
 
 

 

  

Abstract— Fundus auto-fluorescence (FAF) images with 
hypo-fluorescence indicate geographic atrophy (GA) of the 
retinal pigment epithelium (RPE) in age-related macular 
degeneration (AMD). Manual quantification of GA is time 
consuming and prone to inter- and intra-observer variability. 
Automatic quantification is important for determining disease 
progression and facilitating clinical diagnosis of AMD. In this 
paper we describe a hybrid segmentation method for GA 
quantification by identifying hypo-fluorescent GA regions from 
other interfering retinal vessel structures. First, we employ 
background illumination correction exploiting a non-linear 
adaptive smoothing operator. Then, we use the level set 
framework to perform segmentation of hypo-fluorescent areas. 
Finally, we present an energy function combining 
morphological scale-space analysis with a geometric 
model-based approach to perform segmentation refinement of 
false positive hypo- fluorescent areas due to interfering retinal 
structures. The clinically apparent areas of hypo-fluorescence 
were drawn by an expert grader and compared on a pixel by 
pixel basis to our segmentation results. The mean sensitivity and 
specificity of the ROC analysis were 0.89 and 0.98%. 

I. INTRODUCTION 
Fundus auto-fluorescence (FAF) imaging is a non-invasive 
technique for in vivo ophthalmoscopic inspection of 
age-related macular degeneration (AMD), the most common 
cause of legal blindness in developed countries [3]. FAF 
signals are reliable markers of lipofuscin in retinal pigment 
epithelium (RPE) cells [1, 2]. Abnormally increased 
lipofuscin accumulations, which produce hyper-fluorescent 
FAF signals, occur in earlier stages of AMD. Geographic 
atrophy (GA) of the RPE, an advanced form of AMD, 
accounts for 12-21% of severe visual loss in this disorder [3]. 
GA is characterized by round or multi-lobed patches of 
atrophy of the RPE, the overlying retina, and the underlying 
choriocapillaris. With atrophy of the RPE, the lipofuscin is 
lost and the FAF signal from that region becomes 
hypo-fluorescent dark. Hypofluorescence is the FAF 
hallmark of geographic atrophy. A previous study suggests 

 
Manuscript received April 16, 2007. This work was supported in part by 

NEI (R01 EY015520-01), the NYC Community Trust (RTS), and 
unrestricted funds from Research to prevent blindness. 

Noah Lee is with the Heffner Biomedical Imaging Lab and the 
Department of Biomedical Engineering of Columbia University., CO 80305 
USA (corresponding author to provide phone: 212-854-5996; fax: 
212-854-5995; e-mail: nl2168@columbia.edu).  

Prof. A. Laine is with the Department of Biomedical Engineering, 
Columbia University, NY USA (e-mail: laine@columbia.edu). 

Prof. R Theodore Smith is with the Department of Ophthalmology, 
Columbia University, NY, USA (e-mail: rts1@columbia.edu). 

that areas of increased FAF may precede development or 
enlargement of GA [4]. The left and middle panel of Fig. 1 
illustrates this disease progression. Over time, atrophic 
patches may increase in size and number or may coalesce to 
form larger areas of atrophy. We seek to quantify atrophic 
changes by means of image analysis to provide measures for 
GA progression and to facilitate clinical diagnosis of GA in 
AMD. 
      Generally, GA quantification methods in the literature 
have typically relied on visual inspection of FAF images [13], 
which prevents quantification, or time consuming manual 
delineation of GA boundaries in combination with 
semi-automatic segmentation techniques [9]. Manual 
quantification of GA is time consuming and prone to inter- 
and intra-observer variability [13], especially for large patient 
studies over a period of time. 
      In this paper, we present a hybrid segmentation method 
exploiting non-linear smoothing operators for background 
illumination correction while preserving features of interest. 
We present an energy function combining morphological 
scale-space analysis with a geometric model-based approach 
to perform vessel likelihood estimation. Segmentation of GA 
is utilized within a level set framework and refined by our 
vessel likelihood estimates. We show quantitative results on 
GA border segmentation together with clinical evaluation and 
comparison to expert gradings. 
 

 
 
Fig. 1. FAF images and example of geographic atrophy (GA). The problem 
domain of non-homogenous background illumination and adjacent retinal 
vasculature. Left and middle image represent disease progression of GA over 
a period of 2-3 years. Bright areas surrounding the dark patches turn to dark 
areas within this period. Hypo-fluorescent dark areas indicate GA. 
  
