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A Parallel Algorithm for Incremental Stereo
Matching on SIMD Machines

Andrew F. Laine and Gruia-Catalin Roman

Abstract—The goal of stereo vision is the recovery of depth informa-
tion from the relative lateral displacements in the positions of objects
within a pair of images taken from slightly differing viewpoints. While
recent stereo matching techniques have yielded improvements in reliabil-
ity and speed, most of these algorithms fall short of the real-time stereo
matching requirements for navigation systems, robot vision, machine
inspection, and other areas of computer vision where rapid response is
critical. Traditionally, matching algorithms have achieved high speeds
through algorithm simplification and /or relied on custom hardware. The
objective of our work has been the development of a robust high-speed
stereo matcher by exploiting parallel algorithms executing on general-
purpose SIMD machines. Our approach is based on several existing
techniques dealing with the classification and evaluation of matches, the
application of ordering constraints, and relaxation-based matching. The
techniques have been integrated and reformulated in terms of parallel
execution on a theoretical SIMD machine. An ideal machine topology
for executing this parallel algorithm is identified through complexity
analysis. Feasibility is demonstrated by implementation on a commer-
cially available SIMD machine, and its performance is compared with
that of the idealized machine. Sample results are shown for real and
synthetic stereo pairs.

I. INTRODUCTION
HE goal of stereo vision is the recovery of depth informa-
tion from the relative lateral displacements in the positions
of objects within a pair of images taken from slightly differing
viewpoints. The recovered depth information may then be used
to reconstruct the three-dimensional structure of a scene.

The typical stereo vision technique assumes the availability of
only two images, by analogy to human binocular vision (stere-
opsis). The usual paradigm for stereo vision algorithms include
the following steps: 1) Features are identified and extracted from
each image view independently. 2) Extracted features are then
matched such that they are projections of the same real-world
coordinate. 3) The disparity between matched features is used,
along with known camera geometry, to compute the depth of the
matched features. While all of the above steps are important, the
fundamental problem in stereo vision is step two, the matching
of corresponding points in the different views. Because of possi-
ble occlusions, not all points may have matches and context
information is used to infer the depth of the unmatched points
[1]. Techniques differ in the strategy they follow with regard to
the generation of a unique and consistent set of matches.

Barnard and Fischler [2] surveyed previous stereo vision
techniques. Most approaches may be classified as area based or
feature based. Area-based techniques rely on the surface conti-
nuity assumption and often involve correlation-based matching.
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Feature-based approaches focus on intensity variations that cor-
respond to physical and geometric properties and intensity
anomalies that may not have any physical relevance. Matching is
often done at the symbolic level [6]. Much effort has been
devoted to the study of feature-based techniques [3], [4], [22],
[23] because they provide better localization and exploit more
contextual information. In this paper, we have focused on fea-
ture-based methods because we are interested in extracting depth
information from urban scenes containing mostly man-made
features, with many surface discontinuities.

Recent techniques have been able to reduce the search space
required to maintain global consistency between matches and
have yielded speed improvements without compromising relia-
bility [9], [27], [29]. However, these algorithms still fall short of
the real-time stereo matching requirements for navigation sys-
tems, robot vision, machine inspection, and other areas of
computer vision where rapid response is critical.

Some matching algorithms have achieved high speeds through
algorithm simplification [11] and/or relied on custom hardware
[10]. Drumheller and Poggio [24] demonstrated the feasibility of
mapping a simple stereo matching algorithm onto a commer-
cially available parallel (SIMD) architecture. While our work
also focuses on the development of parallel algorithms for
real-time stereo matching, we target them for execution on a
general class of SIMD machines. Our approach is based on
several existing techniques dealing with the classification and
evaluation of matches [12], the application of ordering con-
straints [8], [28], and relaxation-based matching [13]. The tech-
niques have been integrated and reformulated in terms of parallel
execution on a theoretical SIMD machine. Complexity analysis
is shown for each step that takes into account parameters of the
machine model and maximum disparity. The algorithm was then
implemented on a commercially available SIMD machine.

Our matching algorithm assumes an epipolar camera model.
Processing is divided into two phases. In phase one, unlikely
matches are first discarded based on a loose geometric constraint
and the ordering of any previous matches. The remaining matches
are then evaluated using criteria based on precomputed similarity
measures (such as direction and intensity on each side of an
edge). Each set of matches, perhaps containing several candidate
matches, is classified based on the aggregate of the previously
evaluated candidate matches. Finally, each set of matches is
sorted and truncated so that it contains no more than three of the
most likely candidates.

Phase two computes initial estimates of the probability of each
possible match based on the individual evaluation of the match
and the classification of its set. These initial estimates are refined
during a relaxation process, by a consistency rule that succes-
sively increases (decreases) the probability of matches if nearby
points have similar (different) disparity. Afterward, accepted
matches are identified and the entire algorithm may be repeated.
At the start of each iteration, previously accepted matches may
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be used to provide a context for the incremental accumulation of
new matches.

In contrast to our approach, Drumheller and Poggio use zero
crossings [5], [25] and sign of convolution as features for
matching. Potential matches are saved if they have the same
zero-crossing values. Next, local support for each candidate pair
is gathered by applying a constraint on disparity continuity. The
support function for computing smoothness is executed in paral-
lel by a three-dimensional convolution operation on a Connec-
tion Machine. Finally, matches are selected based on the amount
of local support gathered for disparity continuity, uniqueness
and an ordering constraint [8].

The machine model on which our parallel algorithm has been
formulated assumes a 2-D array of pipelined processors and a
set of memory arrays that may be read and/or updated during
each machine cycle. Stage processors are capable of performing
four kinds of operations: logical, integer arithmetic, max/min,
and functions of one variable. Model parameters include the
number of stages per pipeline, input and output bandwidth, and
stage interconnection bandwidth.

The performance of the parallel algorithm is constant time and
is directly related to maximum disparity (& pixels) on an ideal-
ized machine having 26 pipelines, four stages per pipeline,
16-bit interconnection links, and an output bus no wider than six
pipelines, (6 X 16) bits. The parallel algorithm has been imple-
mented as part of an interactive environment [11] consisting of a
stereo workstation [7], driven by dual Gould/DeAnza IP-8500’s,
and a MicroVax II host. Performance measurements show that,
on a typical commercial pipelined SIMD machine, the algorithm
accomplishes the match of a 512 x 512 X 8-bit pair of stereo
images with a maximum disparity range (8) of 32 pixels in less
than 30 s.

