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Abstract

The extent of pulmonary emphysema is commonly estimated from CT images by computing the

proportional area of voxels below a predefined attenuation threshold. However, the reliability of

this approach is limited by several factors that affect the CT intensity distributions in the lung.

This work presents a novel method for emphysema quantification, based on parametric modeling

of intensity distributions in the lung and a hidden Markov measure field model to segment

emphysematous regions. The framework adapts to the characteristics of an image to ensure a

robust quantification of emphysema under varying CT imaging protocols and differences in

parenchymal intensity distributions due to factors such as inspiration level. Compared to standard

approaches, the present model involves a larger number of parameters, most of which can be

estimated from data, to handle the variability encountered in lung CT scans.

The method was used to quantify emphysema on a cohort of 87 subjects, with repeated CT scans

acquired over a time period of 8 years using different imaging protocols. The scans were acquired

approximately annually, and the data set included a total of 365 scans. The results show that the

emphysema estimates produced by the proposed method have very high intra-subject correlation

values. By reducing sensitivity to changes in imaging protocol, the method provides a more robust

estimate than standard approaches. In addition, the generated emphysema delineations promise

great advantages for regional analysis of emphysema extent and progression, possibly advancing

disease subtyping.
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I. Introduction

Emphysema is a condition involving alveolar wall destruction [1]. A mixture of emphysema

and small airways disease contributes to chronic airflow limitation, characteristic of chronic

obstructive pulmonary disease (COPD), which is a leading cause of morbidity and mortality

worldwide [2].

Computed tomography (CT) is commonly used to identify and quantify the extent of

pulmonary emphysema. Generally, an estimate of emphysema severity is obtained using a

densitometric measure, called percent emphysema (%emph) (also referred to as emphysema

index or percent low attenuation area), which quantifies the proportion of voxels with

intensity values below a fixed threshold within the lung region. The %emph measure was

originally derived from the density mask [3], and is commonly used in clinical studies, but

there is no consensus on the intensity threshold value that should be used. The threshold

values typically range from −950 to −910 Hounsfield Units (HU) (see review by Hoffman et

al. [4]). Another commonly used measure, the percentile density (PD) quantifies a

predefined percentile of the intensity distribution, and this measure has been found to be

preferable in longitudinal studies [5], [6].

Standard measures are influenced by several factors that cause variations in the intensity

distributions present in lung CT images, observed as different levels of noise, and variable

intensity levels and distribution shapes. These factors include image reconstruction

algorithm, slice thickness, scanner type and calibration, radiation dose, gravity and

inspiration level [1].

Adaptive smoothing for normalization of image data prior to thresholding has been proposed

as a solution for images with different noise levels [7]. The study showed promise in

obtaining similar %emph values between low-dose and regular CT scans. This approach,

however, still requires thresholding after the filtering operation, and may be susceptible to

variations in intensity levels.

Recent studies have proposed solutions for the normalization of %emph measures to account

for differences caused by changes in reconstruction algorithms and slice thickness [8], [9].

Correction of %emph based on lung volume has also been recommended [10], [11] to adjust

for variations in inspiration level. These approaches consider only a part of the sources of

variation, and since they correct the final %emph value, they do not provide voxel labels that

can be useful when assessing the spatial distribution of emphysema.

Image texture analysis has been applied for supervised classification of emphysema [12],

[13], [14]. These approaches require labeled data to train classifiers, and have not been

shown to be robust to changes in imaging protocols.
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Emphysema quantification methods that are robust to variations in image intensity

distributions are required for two purposes: (1) analysis of large cohorts of patients from

multiple databases for population-wide analysis of emphysema, and (2) longitudinal analysis

of emphysema progression, which has been recognized as an area where more research is

currently required [1].

We propose an approach for the quantification of emphysema that uses a Hidden Markov

Measure Field (HMMF) model [15]. The HMMF model adds an intermediate continuous-

valued labeling, called the measure field, to the standard Markov Random Field (MRF)

models [16], [17]. MRF models have been used extensively for many problems in image

analysis (see [18]), as they provide a convenient probabilistic framework for modeling local

interactions of image pixels and for including prior spatial constraints to a segmentation

process. In a preliminary version of this work [19], we applied the HMMF model to segment

emphysematous regions in full-lung CT scans. The study showed that the HMMF model is

robust to changes in CT image reconstruction algorithms. The application of the model

requires parameterizing intensity distributions within the lung, and defining a spatial

regularization weight, but manually labeled training data is not needed. The HMMF model

has also been used in our previous work for liver tumor segmentation [20].