Little has been published on automated techniques for 
quantifying GA in FAF images. Recently, Deckert et al. 
proposed a region-growing method, where separate GA 
regions must be manually seeded to be included in the 
segmentation [10]. In a previous study, we have reported on a 
semi-automatic segmentation technique for GA 
quantification [9]. This work differs from our previous work 
in that we include three contributions: 1) background 
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illumination correction by means of a non-linear smoothing 
operator, 2) segmentation of dark hypo-fluorescence areas 
using iterative fluorescence density minimization within the 
level set framework, and 3) vessel likelihood estimation using 
an energy function that combines morphological scale-space 
analysis with a geometric model-based approach for 
segmentation refinement. Regarding retinal background 
illumination correction, closely related to our approach are 
well known filtering based techniques such as homomorphic 
or median filtering. However, these approaches lack feature 
preservation as noted by Forachhia et al. [8]. In our work we 
exploit the bilateral filter [5] and show its suitability for 
luminosity estimation. For retinal vessel segmentation a vast 
literature can be found proposing different approaches. Our 
energy function is motivated by the work of Zana et al. [7] 
and the vesselness measure from Frangi et al. [12]. However, 
in our approach we only apply the hat-transform scale-space, 
since features of interest and noise have similar scales in FAF 
images due to small scale vasculature. We show that 3) 
provides robust vessel segmentation and prevents false 
positive vessel likelihood responses at GA border contour 
regions.  

II. MATERIALS AND METHODOLOGY 
FAF images of 14 eyes from seven patients with GA were 

selected retrospectively from a patient database imaged from 
2002 to 2005 at the Columbia University. All eyes had drusen 
as well as GA. Each eye had an initial and a final FAF image 
representing a follow up of two to three years. The ages of the 
patients ranged from 76 to 82 years. After pupillary dilation, 
FAF images had been recorded using the Heidelberg model 
HRA confocal SLO (Heidelberg Inc, Heidelberg, DE). This 
instrument uses blue laser light at 488 nm for illumination and 
a barrier filter at 500 nm to limit the captured light to 
autofluorescent structures. The FAF images consisted of 
bit-mapped laser scans, 512 x 512 pixels in size, centered on 
the macula. Each image was an average of 3 to 6 scans 
composed by the SLO software. All images had a scale of 
approximately 15μm per pixel. The image was then cropped 
to a 6000μm square centered on the fovea. All subsequent 
processing were performed on these images. 
 

A. Background Illumination Correction 
We exploit the properties of the bilateral filter [5] to estimate 
background luminosity. Let a domain filter dS be 
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Then ( )p φ denotes auto-fluorescence density, c  the spatial 

kernel function, and ( ( ))dS p φ the low pass filtered 
auto-fluorescence output density. Similarly, a range filter can 

be defined as  
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Here g denotes the intensity kernel function, where kernel 
coefficients of g are derived from auto-fluorescence density 
value differences between kernel center and the domain of the 
kernel neighborhood. Note that rS has no notion of 

geometric distance. Thus, in combination with dS , smaller 

density value differences in ( )p φ result in higher coefficient 
weights, leading to larger pixel contribution in c  
irrespectively of geometric distance in the spatial kernel 
function. This property is suitable for luminosity estimation 
across high-frequency features such as GA border contour 
regions or retinal vessel structures. We note that other 
filtering based illumination correction techniques are not able 
to preserve high frequency density features [8]. Combining 
equation (1) and (2) is the bilateral filter  
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This combination enables diffusive smoothing across high 
frequency features, whereas other non-linear smoothing 
operators such as anisotropic diffusion [11] cannot smooth 
across edges. Consider the anisotropic diffusion equation of 
the auto-fluorescence density f  
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Looking at the diffusion coefficient d of equation (4) we see 
that diffusion is prohibited across high frequency regions. 
However, in estimating luminosity distribution it is desirable 
to diffuse across high frequency features. Note that equation 
(3) enables diffusion across high frequency features due to 
the combination of spatial and intensity kernel functions c  
and g . Following Tomasi et al. by using shift-invariant 
Gaussian kernels for c and g, the filtered auto-fluorescence 
density S in discrete form is computed by single pass iteration 
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In words, by computing equation (5), we obtain the 
luminosity estimation of the auto-fluorescence density by 
selectively low-pass filtering regions with similar intensity 
ranges while preserving high-frequency density features such 
as border contours of GA regions. We estimate sW by the 
mean value difference of auto-fluorescence density peaks and 
specify cW  based on anatomical assumptions of the largest 
appearing vessel diameter within our cropped 6000 mμ  
regions, i.e. 35 mμ . The residual of luminosity estimation 

and the original auto-fluorescence density f denotes the 

corrected illumination density distribution 'S , where 
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B. GA Segmentation using Level Set Framework 
We separate hypo-fluorescence areas from the background 
using an iterative density energy based minimization model. 
Let 'S be the auto-fluorescence density in domain  
 

 
Fig. 2. Surface plot of background luminosity on FAF images. Left) Original 
background illumination, right) corrected background illumination using the 
bilateral filter.  
 