The remaining sections of this paper are organized as follows.
Section II presents an informal overview of the matching strat-
egy. Section III provides a formal description of the SIMD
machine model. Section IV contains a detailed description of the
parallel algorithm and the resources it requires. Section V
compares the performance analysis for a theoretically ideal
machine and an actual implementation. Sections VI presents
sample results obtained with both real and synthetic stereo pairs.
Finally, a discussion and conclusions are presented in Section
VII.

II. MATCHING STRATEGY

This section presents an overview of the matching process
including all necessary preprocessing steps. We assume an
epipolar camera model (i.e., the horizontal scan lines of both
cameras are parallel to the baseline so that all disparities are
horizontal) and constrain searches for candidate matches to some
predetermined disparity range. Although our method performs
bidirectional matching, for the sake of clarity, we will restrict
our discussion to matching features from the left image to
features in the right image. While the primitive features matched
are edgels (edge pixels), the similarity measures used to com-
pare features are based on the properties of edge segments (i.e.,
chains of edgels). The paragraphs below describe the prepro-
cessing steps, candidate selection criteria, and relaxation method
used to produce a consistent set of matched features.

A. Preprocessing

Edgels with magnitude and direction information are produced
by a Kirsh edge detector [15]. Edge thinning is accomplished
using nonmaxima absorption in the gradient direction [16]. The
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Fig. 1. An intra-scanline ordering constraint.
edge magnitudes are then thresholded and the resulting binary
edgels are thinned [14] producing eight connected edge segments
one pixel wide. Segments are then converted into chains by
deleting junctions (of the forms T, Y, X, +) and linking edgels
such that each edgel has at most two neighbors in the same
chain. Nonhorizontal chains have at most one pixel per scanline,
and horizontal and nearly horizontal chains have at most one
pixel per column. Subchains consisting of edgels all lying on the
same epipolar line are treated for matching purposes as single
points and are represented by the center edgel in the subchain.
Next, for each chain in the image we compute its direction
and the average intensity along its left and right sides. These
properties are used later to discriminate between alternate candi-
dates. The precomputed properties are stored as characteristic
images. A characteristic image associates with each edgel in a
chain a value in the range (1-255) corresponding to some
property of the whole chain to which the edgel belongs. Image
points that do not belong to a chain are assigned the value zero.

B. Candidate Selection

Input to the matcher consists of a set of selected edgels to be
matched, three sets of characteristic images, and (optionally) a
set of previously matched edgels. On each scanline, intervals
between any previously matched edgels are labeled sequentially
to provide a global context in which to embed new matches.
Previously matched edgels are then removed from the set of
selected edgels to avoid the possibility of rematching. An initial
set of possible matches is constructed by pairing each edgel in
the left image with every edgel from the right image which is on
the same epipolar line and within some distance & of the location
of the edgel in the left image. Let us consider one such edgel P
(from the left image) and its associated pool of candidates
{Q1, Q2. ..., Q,}. Some of these candidates may be eliminated
by the ordering constraint imposed by previous matches. For
example, Fig. 1 shows that previously matched edge pairs
(A, A’) and (B, B’) provide a context that makes candidate pair
(P, Q,) unique within disparity range . Candidate Q, is elimi-
nated from consideration although it lies within & of P.

Candidates are also eliminated from the pool by applying an
orientation constraint. Given the candidate pair (P, Q,), if the
absolute difference in the orientations of corresponding chains
Cp and Cy, is greater than some threshold (e.g., 45 degrees),
then candidate Q, is eliminated.

The remaining candidates within the pool are sorted by evalu-
ating the degree of similarity between the precomputed proper-
ties of corresponding chains. Chains Cp and Co;. associated
with point P and candidate Q;, respectively, are considered
similar if the absolute difference between their property values is
less than some threshold parameter. The evaluation process
results in partitioning the pool of candidates into three disjoint
sets. Considering again candidate pair (P, Q,), if the corre-
sponding chains Cp, Cy; are similar with respect to orientation
and average intensity along the left and right sides, then candi-
date Q; is considered credible and is assigned to the first
partition. If the corresponding chains Cp and Co; are similar in
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orientation, but dissimilar only in left-side or right-side average
intensity, then candidate Q, is seen as less credible and is
assigned to the second partition. All other candidates in the pool
are assigned to the third partition and are treated as unreliable.

Next, the pool itself is classified based on the aggregate of its
previously evaluated candidates. First, the pool may have a
single (unique) candidate belonging to the first or second parti-
tion. Alternatively, the pool may contain a single candidate
assigned to the first or second partition that is discernibly better
than all other candidates within the pool. Finally, the pool may
contain a single candidate belonging to the third partition or may
have multiple candidates belonging to the first or second parti-
tions. This classification information is used later to assign initial
estimates of probabilities of candidates for relaxation.

Following the classification process, each pool is truncated so
that it contains no more than three of the most promising
candidates. Since more than one promising candidate are kept,
the opportunity to reevaluate their credibility and to correct
some false matches remains. We do this by employing a relax-
ation method that corrects most local errors [21] by relying on
two types of continuity constraints.

C. Relaxation

Initial probabilities are assigned to each candidate in the pool
using a simple weighting function that takes into account the
candidate’s evaluation and the classification of its pool. These
initial estimates are iteratively refined by applying a consistency
rule to all the candidates within the pool, updating the probabil-
ity of each candidate, and normalizing the new probability
estimates. The relaxation follows the procedure of Bernard [13]
except that our consistency rule has been formulated to apply
constraints on figural continuity as well as disparity continu-
ity. Candidates that are continuously connected along the same
figural contour are allowed to support each other in a coopera-
tive sense. This is accomplished by constraining the region of
support so that only neighbors connected above and below a
candidate are allowed to contribute. Such connected neighbors
with disparity differences of no more than one pixel are consid-
ered consistent. After a few iterations, consistent candidates
increase in probability. Conversely, inconsistent candidates hav-
ing no connected neighbors satisfying the disparity constraint,
receive little support, and decrease in probability.

