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ABSTRACT 

Much work on natural and sexual selection is concerned with the conspicuous- 
ness of visual patterns (textures) on animal and plant surfaces. Previous attempts by 
evolutionary biologists to quantify apparency of such textures have involved subjec- 
tive estimates of conspicuousness or statistical analyses based on transect samples. 
We present a method based on wavelet analysis that avoids subjectivity and that uses 
more of the information in image textures than transects do. Like the human visual 
system for texture discrimination, and probably like that of other vertebrates, this 
method is based on localized analysis of orientation and frequency components of 
the patterns composing visual textures. As examples of the metric's utility, we 
present analyses of crypsis for tigers, zebras, and peppered moth morphs. 

I N T R O D U C T I O N  

Visual textures are spatially extended patterns based on the repeti- 
tion of a unit cell or  " texton" [28, 37]. Over the past 30 years, research 
concerning discrimination of visual textures has greatly expanded in the 
fields of  psychophysics and computer  vision. Psychobiologists like Julesz 
[36], Ramachandran [58-61], DeValois and DeValois [18], Arbib and 
Hanson [1], and Nakayama et al. [56] have suggested that the capacity 
for rapid ("preat tent ive")  visual texture discrimination probably evolved 
under the influence of selective forces, especially by the need to 
"break"  the camouflage of potential predators or prey. However,  evolu- 
tionary and ecological biologists have made little direct use of advances 
in this area. This gap is notable because, at least since the time of 
Darwin [16], questions concerning concealment (camouflage) and ap- 
parency (advertisement) have been important  to the development of 
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ideas on natural selection and sexual selection, respectively [20, 22, 24]. 
Hypotheses concerning visual effects of surface patterns continue to 
motivate much research both on animals and plants. 

Most psychophysical studies of texture discrimination have con- 
cerned humans and other primates, but work with cats [77], falcons [26], 
and pigeons [3, 4, 63] suggests that basic principles of visual system 
design that relate to texture discrimination are shared among verte- 
brates. In some respects, these principles may even be shared with 
invertebrates [13, 68]. The neuroanatomical basis for texture discrimina- 
tion seems to lie in cell groups in the visual pathway that are responsive 
to specific orientation and frequency components of images [18, 33, 34, 
74]. Computational techniques based on "wavelets," which perform 
localized frequency and orientation analysis, therefore show great 
promise in modeling systems for visual texture discrimination [35, 46, 
49, 51, 74, 76]. 

Our purpose in this paper is to present a texture-discrimination 
metric that incorporates recent advances in computational vision and 
psychobiology and that will be useful to evolutionary and ecological 
biologists interested in quantitatively assessing the conspicuousness of 
visual textures of plants and animals to vertebrate viewers in natural 
settings. Work having this aim has been needed because most prior 
applications of texture discrimination in computer vision research and 
psychobiology have involved simple binary patterns or relatively uniform 
grayscale textures. In natural scenes (without anthropogenic content), 
there is nearly always some irregularity or gradual variation within 
surface textures, and intensity variation is continuous. Another limita- 
tion of much previous work has been its emphasis on qualitative, 
pairwise discriminability between textures (so that texture pairs are 
judged simply as discriminable or not). In reality, of course, there may 
be degrees of discriminability among natural textures [19, 45, 48, 52]. It 
would be desirable to have a well-validated metric that can indicate 
relative discriminability of any textures, even those that have not been 
directly assessed psychophysically. Such a metric would accommodate 
statistical tests on replicate samples (e.g., analysis of variance) that 
ecological and evolutionary biologists typically use. 

Although there has been considerable interest in psychophysical 
influences on the evolution of coloration and color patterns among 
animals (e.g., [8, 15, 22, 29, 31, 40, 57, 71]), visual textures as such have 
been little addressed in this context [43, 66]. Pattern has been analyzed 
primarily by transect methods [21, 23, 39, 41, 42, 44, 70] or by methods 
requiring subjective identification of individual pattern elements, fol- 
lowed by objective measurement of each element's color (e.g., [25]). 
Computational image-analysis techniques will be essential in order to 
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deal with all of the information in visual textures of natural scenes and 
from animals with complicated or subtle coat patterns. 