2Ω∈ℜ with two homogenous regions of distinct density 
mean values c1 and c2, where c1 corresponds to the object 
region inside GA contour C∂ and c2 its inverse. To separate 
object from background we minimize the Chan-Vese energy 
functional [6]. 
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Here 1 2, ,andμ λ λ are weighting parameters for the 
individual fitting terms. In our implementation we used 

1 20.03, 1μ λ λ= = = for all images and regularized 

versions of ( ) ( )H andφ δ φ as defined in [6]. The strength 
of the energy functional  lies in the regularization term 

Cμ ⋅ ∂ , which acts as a smoothness constraint on C∂ . 

Parameter μ enforces curvature constraints during interface 
evolution, which prevents leaking into hypo-fluorescent 
vessel regions adjacent to GA regions. We use the level set 
framework to minimize equation (7), formulated as  
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Where the Heaviside function ( )Hε φ equals 1 if 0φ ≥  and 

equals 0 if 0φ < . Due to regularization of ( ) ( )H andφ δ φ  
automatic arbitrary initialization of the initial zero level set 
contour is possible and no user interaction for initial contour 
definition is required. The functions ( )Hε φ and ( )εδ φ were 
approximated with 2ε = . Rewriting in terms of 

( )Hε φ transforms equation (7) into a problem of a single 
variable, which we minimize via gradient descent. 
Minimizing equation (8), the solution we obtain consists of a 
global minimum F  that includes over segmented parts such 
as hypo-fluorescent regions including the retinal vasculature.  
 

C. Energy Function for Vessel Likelihood Estimation 
To detect the vasculature we combine morphological scale 
space analysis with a multi-scale geometric model-based 
approach for vessel likelihood estimation using Frangi’s 
vesselness measure. With 'S being the auto-fluorescence 
density, we build a vessel likelihood map by computing the 
bottom-hat transform scale-space on 'S with a structuring 
element

1
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Here 

2
Hσ denotes the Hessian matrix at scales

2 1σ σ= , W is 

the second partial derivative of a Gaussian, iσ the scale 
parameters, and the summation term represents the 
bottom-hat transform scale space. We normalize hV by eigen 



 
 

 

analysis of 
2

Hσ as defined in [12], where the normalized 

vessel likelihood is 2( ) max{ ( ,{ })}h hV Vφ φ σ= . The 
weighted combination of both feature responses introduces a 
penalty energy, where the vesselness measure alone produces 
false positive responses at GA border contour regions as 
shown in the following figure (right). 
 

 
 
Fig. 3. Qualitative vessel segmentation performance. Left, middle) Results 
obtained with our energy functional combining morphological scale space 
analysis and geometric model-based vessel information. Right) Problem 
domain of model-based approach only at large GA regions.  
 
This combination enables accurate vessel segmentation and 
resolves the problem of high vessel responses near GA areas. 
The hypo-fluorescent areas of the retinal vasculature were 
classified from the background using unsupervised k-means 
clustering with k = 2.  

III. RESULTS 
To validate our method we have selected a set of 14 FAF 
images comprising different levels of segmentation 
complexity in contrast and noise level. We performed 
validation compared to clinical expert grading and obtained a 
mean sensitivity of 0.89 and a mean specificity of 0.98 with 
standard deviations of ±0.09 and ±0.02 respectively. Seven 
patients had serial FAF imaging over a period of 2-3 years. 
For all experiments we used the parameter settings specified 
in Section 2. Ground truths and segmentation results were 
compared on a pixel-by-pixel basis using ROC analysis. 
Figure 4 shows final segmentation results of our method. 
 

 
 
Fig. 4. Segmentation results on all 14 images. Each column represents patient 
FAF imaging (initial and final image) taken over a period of 2-3 years.  
Segmentation boundary overlaid onto the image data in white. 
 

IV. CONCLUSION 
We have presented a method for GA segmentation in FAF 

images. We validated our method with the evaluation of 
clinical expert gradings. Results are promising indicating that 
accurate quantification of GA can be performed 
automatically on a variety of GA disorders. Extension to 

quantification of atrophic areas in FAF images of other retinal 
disorders also seems likely. Future research is intended 
towards parameter estimation for robust algorithm 
initialization and incorporation of higher level prior 
information into the segmentation process. Evaluation of our 
algorithm on large clinical datasets is planned as a next step. 
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