Although the relaxation procedure may be repeated until the
network reaches steady state, in practice, only small changes in
normalized probabilities are observed after a few iterations. For
this reason, matches with probabilities greater than some empiri-
cally selected threshold (e.g., 0.7) are accepted. When used in
an incremental paradigm, accepted matches are assigned a prob-
ability of 1.0, and saved. In subsequent iterations, the previous
matches provide global support for any new locally consistent
matches. Threshold values for differences in orientation, prop-
erty values, and probability were treated as ‘‘universal’’ con-
stants for all the image pairs tested in our investigation.

The same matching process is also applied to matching fea-
tures in the right image with features in the left image, and a
final set of matches is produced by selecting those pairs of edgels
that survived both right-to-left and left-to-right matching pro-
cesses.

III. MACHINE MODEL

The method given above has been cast as a parallel algorithm
executing on a theoretical pipelined SIMD machine. As shown
in Fig. 2, the machine consists of a two-dimensional array of
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Fig. 2. Machine model of a parallel synchronous pipelined network.

processors and a set of dual ported memories. The machine is
organized as a system of g pipelines, each consisting of m
stages. Stages are linked to form a rectangular network of
horizontal pipelines, with no feedback between stages. Data may
flow from processor (i, j), the jth stage of pipeline i, to
processors (i, j+ 1), (i+ 1,j+ 1), or (i—1,j+ 1). Con-
versely, processor (i, j) may accept inputs from processors
(4, j—-1,@G+1,j-1),and (i — 1, j — 1). Input data, sup-
plied from as many as w memories (w < 2gq) is processed and
delivered to as many as r memories (r < g) within a single
machine cycle. Each memory may be connected to several
pipeline inputs and read simultaneously by the first stage of each
pipeline. However, each memory may be connected to one
pipeline output at most. A pipeline may deliver its data to more
than one memory within the same machine cycle.

The notion of a machine cycle characterizes the ‘‘coarse
grain’’ clock speed of a parallel synchronous pipelined network.
In this sense, a machine cycle is the maximum time required to
process all the pixels from an image memory through each stage
of the longest pipeline. For purposes of analysis, machine cycles
are specified in the context of the model parameters image size
(i, J), pipeline length (m), and interconnection path width (g).
For example, consider a machine operating at 30 machine cycles
per second, processing image memories 512 X 512 in size, with
four stages per pipeline and 8-bit-wide interconnection links. To
process all 242 144 pixels within 1/30 s (1 machine cycle at 30
Hz), a pipeline must process a single pixel within 1.28 x 10~
s. Thus, for a pipeline consisting of four stages, the clock cycle
of each stage can be no longer than 32 ns on the average.

For b-bit processors, all links (input, stage, output) are b bits
wide, the input bus has a width less than or equal to 2gb bits
and the output bus has a width less than or equal to gb bits.
Internal processing within each stage includes the following
simple operations: logical operations (A,V, —, ®), integer
arithmetic (+, — , X , min, max), accumulation, and functions
of one variable. Each processor may have no more than two
forward input links' and one output link, active during any one
machine cycle. We adopt the notation A" ™! to denote a group
of contiguous memories 1 through N. Each distinct memory
A" may consist of one or more contiguous bit-planes, depending
on the data type stored. Thus, A identifies the kth memory of
group A. When the name of the memory group A stands alone,
it represents the complete set of contiguous memories [1: N].

For purposes of making more obvious the mapping of the

'However, in practice, lateral inputs for bit-sliced aritbmetic and carry
operations are allowed when necessary.
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algorithmic steps to the architecture, operations along the stages
of each pipeline are contained between the delimiters *‘(”” and
¢“)”’, concurrent processing of more than one pipeline is speci-
fied by the symbol ||, and memory coordinates ranging over an
entire image memory are preceded by the symbol [J. For
example, suppose memories 4% and B contain Boolean data, 1
bit deep; then the statement below specifies the following com-
putation (see Fig. 2):

lk:1=k=N:=(0O4, j: A%, J)
= (A*(i, )V B(i + k, j))
~-B(i+k,j)) .

Each (distinct) A* is computed over a subnetwork of two
pipelines, each having two stages, executing in parallel and
synchronously. The first stage of one pipeline forms the logical
union of memories A* and B, with memory B shifted k pixels
along the horizontal axis. The result is passed to the second
stage of an adjacent pipeline where B is subtracted from the
union, and its output delivered back to memory A¥. We need
two pipelines because each stage may process no more than two
inputs per operation. One way of linking the processors needed
to carry out this computation is shown above in Fig. 2 for the
kth network. The complete computation requires N identical
pipelined subnetworks executing in parallel. For a real machine
with g pipelines, where ¢ < 2 N, the operation requires [2 N/ g}
passes. Memory B(i + k) is read by the first stages of each
distinct subnetwork simultaneously. All the pixels within a mem-
ory (04, j) are processed uniformly within each pipeline in a
single machine cycle. Thus, all A*’s are updated in parallel in
one machine cycle. In the next section, we use this notation to
present a parallel version of the matching algorithm described
earlier.

IV. ALGORITHM

In describing the algorithm, we will use L and R to refer to
the sets of edgels belonging to chains selected from the left and
right images. M, and My will refer to any edgels previously
matched. All these sets are encoded as binary two-dimensional
arrays with the index ranging over the image space. L(i, j), for
instance, assumes the value ‘1’ if the position (/, j) contains an
edgel belonging to a chain selected from the left image and the
value ‘0"’ otherwise. As described earlier, the first phase of the
matching algorithm identifies the three most promising candi-
dates within each match pool. The second phase applies a
relaxation method to identify the most consistent of the three
candidates.

A. Phase 1

For the sake of clarity, we restrict our discussion to matching
features from the left image to features in the right image.
Corresponding right-based matching may be performed in paral-

The notation serves only to help the reader in understanding the parallel
algorithm presented in this paper, and is not intended to be a complete
specification language for parallel synchronous computations in general.
Each statement consists of a quantified expression of the form (operator
variables: range:: expression). Allowed operators are |, v, O, +, —, X,
V, A, min, and max. An expression may be an assignment, a conditional
assignment, or another quantified expression. A statement is evaluated by
applying an operator to the set of expressions obtained by instantiation
over the range of bound variables. If the range is obvious, it is omitted. For
example, (14, j = Vij: x min < i < x max, y min < j < y max.
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lel and is symmetric with respect to the equations and steps
below. The first phase is described in nine steps.