METHODS 

Laine and Fan [46] used a wavelet-packet analysis to produce a 
highly effective framework for texture classification after training the 
system on a set of known textures. Our objective was to extend their 
approach so that distances among any pair of textures could be com- 
puted without prior training. 

INTRODUCTION TO WAVELET ANALYSIS 

Fourier analysis has long been used for signal analysis. For a station- 
ary sinusoid signal, its Fourier transform is a Dirac impulse [5] which 
precisely indicates the frequency of the signal. For nonstationary sig- 
nals, it is well known that a Fourier transform can reflect only global 
frequency content and cannot capture frequency evolution over time. In 
order to analyze a signal's behavior around a specific time, a window is 
usually applied to the signal and an analysis is conducted on the 
windowed segment. 

The wavelet transform may be viewed as a windowed transformation 
technique [17, 49, 64]. A continuous wavelet transform can be written as 

CW~(r,a) = f '_~s(x )q t~(x -r )dx ,  (1) 

where ~a(X)=l / lgr~O(x /a)  and ~O(t) is called the basic wavelet, 
satisfying the condition 

c, =f0 =1~°('°)12,o do, < +oo. 

Parameter r is a translation factor, and a is a dilation factor. When a 
increases, the function ~0a(x- r )  expands and takes longtime behavior 
into account. In the opposite case, when a decreases, the function 
~Oa(x - r )  contracts and focuses only on the short time behavior. Such a 
transformation is invertible such that the original signal may be recov- 
ered from its wavelet transform 

s ( x ) =  1 rr=oo ra=oo drda 
--CTJr=_Ja=o CW~(r,a)Oo(x-r) a2 (2) 
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The continuous wavelet transform shown above is a highly redundant 
representation. A series representation instead of the integral can be 
obtained by sampling the parameters a = 2 j and ~- = n2 j. Such a series 
is called a discrete wavelet transform and can be written as 

s ( x )  = E • / z ~ 2 ~ ( x - n 2 J )  • (3) 
j ~ Z n ~ Z  

For the construction of wavelets, a scaling function 4,(x) is intro- 
duced, which should satisfy the dilation equation 

~b( x)  = v~ ~.,hk 4)( 2x - k ). 
k 

A wavelet may then be constructed from the scaling function ~b(x) 

= E g k 6 ( 2 x  - k ) ,  
k 

where h k and gk are low-pass and high-pass discrete filters, respec- 
tively. (A low-pass filter eliminates information above a set frequency 
and a high-pass filter does the opposite.) 

Daubechies [17], Meyer [53], and Stromberg [69] independently found 
that there exists some wavelet (p( t )~L2(R)  such that {qJ2J(t- 
n2~)l(,,~)~z 2} forms an orthonormal basis of L2(R). Such wavelets are 
called orthogonal wavelets. The discrete filters associated with orthogo- 
nal wavelets are quadrature mirror filters (QMF) [17, 49, 73] satisfying 
the condition 

[H(  oJ)l 2 + IH( o~ + 7r)[: = 1, 

H(  ~o)H*( oJ + 7r) - H*(  ~o)H( to + 7r) = O, 

and 

G ( w )  = - e-J~'H*( to + i t ) ,  

where H( to) = ,-~2 F.khke-Jk~' and G( to)= ,-~2 F.kgke-Jk~'. 

Using orthogonal wavelets, the coefficients tz~ of a discrete wavelet 
transform may be explicitly written as 
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where (s(u), f ( u ) )  = f~_oos(u)f(u)  du  represents the inner product of the 
two functions. 

