evaluate the algorithm perfor-
mance: the averaged iteration steps for the algorithm to
converge Iconv, the averaged reconstruction error Rerr, and
the averaged Dice coefficient �Dc:

Rerr ¼
1

T

XT
t¼1

d�ðXt;RtÞ; ð4:1Þ

�Dc ¼
1

T

XT
t¼1

DcðXt;RtÞ: ð4:2Þ

The Dice coefficient is defined as:3

DcðA;BÞ ¼
2jA \Bj
jAj þ jBj ; ð4:3Þ

where A and B are two binary matrices with the same size.
jA \Bj counts the number of same entries in A and B, jAj
and jBj are the total number of entries in A and B. Thus, Dc

measures the set agreement between the original temporal
event matrix and the reconstruction. The Dc score ranges
from ½0; 1�, where 1 means perfect agreement. For Rerr, we
report the results with � ¼ 2 and � ¼ 0:5. For �Dc, we first
binarize each Rt with threshold 0.5. From the table we can
observe that the mean Dice coefficient Dc for the over-
complete bases set for all three synthetic datasets were close
to 1, which shows that the learned overcomplete representa-
tion adheres to the original data.

4.2.2 The Robustness of Individual OSC-NMF

In the second set of experiments, we examined the
robustness of individual OSC-NMF in the scenario 1) when
there are many noisy events; 2) when the latent temporal
signatures have the same event ordering but different
elasticities. We use Synthetic Dataset B in Fig. 5 to achieve
this goal. Through the whole experimental process, we still
set � ¼ 0:5, � ¼ 0:5, T ¼ 100, m ¼ 20, R ¼ 5 and the
convergence threshold to 10�9.

Fig. 9 (left) shows the detected signatures from the data
shown in the left figure of Fig. 5, where one temporal
signature ACB appeared three times. Each time this ACB
appears there are some noisy events surrounding it. On the
detected signature images in Fig. 9, the colors of those squares
indicate the values in the corresponding signature. The figure
illustrates that OSC-NMF detected three signatures in this

case, where the first signature is the correct one with two gray
event points brought by noisy events. The second and third
signatures are generated by noisy events, which also
appeared twice within the dataset. This experiment suggests
that OSC-NMF can successfully detect the latent temporal
signature with the existence of noisy events; however, those
detected signatures may not be that “clear,” i.e., with some
faded background noisy events.

Fig. 9 (right) shows the detected signatures from the data
shown in the right figure of Fig. 5, where the same temporal
signature ACB appeared three times but with different
elasticities. From the figure we can see that OSC-NMF failed
to detect a correct signature in this case. The detected
signature that is closest to the correct one is the first one,
where there are multiple events C appearing with different
values. The second and third signatures are produced by
noisy events, but they also appeared multiple times within
the data. This experiment suggests the signatures that OSC-
NMF detected will encode all the information they
demonstrated in the data. Therefore, if there is a huge
variation on the elasticities of the temporal signatures, the
results from OSC-NMF could be messed up, i.e., OSC-NMF
is more appropriate for detecting the temporal signatures
with fixed event positions or small elastic variations.

4.2.3 The Effectiveness of Group OSC-NMF

We also examined the effectiveness of the group OSC-NMF
approach for detecting temporal signatures from multiple
event sequences. The dataset we used in this set of
experiments is Synthetic Dataset C shown in Fig. 6, where
four different patterns appeared in three data samples. We
run Algorithm 2 with � ¼ 0:5, � ¼ 0:5, T ¼ 100, R ¼ 5; 10,
m ¼ 7, and convergence threshold 10�9. Fig. 10 shows the
detected temporal signatures, from which we can see that
although we setR to be a value large than the genuine number
of underlying signatures, our algorithm can still detect the
correct number of signatures contained in the dataset.

We also tested the convergence of the proposed
stochastic learning scheme for group OSC-NMF introduced
in Section 3.3. The result is shown in Fig. 11, which is a plot
of reconstruction error with � ¼ 0:5 versus the number of
iterations. From the figure we can observe a clear conver-
gence trend of the objective function value, with some
fluctuations. This is in accordance with the previous
observations on stochastic learning approaches.4

4.2.4 The Robustness of Group OSC-NMF

Finally, we tested the robustness of the group OSC-NMF
approach introduced in Section 3.3 using Synthetic Dataset D
shown in Fig. 7. We use the Area Under the Curve (AUC)5 on the
classification of two categories of data to measure the
performance of our algorithm. During evaluation, we first
partition the data into 10 folds, nine folds for training and one
fold for testing. We apply our algorithm to first extract
10 patterns for each category, and then combine them to
obtain a pattern dictionary of size 20. Then, each data sample
will be represented as a 20D Bag-of-Pattern (BoP) vector,
where the value on each dimension indicates the frequency of
the corresponding pattern appearing in the corresponding
sample. We use nearest neighbor classifier with euclidean
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TABLE 1
Reconstruction Performance for the Synthetic Datasets

for Overcomplete Latent Factor Model

Shown are the mean Dice coefficient (Dc), Frobenius norm (k � kF ),
�-divergence loss for � ¼ 0:5, number of iterations until convergence
(Iconv), and their standard deviations (SD).