Step 0— Label Intervals Between Previous Matches: The
set of previously matched edgel pairs is a bijection. Therefore,
on each epipolar line, the intervals between matched edgels
match pairwise. In this step, we label the intervals between
already matched edgels; we assign identical labels to all pixels
within a given interval. The labels are used later to enforce an
ordering constraint. The label sets are stored in memories B,
and Bg.

Oi, j::By(i,j)= ( + mod (2° = 1)y, x: (0 < y =)

(12)

Ao < x=i):My(x,y))
Oi, j::Bg(i, j):= ( + mod (2° - 1)y, x: (0 <y = j)
A0 < x =i)::Mg(x,y)) (1b)

B, (i, j) is computed by counting the number of previously
matched edgels from M, (0, 0) to M, (i, j). The result is that all
pixels within matching intervals have the same label. All the
labels stored in B; and By are computed in parallel in one
machine cycle. The range of label values is reduced to save
storage. Memories B; and By are no more than b bits wide,
such that (2% — 1) is at least the length of a scanline. Thus label
values remain unique within each scanline.

Step 1 — Eliminate Previous Matches: Any previous matches
(stored in memories M; and Mp) are eliminated from the set of
selected edgels (L and R). Memories M, and My supply input
data for both pipelines simultaneously, allowing L and R to be
modified in parallel.

O, e (L )= (L3 ) VML ) - M(is ) (2a)

Qi ju:(R(i, j)= (R(i, J) VMg (i, J)) — Mg(i, j)).
(2b)

Step 2 — Build Disparity Map: For each edgel (i, j) in the
left image and disparity & in the range O to §, if an edgel exists
in the right image, a bit is set in an image memory CPJ. For
each match pool associated with an edgel in L, candidates from
R having disparity & are identified by computing the conjunc-
tion of input edgel sets L and R, where R has been shifted k
pixels along the epipolar axis. Shifts in k that index outside the
sets L and R are ignored.

lk:0 < k<b:(0i, j:CPL(i, J)

=L(i, )AR((i + k)j)) (3)
All candidates are identified in a single machine cycle by a stack
of & independent pipelines executing in parallel.

Step 3 — Apply Ordering Constraint: In this step, candi-
dates are eliminated from further consideration if they do not fall
within matching intervals, i.e., if they do not have the same
label number. Candidates not violating the ordering constraint
simply pass through and are returned to memory CP; for
further processing.

lk:0< k< 5::(Di,j::CPf(i,j)
= if (By(i, ) = Be((i + k). j) = 0)

then CPf(i, j) else 0) . (4)
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Candidates for all § disparities, each stored in a distinct memory
CP}, are processed in parallel by & pipelined networks. Thus,
candidates of all disparities are tested in one machine cycle.

Step 4 — Apply Orientation Constraint: Ly and Ry are
characteristic images containing the precomputed values for
orientation of chains belonging to the left and right edgel sets (L
and R), respectively. The absolute difference between the orien-
tations of corresponding chains belonging to a candidate are
compared to a preselected threshold e. For candidates of dispar-
ity k, property values in the right characteristic image are found
by shifting memory Ry k pixels along the epipolar axis.
Candidates of all & disparities are compared in parallel. If for
some candidate CP,f(i, J), the difference is less than some
threshold (e.g., € = 30 degrees), the candidate remains viable
and is stored in CPL"( i, J). Otherwise, it is discarded.

I h:0 <k <é:(0i, j::CP{(i, j)
= if (lLDIR(ia J)
~Ro((i + k), J)| <)
then CP/ (i, j) else 0) . (5)

The computational structure is similar to the ordering constraint
described above and requires only a single machine cycle to
process candidates at all § disparities.

Step 5 — Count Candidates within Each Pool: For each
candidate pool CP,l 1 °(i, J), the surviving candidates are counted
and the total sum is stored in memory COUNT, . Candidates at
all & possible disparities are tallied in parallel by one or more
function tables (f_,,) that count thé number of bits set within
each CP,(i, j) pool. Since it is only possible to count /b bits®
at a time, if [6/b] = 1, memories CP':? are partitioned into
[8/b] disjoint groups of contiguous bitplanes. The kth distinct
group is addressed below as memory CP!¥!. The sums for all
candidate pools are computed in a single machine cycle.

{Oi, j::COUNT, (i, j)

+k:l1=k=< [%]::fcm(cpy‘l(i,j))) >.4 (6)

Step 6 — Identify Candidates Satisfying at Least One Simi-
larity Constraint: The three parallel computations below inject
the candidates of CP, into three similarity groups, Spg, S; s,
and Sgg. L;g, R; g and Lyg, Ry are pairs of characteristic
images for the average intensity along the left side and right side
of chains within edge images L and R, respectively. After the
completion of one machine cycle, memory Sp contains all the
candidates whose corresponding chains are similar in orientation
[see (7a)]. For example, consider a candidate identified by the
bit set in memory CPLk( i, j); the candidate (bit) will be copied
into memory SXi(i, j) if its corresponding property values

3The parameter b is the number of bits per interconnection link in the
machine model described earlier.

*In this case, our notation fails to explicitly specify the linkage between
the stages of the pipes used to accomplish the (binary) addition operation.
However, for N inputs, the operation requires at most [(N /2) +1 /2]
stages per pipe.
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Lpr(i, j) and RpR(i + k, j) differ (absolutely) by less than
max.dir.

lk:0 <k <o:(0i, j::S§r(is J)
= if (| Lpw(. /)
—Rpr((i + k),j)‘ < max.dir)
then CPf(i, j) else 0) .

(7a)

Likewise, memories S;5 and Spg contain candidates whose
corresponding chains are similar in left-sided and right-sided
intensity, respectively. Candidates may be included in more than
one S group.

lk:0< k< o8:(0i, j::SEs(i, J)
= if (| Ls(i, J)
R s((i + k), j)| < max.is)
then CPf(i, j) else 0)

lk:0 <k <bd::(i,j::Sks(i,))
= if (| Lgs(i, J)
—Rps((i + k), j)| < max.rs)
then CPf (i, j) else 0) .

(7b)

(7¢)

All three parallel computations above are similar to Step 4 in
structure. Candidates at all é disparities are identified in parallel
in one machine cycle. The three similarity groups Spg, S;s,
and Sp¢ are used in the next step to evaluate all candidates in
parallel.