Wavelet packets [10-12] are a set of orthogonal basis functions 
{ W ~ ( x ) l n  ~ Z ÷ } that refine the basic wavelet recursively as follows 

W2p+,(x  - 12 p+l) = ~ _ . h m _ 2 t W ; p ( x  - m2 p) 
m 

W2;++ l ( x  _ 12P+ I)  __ E g m _ 2 t W ; p (  x _ m 2  p)  
m 

(4) 

(5) 

with W ° ( x ) =  ~b(x), Wl(x)=  O ( x ) ,  and 

W ~ p ( x  - k2 p) = Y '~h k _ 2 tw2 2 n l ( x  - 12 p+I) 
l 

+ Y ' . g k -  r l , 2 n +  1), 2tr¢2p+l l (x- -  12 p+ 
1 

(6) 

where W a n ( X )  1 n =Tw (x/a). 
A major advantage of this analysis is that wavelet packets are well 

localized in both time and frequency and thus provide an attractive 
alternative to pure frequency (Fourier) analysis. 

NORMALIZED DISTANCE MEASURE FOR DISCRETE SIGNALS 

In order to implement wavelet packet transforms for discrete signals, 
we first define 

tx~'" = ( s ( u ) ,  W~p( x - k2 p) ). 

By using (4)-(6) we can write the decomposition equations as 

~ f +  a,2. = ~_~h.,_ 2 t p,n ~d,rn , 
m 

p , n  ~f+l ,2n+l= y ' g r n _  eltXm , 
m 

and the reconstruction equation 

'k-"~ h n + l  2n 1 , 2 n +  1 
]d~ff,n _m ~,d k - 2 l l ~ f  ' "~ ~-~gk-211~f + 

1 1 

The extension for two-dimensional signals is straightforward by using 
a special class of separable two-dimensional wavelet packets {W2p(x  - 
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12 p)W2~ ( y - k 2 p)}. The  decompos i t i on  fo rmu lae  now b e c o m e  

/,£g,-~l,2n,2m = E E h l -  2b hk-  2d ld'~,,'k n'm, 
l k 

/tlb°,d l'2n'2m+1 = E E h l - 2 b  gk-EatZ~,'~ 'm, 
l k 

Jl~g,'d l '2n+l'irn = E E g l - 2 b  hk-2d~,,'k n'm, 
l k 

],£g,~l,2n+l,2m+l = E E g , - 2 b g k - 2 a  tX[ ;  'm , 
l k 

and the reconstruction formula becomes 

I'£~,,'k n'm = E E h t -  ibhk-  2d ~ff,~l,2n,2m + E E h t -  zagk- 2d ~j~g,-~l,2n,2m+ 1 
b d b d 
"+" E E g l -  2bhk- 2d l'~f,+d l'2n+ l'2m 

b d 
q- E Egl-2bgk-2dl'~[,+d l'2n+1,2m+l 

b d 

Figure 1 illustrates a tree structure for the decomposition-reconstruc- 
tion processes. The topmost node represents the original image (a 

h,h 

Level 

g,g 

) ' 

2 

Size 

2 q x 2 q 

q-1 - 
2X2' 

FIG. 1. Tree structure of a two-dimensional wavelet packet analysis. Each node 
represents a two-dimensional matrix t, p,n'm of pixels (an image). Indices p ,n ,m  of 
/,p . . . .  are shown for each node (0,0,0 is the original image). Links between nodes 
represent one-dimensional filters applied to columns and rows of each "parent" 
image to produce four "children," as described in the text. Top-down computation is 
a decomposition process, and bottom-up is a reconstruction process. 
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matrix of pixels of size 2 q )< 2q). The links between nodes are one-di- 
mensional filters that pass only low-frequency information (filter h, a 
low-pass filter) or high-frequency information (filter g, a high-pass 
filter) from rows and columns of a parent node to the four children 
nodes (images) that can be produced from it. The sizes of children are 
quartered by a subsequent decimation (downsampling) operation (one 
sample out of two adjacent samples is kept) on columns and rows. 
Orientation selectivity is determined by the particular combination of 
filters applied at each link: Horizontal components result from applying 
a low-pass filter h to rows and a high-pass g filter to columns; vertical 
components result from applying g to rows and h to columns; diagonal 
components result from applying g to both rows and columns. Orienta- 
tion- and frequency-specific information can thus be isolated (image 
decomposition) at each level by the appropriate combination of filters. 
Reconstruction is the opposite process; every four nodes will generate a 
parent node by applying filtering and an upsampling operator (insert a 
zero between two adjacent samples). 