3. http://en.wikipedia.org/wiki/Dice_coefficient.

4. http://en.wikipedia.org/wiki/Stochastic_gradient_descent.
5. http://en.wikipedia.org/wiki/Receiver_operating_characteristic#

Area_Under_Curve.



distance evaluated on BoP vectors to perform classification
and report the average value and standard deviation of the
10-fold cross-validation AUC results.

We first test the noise tolerance of group OSC-NMF.
Different levels of noise events (0.3, 0.5, 1, and 2 percent) are
added to the datasets. The results are shown in Fig. 12.
According to the dataset reconstruction, without any noise
the event density of any data matrix would be ð3þ 3Þ 	 10=
ð30 	 120Þ ¼ 1:67%. Therefore, if we add 2 percent noise
events, the patterns will be completely corrupted and the
algorithm will confuse. That is why only around 0.55 AUC is
achieved. However, with less than 1 percent noise events,
our algorithm can always get an AUC value of above 0.8,
which suggests it can resist the noise events quite well.

Second, we test the robustness of group OSC-NMF under
different pattern elasticities. We denote the maximum pattern
duration (time between A and C) to be d, and we set
d ¼ 5; 8; 11; 14. The position of B is also randomly chosen
between A and C, and we assume events A, B, C happen in
three different days. For each appearance of every pattern, we
randomly sample an integer from three to d as the pattern
duration. The results are demonstrated in Fig. 13, from which
we can see that different pattern elasticities will not affect the
algorithm performance significantly. This is because
although the elasticity changes, the pattern structure (i.e.,
the relative position of the events) does not change. As long as
the pattern duration does not exceed the pattern window
length m ¼ 15, our algorithm can still find them.

5 A REAL-WORLD CASE STUDY

In this section, we will introduce a set of experiments
conducted on a real-world healthcare dataset to demon-
strate the effectiveness of the proposed approach.

5.1 The Dataset

The real-world dataset consisted of an Electronic Health-
care Record (EHR) data model. In conjunction with medical
experts we have selected a diabetic patient pool
(n ¼ 21;384) that was stratified into three groups A, B,
and C. Group A consists of patients (n ¼ 16;205) with no

disease complications, group B consists of patients
(n ¼ 4;925) with chronic disease complications, and group
C consists of patients (n ¼ 254) with acute complications.
For all three groups we generated TEMRs for each patient
using the clinical conditions defined on general outpatient
encounters specific to diabetes care (see Tables 2 and 3).
The chosen criteria consists of 30 different conditions that
were grouped into four groups over a time period of 365
days: medical procedures (G1 ¼ CPTs), lab results
(G2 ¼ LABS), primary care physician visits (G3 ¼ PCP ),
and specialty visits (G4 ¼ SPEC). Fig. 1 shows an example
of a temporal event matrix from a patient in the diabetic
patient pool of group B.

5.2 Experiment Results

In this section, we will present the results of two set of
experiments: 1) investigating the performance of the pro-
posed algorithms on this real-world dataset; 2) investigating
the clinic values of the proposed algorithms.

5.2.1 Algorithm Performance Investigation

The first set of experiments was performed to analyze the
reconstruction performance and convergence behavior of
the learned representation for a single TEMR data matrix. A
representative data sample selected from the patient pool is
shown in Fig. 14, which includes multiple repeating
temporal signatures. we perform cross-validation on 1,225
data samples over 25 independent trials. We examined the
approximation error of group OSC-NMF as a function of
different parameterizations of the �-divergence � ¼
f0; 0:1; 0:25; 0:5; 1; 1:5; 2g loss function, the degree of sparsity
� ¼ f0; 0:5; 1; 2; 10g, the temporal window size w ¼ f7; 14;
30; 60; 90g, and the rank of the factorization R ¼ f1; 5; 10; 15;
20; 25; 50g. From this pool we examined the optimal model
with respect to the rank, window size, sparsity, and
parameterized loss function by computing the three
performance metrics Iconv, Rerr, and Dc.