Step 7 — Evaluate Each Candidate within a Pool: Each
candidate within a pool (i, j) is assigned to one of three disjoint
partitions based on ‘‘goodness’’ of match. The highest quality
candidates are assigned to partition 7', and are identified by the
conjunction of candidates belonging to similarity groups Spg,
S5, and Sz [see (8a)]. The conjunction of candidates of all &
disparities is computed in parallel.

(O, j=T\°(i, Jj)
= (S (i, ) ASLP(L 7)) ASKS (i, J)) . (8a)

Candidates are assigned to partition T, by first computing the
disjunction of candidates in similarity groups Spg and S;g.
Candidates of the union are then intersected with candidates of
similarity group Spz. To keep partitions T, and T disjoint,
candidates must not have already been assigned to partition T
[see (8b)].

<Di,j::T2’:5(i,j)
i= (Shi(7. ) A (SR ) v k(i) |
AT, j)> . (8b)

Candidates assigned to the third partition, T, are simply the
remaining candidates that have not been assigned to either
partition T, or T,.

(04, j=T3%(i, j)
= CP}(i, j) ® (Shs(i, J) v Sk(i, ). (8¢)
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COUNTy, and COUNTy, are computed similarly to Step 5
above and are used in the next step to classify each match pool
in parallel.

<Di, J::COUNT,, (i, )
1

=+ki1=ks= 5 ::fcoum(T{k](i,j))) (84d)
<Di,j::COUNTT2(i,j)

= (+k: l<ks= % ::fcoum(Tz““(i,j))) > (8e)

Step 8 — Classify Each Pool into One of Four Disjoint
Sets: In each classification operation below, all pools are pro-
cessed in parallel. A pool at position (i, j) having exactly one
candidate at some disparity k belonging to partition 7, is
identified in memory CLASS,;, (Unique of type 1) at the same
position [see (9a)]. Similarly, pools in image memory CLASS,
have a unique candidate belonging to partition T,,. The pools
identified in image memory CLASSjp, have more than one
candidate, but exactly one of them belongs to partition T,
making it discernibly berfer than the rest [see (9c)]. Similarly,
the pools of CLASS 5, have more than one candidate, but have
exactly one candidate belonging to T, and exactly zero candi-
dates belonging to partition 7; [see (9d)].

(O, j::CLASS (i, j))
= if (COUNTy,(i, j) = 1 ACOUNT,(i, j) = 1)
(then 1 else 0)
(i, j::CLASS y, (i) J))
= if (COUNT, (i, j) = 1 ACOUNT, (i, j) = 1)
(%)

(a)

(then 1 else 0)

(O, j::CLASS g (i, j))
= if (COUNTy,(i, j) = 1 ACOUNT, (i, j) > 1)
(then 1 else 0)

(O, j::CLASS g, (i, j))
== if (COUNT,(i, j) = 0) A (COUNTL,(i, j) = 1)
A{(COUNT,(i, j) > 1) then 1 else 0) .

(9¢)

(9d)

The four classes above may be computed in a single machine
cycle by four independent pipelines executing in parallel. The
four classes are consolidated into a single memory C by the
disjunction of all classes. Each distinct function f, outputs a
unique value labeling CLASS, pools.

(Oi, j=C(i, j)
== (ve: ce {U1, U2, B1, B2}::f,(CLASS,))) (%)

B. Phase 2

The next phase of the computation consists of a relaxation
method that employs constraints on figural continuity [19], [20]
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and disparity continuity to correct most local errors. Below,
phase two is described in six steps.

Step 9 — Identify the Three Most Likely Candidates from
Each Match Pool: As described earlier in step seven we parti-
tioned all candidates into one of three disjoint sets, T}, T, and
T;. In the equation below, the variable ¢ ranges over the number
Typ of candidate types; so in our method, Typ = 3. In order to
identify the most promising candidates first, binding of the
variable ¢ proceeds from 1 (the most promising candidates are
of type T)) to 3 (the least promising candidates are of type 7).
The variable n ranges over the number N of (best) candidates
saved. In our method, we save the three most likely candidates
within each pool; so N = 3. For each #, as many as N distinct
candidates are identified in parallel. At the completion of this
step memories D"(i, j) and W"(i, j) will respectively contain
disparity and weight values of the nth candidate of pool (i, j).
Initially all N disparity memories (D") and weight memories
(W™ are cleared. If for some type ¢ there exists a candidate
within pool (i, j) of T, (and D”(i, j) is empty) then memories
D"(i, jy and W"(i, j) are assigned disparity and weight values
of the candidate, respectively.

t=1---3:|n:1l=n=< N::(Di,j::D"(i,j), wn(i, j)
=if ((D"(i.j) = 0) A (fae(T7 (1, J)) #0))

then fd’i’sparity(Tllza(i’ j))’f»:/eight(c(iv ./))

else D"(i, j), W"(i, j)). (10)

Let us examine how all N pairs of disparity and weight
values are computed in parallel for each candidate type .
Consider a pool (i, j). The function ft;’lx takes as input all the
candidates of pool (i, j) stored in memory 7, and returns the
value ““1”’ if there exists at least n candidates in the pool.
Similarly, the function fg ... takes as input all the candidates
of pool (/, j) and assigns a disparity value to (exactly) the nth
candidate of each pool, relative to the (bit-plane) index [1: 8] of
memory 7,. For example, if the nth candidate of a pool is
stored in memory 7, then it (the nth candidate) is assigned a
relative disparity value ‘7. The function f,.y, assigns a
weight to each admitted candidate by a table lookup of precom-
puted values.’ If during a subsequent iteration ¢ there exists
another candidate within the same (i, j) pool and disparity
memory D" contains a previous entry for pool (i, j), the
disparity entry and weight value are not effected by the pass.
Similarly, if there is no candidate within pool T,(i, j) and
disparity D"(i, j) is empty, memories D" and W7" are left
unchanged. The best candidates of type # (at any of & possible
disparities) are identified in parallel. After Typ machine cycles,
memory groups D'*» and W!''¥ contain the disparities and

SEach value is a measured sum which takes into account the type of
candidate and the classification of its pool. Weights range from 0.0 (the least
promising candidates) to 1.0 (the most promising candidates). There are Typ
distinct f,c;gn functions precomputed as follows:

t,cite{l,2,4} Ace{1,2,8}:: fiegn(c):=0.6(1/c) + 0.4(1/1).