We then define an energy measure 

E p ' n ' m =  E E (  ]'~ff,,'k n'm )2 
l k 

for each component. We can show that 

E p'n'm = E p+1'2n'2m-4- E p+l'2n+l'2m A- E p+l,2n,2m+l S.-E p+l,2n+l,2m+l 

Thus energy conservation exists between a parent and children. 
We used energy values to construct the feature vector: 

{E . . . .  p l[o <~n<<(2P_ l),O ~ m <~(2P_ l)l^ (n+m > O)} " (7) 

Notice that E °'°'p is excluded from the feature vector due to the fact 
that its value is typically hundreds of times greater in magnitude. 
Therefore, for level p the vector length was 4 p - 1 .  Such a feature 
vector characterizes the energy (variance) distribution for different 
frequencies (scales). 

To compare two texture images, a simple discrimination measure was 
constructed as a normalized Euclidean distance defined by 

(E . I x  n - ynlZ) 1/2 
D = z 1/2 2 1/2 '  (8) 

(E.Ix°l) + (r .Jy°J) 
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where X = {x n 11 ~ n ,~ N} and Y = {y, 11 ~ ,  ~ N} are two feature vectors 
and 0 ~< D ~< 1 [72]. D thus reflects the degree of similarity of energy 
distribution patterns between images. 

Our implementation of these equations requires square images with 
dimensions that are a power of 2. Depending on the size and resolution 
of the original image, and depending on the shapes of texture regions in 
the image, it may be necessary to analyze replicate square subsamples 
of a texture area (e.g., 64 × 64 pixels from a larger image) so that mean 
or median D values can be compared. Because subsamples within 
texture areas may differ among themselves, ratios of among-group D to 
within-group D could be used as a similarity measure that takes into 
account within-background variability. Effects of resolution and orienta- 
tion can be addressed by reconstructing the images from specific fre- 
quency or orientation components. Some examples are presented later 
in this paper; see also Kiltie and Laine [43]. 

When the emphasis is on camouflage, as in our examples below, it is 
convenient to define a crypsis metric C = 1 -  D, where D has been 
measured between the texture of some foreground object or organism 
and that of its background. 

Executable binary programs (Sun Sparc architecture, Solaris 4.1.3) 
for obtaining feature vectors from raw images and for determining D 
can be obtained by contacting the first author (kiltie@nervm.nerdc.ufl. 
edu). For readers desiring more general information on wavelet analysis 
and programs, we suggest using the "Veronica" search facility via 
"Gopher"  or "World Wide Web" on the internet. 

TESTS WITH TEXTURES OF KNOWN DISCRIMINABILITY 

The success of Laine and Fan's [46] results for classifying textures 
provided some confidence in our extension to a distance metric. How- 
ever, the textures [7] that they used have not been subjected to psy- 
chophysical tests of discriminability, and hence could not be used to 
validate the D metric. We used three sets of published images to 
compare our metric with psychophysical assessments of texture dis- 
tance. 

Mayhew and Frisby [52] determined average times for human sub- 
jects to discriminate among six gray-scale images varying in orientation 
or frequency. These textures were presented in panels of four images, of 
which three were the same, and the time taken by the subject to identify 
the panel differing from the other three was measured. As expected, 
our D metric was highly, negatively correlated (Spearman r = - 0 . 9 0 )  
with these response times. 