Fig. 15 shows the results for the first set of experiments.
One can observe that the algorithm converges within
50 iterations for all different model parameters. The
approximation error measured in terms of the Dice
coefficient and the Frobenius norm exponentially increased
and decreased as the rank was increased. For k > 10,
different rank sizes had an overall approximation error
above Dc > 0:9 and k � kF < 2:5. The reconstruction perfor-
mance showed that the algorithm is robust against varying
window sizes and the sparsity parameter for � > 0. The
effect on different sparsity constraints showed that the
mean convergence is not indicative of a low approximation
error. The best model was achieved with a sparsity
constraint of � ¼ 0:5 and a � ¼ 0:5. Setting the sparsity
constraint to � ¼ 0 led to a very low Dice coefficient. Also
setting � ¼ 2 gave the lowest Dice coefficient, showing that
the Frobenius loss is not able to cope with double sparsity.
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Fig. 7. Synthetic Dataset D. This dataset contains 2,000 samples from

two categories, 1,000 from each. The samples from the first category

contain patterns I and II. The samples from the second category contain

patterns III and IV.

Fig. 6. Synthetic Dataset C. This is a data group containing three data samples. The patterns in red and green boxes appear in all three data
samples. The pattern in the blue box appears in the left and middle data samples, while the pattern in the orange box only appears in the left data
sample.



We summarize the optimal model parameters with respect
to the computed performance metrics in Table 4. From
Table 4 one can see that the convergence criterion should
not be considered as a cross-validation measure. The
optimal mean Dice coefficient and mean ‘2-norm both gave
the same optimal model parameters, whereas the para-
meters for the convergence criterion disagreed. In general,
the framework shows robustness with respect to the chosen
window size and the sparsity parameter. This is encoura-
ging since learning patterns of different window sizes is
important for extracting a rich event structure within
TEMR. Also, the optimal parameterization of the
�-divergence with � ¼ 0:5 shows that it outperforms the
Itakura-Saito and generalized KL divergence.

In the second set of experiments, we examined the
approximation error (mean Dice coefficient) of the stochas-
tic gradient descent scheme as a function of the factoriza-
tion rank R and window size m for two different settings of

the stochastic learning scheme for group OSC-NMF in
Algorithm 2. The motivation was to investigate the
reconstruction performance of the stochastic optimization
scheme on real data for different ranks and window sizes
for all three population groups A, B, and C. We
implemented the stochastic learning method with two
different settings (type I and type II). In algorithm type I
we update W and H over 1 iterations at each updating
step, whereas in algorithm type II (green) we update W
and H over 100 iterations at each updating step. We
adopted similar parameter settings as in the first set of
experiments, i.e., � ¼ 0:5, � ¼ 0:5, T ¼ 100, and the con-
vergence threshold 10�9. We varied R ¼ f1; 5; 10; 50; 100;
200; 500; 1;000; 5;000; 10;000g and for the window size
m ¼ f3; 7; 14; 30g.

Fig. 16 shows the experimental results. We only report
graphical results for group A since the mean Dice coefficient
plots for group B and C showed similar trends. For all three
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Fig. 8. Reconstruction performance for the synthetic dataset. Left: Synthetic Dataset I. The first row shows the reconstructed dataset based on the

learned model, the second row shows the sparse code H, and the last row shows the sparse bases W. Middle: Corresponding figures of Synthetic

Dataset II as specified in the left column. Right: Corresponding figures of Synthetic Dataset III as specified in the left column. The weighting

coefficients in H were colored based on an arbitrary random color map. What is important is that one color corresponds to one basis element. The

temporal patterns of interest in the first row are color-coded with the latent temporal patterns found in W.

Fig. 9. Detected temporal signatures from Synthetic Dataset B. The left figure shows the temporal signatures detected from the event data in the left
figure of Fig. 5, and the right figure shows the temporal signatures detected from the event data in the right figure of Fig. 5. The intensities of the
black squares indicate the values of the corresponding signature, where white is 0 and black is 1.



groups A, B, and C, algorithm type II outperformed
algorithm type I. Algorithm type I showed a linear increase
and algorithm type II an exponential increase of the Dice
coefficient as the rank increased. The reconstruction perfor-
mance is robust against the window size and the number of
basis elements (rank). For all three groups the stochastic

optimization scheme could learn the latent temporal signa-
ture representation that leads to a mean Dice coefficient close
to 1. The 95 percent confidence interval also showed that the
computed means were representative of the three population
groups. Visual examination of the learned patterns also
confirmed that the algorithm could learn interpretable latent
event patterns for all three groups.

5.2.2 Clinic Value Investigation

The objective of this set of experiments is to determine
whether the number and severity of diabetes complications
are associated with increased risk of mortality and hospi-
talizations. We use the DCSI, a discrete 13-point scale
proposed by Young et al. [22], to stratify the three groups of
our diabetic patient pool and to use the obtained severity
score as group labels to correlate against HRU patterns. The
DCSI score was derived from diagnostic, pharmacy, and
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Fig. 10. Detected temporal signatures from Synthetic Dataset C. (a) The
results when we set R ¼ 5. (b) The results when we set R ¼ 10.