Values of the variable ¢ are associated with candidate types 1, 2, and 3,
respectively. Values of the variable ¢ are associated with unique classes
(U1, U2), classes containing a discernibly betfer candidate (B1, B2), and
candidates belonging other pools (pools with a single type 3 candidate or
multiple candidates of the same type), respectively.
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associated weights for the N most likely candidates, respec-
tively. The weight of each candidate is used in the next step to
compute probability values for all N candidates of each pool in
parallel.

Step 10 — Calculate the Initial Probability of Each Candi-
date in Every Pool: This computation is accomplished in three
steps. First, the maximum weight of the N candidates within
each pool is identified in parallel. Image memory /* contains an
initial estimate of the probability that every pool (i, j) is match-
able.

(O, ji:#(i, )
=(1.0 - (max n: 1 = n < N=W"(i, j)))). (11a)

Next, the sum of all N candidates within each pool (i, j) is
computed and stored in S(i, j).

(O, j:8(i, j)= (+n: 1 = n < N2W"(i, j))). (11b)

Each candidate weight of pool (i, j) is converted into an initial
probability estimate through normalization. The function
Sreciprocal 18 @ precomputed table that outputs the inverse of its
input value. We use fixed point arithmetic for all analytic
computations.® Fixed point division is accomplished by comput-
ing the reciprocal (at one stage) and then multiplying (at a
subsequent stage). We can avoid costly real division without the
loss of precision because we can determine the domain of input
values for any pool size N. For example, since each candidate
within a given pool is assigned a measured weight less than or
equal to 1.0, the total sum of all candidates is less than or equal
to N, and the range of S(i, j) is constrained to the interval
[0: N1.

n: 1 <n<N:(0i, j:P(i, j))
= (W"(i,J) X freciproca(S(is J)))

X((l—l*(i,j))). (11c)
All N candidates of every pool are normalized in parallel, at a
cost of one machine cycle. At the end of the cycle, the memories
PN contain the normalized probability values for all N candi-
dates of every pool. In the next step, these normalized probabili-
ties are used to determine how consistent each candidate is with
its neighbors.

Step 11 — Compute Local Support for Each Candidate:
The local support of each candidate is computed by summing the
probability values of connected neighbors. Only connected
neighbors (above or below) with disparity differences less than
one pixel are allowed to contribute support. The total support for
the nth candidate of pool (i, j) is stored in memory Q”"(i, j).
The variables / and k scroll memories D™ and P™ in phase
with respect to pool (i, j) so that the six connected neighbors
(three above and three below) of D”(i, j) are allowed to
contribute support for candidate D"(i, j), provided they are
consistent with candidate D"(i, j).

n:l<n=N:(0i,j:Q"(i,))
= (+k,l,m:ke{-1,0,1}
NMe{-1,1}Al<m=<N=:
(Veomsisen ((D"(i, J) = D™(i + ks j + 1))
XP™(i + k, j+1)))). (12)

%In practice, we found 16 bits of precision yielded sufficient accuracy for
all numerical computations of this algorithm.
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The function f, ggen Teturns the value *“1°° if the (absolute)
difference between disparity D”(i, j) and some connected
neighbor disparity D™(i + k, j + [) is less than or equal to
one. Otherwise the function returns the value “‘0.”” The output
of the function is multiplied by the probability value of the same
connected neighbor P™(i + k, j + [). There are two levels of
parallelism taking place. The probabilities of all six connected
neighbors are allowed to contribute to the sum of Q"(i, j) in
parallel. The support available from all the neighbors of neigh-
borhood m is gathered simultaneously for all N candidates in
each pool. Any previous matches (assigned probability 1.0)
provide a network of global support for any new locally consis-
tent matches. The operation is repeated N times (over the
variable n) to allow each candidate to obtain support from N
distinct neighborhoods. In the next step, the quantity of support
stored in memory Q"(i, ) for each candidate is used to modify
(increase or decrease) in parallel the probability values stored in
memory P”(i, j).

Step 12— Update the Probability of Each Candidate: In
the computation below, « and 3 are parameters that influence
the convergence characteristics of the updating rule. Briefly, o
and B can be interpreted as damping and gain parameters. The
value « delays the suppression of unlikely candidates, and 8
determines the rate of convergence. (A complete discussion of
the updating rules in relaxation labeling algorithms is presented
in Rosenfeld et al. [17].) In our experiments, o = 0.3 and

B =3.
|n:1=<n sN::(Di,j::ﬁ”(i,j):=<<P"(i,j) X a)

+{(P"(i,j) x B) x @"(i,4)))). (13)

For all N candidates, the probabilities stored in each pool of P”"
are multiplied by constants « and 3 in parallel. Image memories
Q' Nand P':¥, containing the quantity of local support and the
previous probability of each candidate, are read simultaneously.
The resulting modified probability estimates for all N candidates
of each pool are summed in parallel and stored in memories
P N(i, j). The next two steps normalize these updated proba-
bility estimates in parallel.

Step 13— Compute the Sum of Probability Estimates for
Candidates within Each Pool: The sum of the updated proba-
bilities for all N candidates within each pool is computed in
parallel and stored in S(Z, j).

(Oi, ju8(i, j)={(+n:1 = n = NzP"(i, j))). (14)

Step 14 — Normalize Probability Estimates P and I*: Fi-
nally, the probability estimates are normalized in parallel for all
N candidates within each pool (i, j). This step is similar to Step
1 except that memory /* is updated in parallel through an
independent pipeline. The final normalized probabilities are
stored in memories P'* V.

In:1<n<N:(Oi, juP(i, j), I¥(i, j)= P"(i, j)
Xfrecipmcal(s(i’ j))’ l*(i’ -])
Xfreciprocal(s(i’j))> : (15)

In the next section, we present generalized expressions for the
time complexity of each step described above, and use these
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TABLE 1
PHASE | —IDENTIFICATION
COMPLEXITY ANALYSIS FOR DISPARITY &

Minimum Number of Cycles

Machine Model Requirements
Step Number of Machine Cycles Value (b,m,q,r)
1 2
0) Label E P I (b,2,1,1)
2 2
1) Eliminate bl B 1 (1,2,2,1)
q m
. . é 1
2) Disparity E o 1 (1,1,8,98)
28 3
3) Order —|{= 1 (b,3,2,6,8)
q m
26 3
4) Orientation — = i (b,3,2,6,6)
q m
[ (8/6) +1 ]
5) Global Count 2 ) (b, 1,11
m
o 28 3
6) Similarity 2 " 1 (b,3,25,6)
H
b 3
3 AN 8
7) Evaluate q m 1 b,3,3 ; ,6
[ (8/b) +1 ]
2
Count Types 1 (b, 1,1, 1)
m
, 91 [5
8) Classify P p 1 (6,5,9,1)

expressions to compare the optimal performance with that of a
real machine.