Beck et al. [2] published a series of pairs of gray-scale textures that 
were classified either as discriminable or not. We determined D for 
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each of these pairs, and then performed an analysis of variance with D 
as the criterion variable and discriminability (yes or no) as the predictor. 
The result was significant (t = 2.85, df = 9, P = 0.02). 

Malik and Perona [48] summarized discriminability of 10 pairs of 
1-bit/pixel (binary black and white) microtextures from Krose [45] and 
from Gurnsey and Browse [30], plus their own metric designed for 
1-bit/pixel microtextures. Our metric produced an average Spearman 
correlation of 0.55 with these three measures (0.21 for Krose, 0.80 for 
Gurnsey and Browse, 0.64 for Malik and Perona's measure). The lower 
correlation in these cases than for the previous two may reflect some 
peculiarity of 1-bit microtextures or digitizing noise. 

More grayscale textures calibrated psychophysically for discriminabil- 
ity with a variety of species are desirable in order to test the metric 
further. 

EXAMPLE APPLICATIONS 

The following examples are intended only to illustrate potential uses 
of our metric. Of course, thorough investigation of these examples 
would require replicate images and tests of significance. 

CRYPSIS OF PEPPERED MOTH MORPHS ( BISTON BETULARIA) 

Virtually every introductory textbook of biology describes "industrial 
melanism" in the British peppered moth Biston betularia as an example 
of natural selection operating when the environment changes. Peppered 
morphs (B. b. f. typica) have become less common and melanistic 
morphs (B. b. f. carbonaria) more common where industrial air pollu- 
tion has caused disappearance of lichens from tree bark and darkening 
of the bark itself [38]. The change in morph frequencies has been 
attributed to selection by visual predators (birds) who search for the 
moths as they rest against tree trunks during the day and who capture 
typica more frequently and carbonaria less frequently in polluted areas. 
Whether selection by visual predators can explain observed changes in 
B. betularia morph frequencies has recently been questioned because 
the moths may not rest exposed on the tree bark as commonly as had 
been thought. However, it is still generally conceded that visual selec- 
tion at least plays a part [6, 14, 32, 50]. 

Of course, it is obvious when glancing at the photographs in Figures 
2 and 3 that the typica morphs match lichens better than carbonaria 
morphs, and that carbonaria morphs match polluted tree bark better 
than typica. However, after digitizing Figure 2 (500 X 455 pixels) and 
Figure 3 (320X510 pixels), the mean and median intensities for both 
morphs differ appreciably from the means and medians of both back- 
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FIG. 2. Biston betularia f. typica (pale morph) and B. b. f. carbonaria (melanic 
morph) photographed against a lichen-covered tree trunk. This figure was reprinted 
from B. Kettlewell's The Evolution of Melanism, Oxford University Press, 1973 by 
permission of Oxford University Press. 

grounds as in Table 1. Both morphs would be readily detectable against 
both backgrounds if spatial patterns of intensity variation (i.e., surface 
texture) of the morphs did not also match spatial intensity variation of 
the backgrounds against which they are cryptic. Because our metric 
incorporates the spatial element of intensity variation, it more accu- 
rately indicates the perceived differences in crypsis of the two morphs 
against the two backgrounds than do the first-order statistics of inten- 
sity variation. 

From Figures 2 and 3 we took three 64 x 64 subsamples of each of 
the moths and six 64 × 64 subsamples of the backgrounds and then 
determined D and C values for the morphs versus their backgrounds 
and among the background samples themselves. 

When information from all frequency levels in the images is in- 
cluded, average C for the typica subsamples from Figure 2 is high and is 
virtually the same as the average C between the subsamples of lichen 
background itself as in Figure 4. For subsamples of carbonaria from 
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FIG. 3. Biston betularia f. typica and B. b. f. carbonaria photographed against a 
pollution-darkened tree trunk. This figure was reprinted from B. Kettlewell's The 
Evolution of Melanism, Oxford University Press, 1973 with permission. 