Fig. 11. Convergence curve of the Stochastic Learning scheme for
Group OSC-NMF. The x-axis represents the number of iterations, and
the y-axis corresponds to the reconstruction loss measured by �-
divergence with � ¼ 0:5.

Fig. 12. Classification AUC with different noise levels.

Fig. 13. Classification AUC with varying pattern elasticities.

TABLE 2
Clinical Conditions for Diabetic Patient Encounters

The table shows one of the four event-group level categories G1 and
their respective event-type levels.

TABLE 3
Clinical Conditions for Diabetic Patient Encounters

The table shows the last three out of four event-group level categories
G2, G3, and G4 and their respective event-type levels.



laboratory data to quantify the severity of complications and
to potentially better predict the risk of adverse outcomes.

We performed an exploratory analysis of the diabetic
patient pool by aggregating all the patients from group A, B,
and C to assess how the detected temporal signatures relate

to the severity of diabetic complications. We learned
30 weekly, biweekly, monthly, and quarterly temporal
signatures for all patients using group OSC-NMF. The most
frequent temporal signatures include repeated high Hemoglo-
bin A1C value, repeated cardiac disease related procedure, repeated
lab test (CPT code 233) and co-occurrence of high Hemoglobin
A1C value and high Cholesterol, where cardiac disease is a
common comorbidity of diabetes. Then, we represent each
patient using a 30D BoP vector in the same way as in
Section 4.2.4. Those vectors will be further normalized to
unit norm and the cosine distance between pairwise
normalized BoP vectors will be used as pairwise patient
distances. Finally, we computed a kNN graph to examine
the latent cluster structure of the mined latent patterns by
looking at the Fiedler vector [2], which is the eigenvector
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Fig. 14. A representative data sample with repeating temporal signatures.

Fig. 15. Cross-validation test on the real-world dataset. Shown are mean performance measures with 95 percent confidence intervals. Row 1: Mean
convergence versus the model parameters (rank, window size, sparsity, and different loss functions of the �-divergence). Row 2: Mean Dice
coefficient versus the model parameters. Row 3: Mean Frobenius norm versus the model parameters.

Fig. 16. Performance comparison of the Stochastic Learning Scheme for group OSC-NMF. We use the mean Dice coefficients for Group A as a
function of different ranks (1-10,000) and window sizes (3-30) and their 95 percent confidence intervals. The green curve corresponds to setting
where we update W and H over 100 iterations at each updating step (type II), while the red curve corresponds to the setting where we update W
and H over only one iteration at each updating step (type I).

TABLE 4
Permutation Test for Cross Validation on a Real-World Dataset

Cross-validation results with respect to mean convergence (number of
iterations), the reconstruction error (‘2)-norm, and the Dice coefficient.



corresponding to the second smallest eigenvalue of the
Laplacian matrix of the kNN graph. Different cluster groups
were computed, together with the DCSI score for each
patient. We generated a histogram that captured the patient
distribution in each cluster. We performed visual examina-
tion of the patient distribution based on their severity level to
look for group specific differences.

Fig. 17 shows an example of a four cluster partitioning of
a random subset of our diabetic patient population. One can
infer that the identified patterns in cluster IV mostly occur
in groups of patients with a high DCSI score. Taking a
closer look to cluster IV one can see the low number of
patients with a low severity score (i.e., 1) in contrast to the
overall histogram shape. The majority of patients in
cluster IV exhibit a higher DCSI score and thus have higher
risk of hospitalization and mortality. Clusters II and III
show similar shapes of the overall histogram, indicating
that the learned patterns within these patient groups mainly
consist of common temporal signatures that are not
indicative of disease severity. The longer right tail of the
histogram can be explained by the rarity of patients who
have a very high DCSI score. We note that one can go back
to the individual patterns to investigate what kind of care
the patients received.

6 CONCLUSION

In this paper, we have presented a novel temporal event
matrix representation and learning framework in conjunc-
tion with an in-depth validation on both synthetic and real
world datasets. The framework has wide applicability to a
variety of data and application domains that involve large-
scale longitudinal event data. We have demonstrated that
our proposed framework is able to cope with the double
sparsity problem and that the induced double sparsity
constraint on the �-divergence enables automatic relevance
determination for solving the optimal rank selection problem
via an overcomplete sparse latent factor model. Further, the
framework is able to learn shift invariant high-order latent
event patterns in large-scale data. We empirically showed
that our stochastic optimization scheme converges to a fixed
point and we have demonstrated that our framework can
learn the latent event patterns within a group. Future work
will be devoted to a thorough clinical assessment for visual
interactive knowledge discovery in large electronic health
record databases.
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