V. PERFORMANCE ANALYSIS

In this section we show the cost (number of machine cycles)
for each step by formulas that take into account parameters of
the machine mibdel and maximum disparity. Each formula was
derived by analyzing the network of pipelines needed to accom-
plish each step in minimum time. Column three of Tables I and
II shows the optimal performance (minimum time) of each step
obtained when ideal machine model requirements are satisfied.

All of the steps of Phase 1 can be executed in constant time
for ‘any disparity range 8, provided the network has at least 26
pipelines (parameter g). Similarly, most of the steps of Phase 2
can be executed in constant time with the exception of Steps 8
(Select) and 10 (Support). The run time of Step 8 is directly
related to the number of distinct candidate types, Typ, while the
run time of Step 10 is exactly N, the number of best candidates
saved from each pool. Both parameters are typically small
numbers. Assuming Typ = 3 and N = 3, the minimum compu-
tation time is achievable by an idealized machine having the

following configuration:
Number of pipelines (g) = 26
Number of stages (m) = 21
Number of bits per link (5) = 16
Number of outputs (r) = 6

The cost of the parallel algorithm is a function of the disparity
parameter ¢ alone. Therefore, parallel architectures that can
accommodate a large input bandwidth (gq) are best suited for
high-speed stereo matching applications. On the average, the
algorithm required only four stages to achieve optimal time.’
This suggests that the topology of such a pipelined network
should consist of a large number of pipelines with few stages.

An ideal machine, operating at 60 Hz, can accomplish stereo
matching in 1.5 s, using 88 machine cycles (see Table III).
However, typical commercial (general-purpose) image process-
ing machines® often have fewer resources and run at slower

7Only Steps 8 and 11 required more stages (5 and 21, respectively).

8Machines in current production by Pixar, Vicon, Comptel, 72S, and
Sun/TACC.
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TABLE II
PHASE 2—RELAXATION!
COMPLEXITY ANALYSIS FOR DISPARITY &
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Minimum Number of Cycles

Machine Model Requirements

Step Number of Machine Cycles Value (b,m,q,r)
&
2N 3 +2 4 ,
9) Select q m Typ (max(p, d),4,2N(h] + 2),2N)

[q + 1] 1
10) Initialize |(N_ n+ ll . 2
q m
(Sum) [N7 1]
(Probability) [ _N ]
q
+1
12N 2+ [q
11) Support
N 4
12) Update [__l hd
q m
Ex
13) Sum (N— H+1 . 2
q m

14) Normalize

222

1 Al
P

1
]+1,N,1)
[q+l

ez

1 (p,4,3N, N)

N (max(p, d),2 + {ﬂ],IZN,N)
1 (p,4,3N, N)
SINHEIRY

1 (P.2,2N+2,N+1)

'N is the number of candidate pairs, Typ is the number of distinct candidate types, p is number of bits used to store probability
values, and d is number of bits used to store disparity offset values.

TABLE 1II
RUN TiME PERFORMANCE—COMPARATIVE SUMMARY
(Results below are computed for 6 = 8, N = 3 and Typ = 3)

Ideal Machine Typical Machine Implementation
Machine Cycles for Machine Cycles for

Phase (16, 21, 36, 8) Total 8,4,4,9) Total Machine Cycles Total
Identification | 1+1+14+1+1+14+3 +5+1 16 1+14+24+444+14+1245+6 36 1+1+3+8+8+1+24+5+48 59
Relaxation 3434+94+1+1+1 18 14+5+54+3+1+3 80 9+8+54+9+1+5 86
Match
Total Cycles 16 + (r- 18) 37 + (r- 80) 60 + (r - 86)
"Time
(seconds) 88/60 = 1.5s 357/30 = 11.9s 404/30 = 13.5s

'Calculations are based on typical commercial machines operating at 30 Hz (1/30 s machine cycle), and a high-performance machine

operating at 60 Hz. In our experiments, the relaxation network required at most four iterations (7 = 4) to stabilize.

clock speeds. Suppose a typical general-purpose machine has
four pipelines, four stages per pipeline, and 8-bit interconnection
links. We could expect to accomplish stereo matching on such a
machine in about 11.9 s, using 357 cycles, operating at 30 Hz.
As shown in Table III, there exists a fourfold difference between
the number of cycles needed on a theoretical machine and the
number of cycles needed for most practical machines. Depend-
ing on the requirements of the application, this difference may
be tolerable for high-speed stereo matching. If it is determined

that the performance of this algorithm running on some general-
purpose machine is not fast enough, this analysis can help
evaluate and identify alternative machines that may better exploit
the parallelism of this algorithm. As advances in hardware
technology continue to reduce machine cycle times, and highly
interconnected multicomputers with flexible topologies are pro-
duced (at lower costs), real-time performance of this parallel
algorithm will almost certainly be achievable.

We implemented each step of the algorithm on a Gould/
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Fig. 3. Stereo views rendered from a synthetic model of an urban scene.
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(All matched edgels are highlighted.)

TABLE IV
SAMPLE RESULTS OF A PARALLEL IMPLEMENTATION
(For maximum & = 32 pixels, 1/30 s machine cycle.)