Figure 2, average C is much lower than for typica when all frequency 
information is included. 

The wavelet-based reconstruction technique described earlier allows 
frequency-specific components of the images to be removed sequen- 
tially and cumulatively from high to low levels so that progressively 
lower-resolution reconstructions result. This permits consideration of 
changes in crypticity over a "gradient" from high-acuity viewers (diurnal 
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TABLE 1 

Intensity Statistics for Biston betularia Morphs and Backgrounds in Figures 2 and 3 

Area 

Figure 2* (500 x 455 pixels) Figure 3* (320 X 510) pixels 

Mean Median SD N pixels Mean Median SD N pixels 

~pica 174 184 50.7 25731 206 225 40.7 12196 
carbonaria 89 85 19.2 19450 139 130 35.4 9911 
Background 144 141 54.4 182319 120 112 32.1 141093 

*Absolute values are comparable within photos, but not between them. Intensity 
scale is 0 (darkest) to 255 (lightest). 

species  wi th  cone  re t ina l  cells or  those  with large  eyes)  to low-acui ty  
viewers  (noc turna l  species  wi th  rod  re t ina l  cells or  those  with smal l  
eyes). F o r  typica morphs ,  C remains  high as r e so lu t ion  dec reases  
(F igure  4). F o r  carbonaria m o r p h s  on  the  o the r  hand,  C increases  as 
reso lu t ion  decl ines,  i.e., the i r  crypsis improves  (F igure  4). 

,0.8 

0.7 

0.6 

0.5 

C 0.4 

0.3 

0.2 

o.1 

o 

A ---O-- carb 

~" J--b-t~pi J 
/ /  I - ° - ~ P ' °  I 

I . . . . .  bg,d I 

I I I I 

0-1 0-2 0-3 0-4 

Resolut ion 

FIG. 4. Average crypsis index C = 1 -  D for three subsamples of each of the 
morphs of Biston betularia in Figure 2 versus six subsamples of the background. 
C = 1 is a perfect match "Carb"= B. b. f. carbonaria; "typi"= B. b. f. typica; 
"carb-90" = carbonaria after 90 ° rotation; "typi-90"= B. b. f. typica after 90 ° rota- 
tion; "bgrd" = average for comparisons among background subsamples themselves. 
"O" is the original resolution, and "O-x" refers to images that have had x upper 
frequency levels removed by wavelet-based reconstruction (e.g., see [43]). 
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Similar analyses were performed for the morphs against the darker 
tree bark in Figure 3. With all frequency levels included, average C for 
carbonaria against the dark background is about the same as average C 
between the subsamples of background themselves as in Figure 5. 
Average C for the typica subsamples is less than that for carbonaria 
with all frequencies included. Average C values for both morphs 
converge on the average C among background subsamples themselves 
as high-frequency information is stripped away, and the difference 
between typica and carbonaria in crypsis is negligible after two fre- 
quency levels have been excluded. 

These results reinforce the idea that the relevant predators must be 
diurnal insectivores that inspect surfaces closely if visual selection is to 
account for changes in morph frequencies. Asymmetry between the 
morphs in the extent to which they match these kinds of backgrounds 
may contribute to some of the remaining uncertainty about the ability 
of visual predators to explain morph frequencies. 