Total | Machine
Number of Number of Percent | Cost Time

Image Steps | Relaxation Steps | Matched | (Cycles) | (Seconds)
Synthetic 2 4 81 1616 53.9s
Real 4 2 79 1856 61.9s

DeAnza IP-8500 image processor, equipped with a Digital Video
Processor (DVP). The architecture of the DVP consists of a
network of four pipelines, with limited interconnection links.
The input bus width of the network is 8 x 10 bits (b X 2g).
The output bus width is 4 X 8 bits (7 X b). There are seven
distinct stages within each pipeline. The stages of the DVP are
not uniform and could not perform the complete set of opera-
tions described for the stages of our idealized machine. On
account of this mismatch, it was often necessary to adjust the
algorithm to accommodate differences in functionality and other
considerations (idiosyncrasies) of the DVP architecture. For
example, in updating the probability of each candidate in Step
11, it was not possible to delay the necessary multiplication
operations beyond the first stage of each pipeline. Therefore,
each multiplication required a separate pass (machine cycle).
(Sixteen-bit precision was accomplished by bit-slicing and cas-
cading four 8-bit stages to form two 16-bit pipelines.) Stereo
matching was achieved in 13.5 s using 404 DVP cycles. The
actual execution time (wall clock) is about 23 s due to the hidden
cost of down loading at each step pipeline configuration instruc-
tions and stage opcodes from a Micro Vax II host machine. In
general, the disparity in performance between the ideal machine
and the implementation machine can principally be attributed to
the limited (specialized) functionality of the stages, lack of
flexible (dynamic) interconnection links, and limited (insuffi-
cient) input bandwidth.

With respect to memory dynamics and utilization, Phase 1,
Step 7, the evaluation of candidate pairs, required the most
amount of memory overall: 388 bit-planes. On the DeAnza, this
mapped onto 49 8-bit image tiles or 13 Mbytes of image
memory. In Phase 2, Step 11 needed 306 bit-planes to compute
the local support for each candidate pair. This step utilized 39
image tiles or 10 Mbytes of image memory.

VI. SAMPLE RESULTS

The parallel implementation described earlier was applied to
both synthetic and real imagery. The results shown in this
section are representative of the sample of imagery used
throughout out experiments and development. The real imagery
was obtained by extracting selected regions from digitized stereo
aerial photographs® of the Washington, DC, area. The selected
scene contains typical urban features such as complex building
structures, roadways, and natural features. A synthetic model of
the same aerial scene, consisting of similar buildings and road-
ways, was built using the MOVIE.BYU geometric modeler [18].
Stereo views of the model were rendered to approximate the
perspectives of the stereo aerial photographs. For purposes of
matching, the stereo pairs for both synthetic and real imagery
consisted of 512 x 512, 8-bit grey-scaled pixels. All the pixels
within each 512 x 512 image memory were processed in paral-
lel during each machine cycle.

Matched edgels for the synthetic stereo pair are shown in Fig.
3. The maximum search range of disparities was 32 pixels while
the actual range of disparities was less than 24 pixels. Matching
was accomplished in two iterations. The first iteration accurately
matched 5535 edgels, while the next pass recovered an addi-
tional 802 matches. Experimentally we have observed that, for
most complex scenes, only four iterations are needed for the
relaxation network to settle to a reasonably stable state. The
algorithm matched 6337 edgels, i.e., 81% of the edge pixels in
the left image, at a cost of 808 DVP machine cycles (1/30 s
machine cycle).

For the stereo photographs shown in Fig. 4, the maximum
search range of disparities was 32 pixels while the actual range
of disparities was less than 28 pixels. Matching was accom-
plished in four iterations. At each iteration, only edgels within a
distinct range of orientation were considered for matching. In
this case, the parallel matcher was embedded in an interactive
stereo matching paradigm called Complexity Control. This
methodology was described previously in Roman ef al. [11]. In

The image was provided by Engineering Topographic Laboratories
(ETL), Fort Belvoir, VA. The original black and white stereo photographs
were digitized at a resolution of 0.6 m pixel. However, the stereo pair used
in our experiments was reduced to 300 X 300 pixels to limit the search space
within a range of 32 pixels. This was necessary due to the limited memory
on our implementation machine.
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this experiment, edges were selected interactively at each step
based on chain orientation and presented to the parallel matcher
to accomplish incremental matching. Edgels were partitioned
into four distinct ranges of chain orientation such that edgels of
chains running along a mostly horizontal direction were pre-
sented to the matcher in one step, while edgels oriented along
the vertical, left diagonal, and right diagonal were presented in
distinct subsequent steps. At each step, previously matched
edgels provided a context in which new matches were embed-
ded. Here, each (controlled) step required only two relaxation
iterations to stabilize. A total of 3015 edgels were matched,
representing 79% of the edgels in the left image. However, due
to the occlusion and misalignment of the stereo pair (the pair
was not rectified), not all of the edges in the left image were
matchable. Matching required about 62 s of DVP cycles on the
Gould /DeAnza IP-8500 image processor, or about 16 s (selec-
tion) per step.

The actual elapsed time (wall clock) was about three times
longer than the machine times reported. This was principally due
to the limited amount of memory within our DeAnza (11
Mbytes), making it necessary to reload DeAnza memory from
the Micro Vax II host at each iteration step. In addition, the
hidden cost of downloading new instructions to reconfigure the
pipeline and load stage instruction opcodes at each step (of the
algorithm) contributed to the overhead.

VII. CONCLUSIONS

We have presented a parallel algorithm for stereo matching
that achieves high speed by exploiting the parallel architectures
of typical SIMD processors. The cost of the parallel algorithm
was shown to be a function of maximum disparity (8) alone
when executing on an idealized machine having a small number
of stages, a reasonable interconnection bandwidth, and modest
output bandwidth. Parallel architectures that can accommodate
large input bandwidth are best suited for high-speed stereo
matching applications. On the average, the algorithm required
only four stages per pipeline to achieve optimal time. This
suggests that the topology of a pipelined network tuned for
stereo matching should consist of a large number of pipelines
with few stages. On the practical side, the complexity analysis
presented in this paper can readily determine the performance of
our parallel algorithm executing on a variety of fine-grained
SIMD machines. In this way, the analysis may be used to

: B b % 8 i
Fig. 4. Stereo aerial photographs over an urban area o
(All matched edgels are highlighted.)
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evaluate and identify alternative machines that may better exploit
the parallelism of this algorithm. Furthermore, the parallel
formulations and complexity analysis presented in this paper
exhibit a methodology that may be useful to others in the
computer vision community who are interested in reformulating
existing low-level vision algorithms for high-speed parallel exe-
cution.

The feasibility of our parallel algorithm was shown by imple-
mentation on a typical commercial SIMD pipelined processor.
As advances in hardware technology continue to reduce machine
cycle times and highly interconnected multicomputers with flex-
ible topologies are produced at practical costs, real-time perfor-
mance of this parallel algorithm will be achievable and appealing
for applications where rapid response is critical.
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