It has been of interest whether orientation of the moths' resting 
position is critical to their crypticity [38]. Our metric provides a way to 
address this question. We rotated by 90 ° each of the 64×64 pixel 
subsamples of the moths in Figures 2 and 3 while leaving the back- 
ground subsamples unaltered and then recalculated the C values. Little 
or no change in C was produced against either background (Figures 4 
and 5); thus, orientation appears to have little effect on camouflage for 
these moths. 
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FIG. 5. Average crypsis index C = 1- D for three subsamples of each of the 
morphs of Biston betularia in Figure 3 versus six subsamples of the background. 
Abbreviations as in Figure 4. 
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ZEBRA AND TIGER STRIPES 

Another issue of long-standing interest has been the functions of 
stripes on zebras and tigers [29] (see also [15, 27, 55]). After digitizing 
the images of a tiger and zebra from Godfrey et al. [29], we analyzed 
four subsamples of the animals' dorsolateral sides and six samples of 
the background vegetation near their bodies. Results in Figure 6 indi- 
cate that the tiger and the zebra are not as cryptic against their 
backgrounds as typica morphs are against lichen-covered tree bark; 
instead, the zebra's and tiger's results are more comparable to those for 
carbonaria against polluted tree bark. With all frequency levels included 
in the analysis, the average C of the tiger is greater than that for the 
zebra. Note, however, that the background subsamples for the tiger are 
considerably less variable among themselves than is the case for the 
zebra image when all frequencies are included; thus, although the tiger 
is absolutely less different on average from the background than is the 
zebra when all frequencies are included, there is more opportunity for 
improvement in the tiger's match than for the zebra. As frequency 
information is removed, absolute crypticity (average C) for the tiger 
becomes less than that for the zebra, but the zebra's background 
subsamples are less variable among themselves than is the case for the 
tiger, and the zebra has greater apparent scope for improvement in 
crypsis. Crypsis at lower resolution may be especially important for both 
species--for tigers because their prey have small eyes or are nocturnally 
adapted, and for zebras because their most dangerous predators are 
most active at night (e.g., [67]). 
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0.6 

0.5 

C o.4 
0.3 

0 .2  

0.1 

0 i I I i 

0 -1  0 - 2  0 - 3  0 - 4  

Resolution 

- - 0 ~  t i g e r  

- - 0 ~  tiger-90 
. . . .  t-bgrd 

zebra 
0 zebra-90 
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FIG. 6. Average crypsis index C = 1 - D for four subsamples of images of tiger 
and zebra in Godfrey et al. [29] versus six subsamples of the backgrounds for each. 
"Tiger" and "zebra" refer to unrotated subsamples of each, and "tiger-90" and 
"zebra-90" refer to subsamples rotated by 90 °. "T-bgrd" and "z-bgrd" represent 
averaged comparisons among background subsamples of the tiger and zebra images, 
respectively. 
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We also investigated the effect of orientation on crypticity of the 
tiger and zebra by 90 ° rotation of the animal's subsamples while leaving 
the background samples unchanged. Unlike the case for the peppered 
moth, orientation substantially affects crypsis for both the tiger and 
zebra (Figure 6). It seems probable that body orientation of animals like 
zebras and tigers will be less variable in comparison to their back- 
grounds than is the case for bark-resting moths. 

LIMITATIONS AND SUGGESTIONS FOR FURTHER WORK 

We end by emphasizing that a metric like the one we have proposed 
is most helpful specifically in testing hypotheses about visual textures 
per se. Such metrics do not necessarily indicate the absolute detectabil- 
ity of a particular object or organism because detectability can also be 
influenced by specific surface features, occluding edges, three-dimen- 
sional shape, color, movement, etc. The more general problem that the 
visual system must solve is that of figure-ground separation, or image 
segmentation. Image segmentation techniques based on biological-vi- 
sion models are currently also an active area of research (e.g., [9, 19, 35, 
47, 51, 54, 62, 65, 75]) although approaches that thoroughly integrate all 
of the above factors are still a long way off. If such methods are to be 
used to test hypotheses about crypsis or advertisement, they will also 
have to be adapted to produce a metric indicating the degree to which 
the organisms can be segmented from their visual backgrounds. One 
possibility for such a metric would be the portion of the true outline of 
an organism that is identified by the segmentation algorithm. 

We thank J. Endler for helpful comments and G. Kiltie for assistance in 
preparing the manuscript. 
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