Refining and expanding from our preliminary study [19], this paper gives a fully detailed

presentation of an improved HMMF model for emphysema segmentation, and demonstrates

the performance of the model on a large longitudinal data set of lung CT scans. The data set

includes repeated full-lung scans among participants in the Emphysema and Cancer Action

Project (EMCAP) [21] who were later recruited into the Multi-ethnic Study of

Atherosclerosis (MESA) COPD Study [22]. The full-lung scans in the two studies were

acquired with different imaging protocols. We compared the performance of the presented

method to the standard %emph at −950 HU (%emph−950) and the 15th percentile density

measure (denoted PD15). In addition, %emph at −950 HU was evaluated with prior Gaussian

filtering of images ( ).

II. Methods and Data

A. Overview

The proposed HMMF model includes the following components intended to improve the

quantification of emphysema over the standard %emph measure:

1. Likelihood functions are defined by modeling intensity distributions observed in

the data. This approach accounts for the variability in intensity distribution shapes,

caused by changes in imaging protocol, such as slice thickness, scanner type and

calibration, radiation dose, and reconstruction algorithm.

2. The locations of the likelihood functions are allowed to vary, to account for patient-

and scan-specific variations, due to differences in the inspiration level and average

parenchymal density.

3. An image voxel is assumed to belong more likely to the same class as its

neighboring voxels than to a different class. This assumption takes the image
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structure into consideration, an aspect that is entirely ignored in standard

histogram-based emphysema measures. The aim is to reduce classification errors

due to overlapping likelihood functions, i.e. when there is a high level of

uncertainty in the classification due to noise or poor contrast. Therefore, this

improvement also accounts for changes in imaging protocol.

Given a CT volume, the lungs were segmented in the preprocessing step, as described in

Section II-D2. Within the delineated lung region, a two-class HMMF model was used to

automatically segment emphysematous regions from the healthy parenchyma. The

segmentation was subsequently used to measure the extent of emphysema, by quantifying

the proportional volume of emphysematous regions with respect to the entire lungs. The

imaging protocol-dependent parameter values required by the model were learned from the

CT image data, as explained in Section II-E. We begin by presenting the core of the

segmentation method in the following sections.

B. Segmentation with the HMMF model

Let I denote the input image, Ω represents the image domain, and r ∈ Ω is an image voxel.

The segmentation process involves two steps. The first step computes a continuous-valued

Markov random vector field q = [q1, q2], where each qk corresponds to the value for class k.

The second step then generates a binary label field f from q. The vector field q is constrained

by q1(r) + q2(r) = 1, q1, q2 ≥ 0, where qk(r) is the value at voxel r, for class k.

The vector field q represents an intermediate labeling and is assigned a prior distribution that

enforces spatial regularity

(1)

where C are spatial cliques of a selected neighborhood system, WC are potential functions

associated with C, and K is a positive normalizing constant. Here, 3D pairwise cliques in 26-

connected neighborhoods were used.

The potential functions WC are designed to measure the smoothness of q within the

neighborhood defined by the clique C = [r1, r2], at voxels r1 and r2. In this work, the

potential Wr1r2 between two values q(r1) and q(r2) was defined as (similarly to [20]):

(2)

where d(r1, r2) is the Euclidean distance between r1 and r2, which takes voxel spacing into

account, σW and λ are scalar constants, and Z is a normalization term that scales the

exponentials to sum to one within the 26-connected neighborhood Erj of any voxel rj (the

value is constant for a single image): . The parameter σW

controls how fast the Markov weight decreases as a function of voxel distance. This

parameter is important for 3D neighborhoods in anisotropic volumes where the slice

thickness is large compared to the in-plane resolution.
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The value of λ controls the weight of the Markovian prior with respect to the likelihood

function (described below), and should be adapted to the image content and the targeted

segmentation task. When image data is noisy, individual likelihood values are less reliable

than for a less noisy case, and the model should be forced towards the prior by increasing

the value of λ. In this study, the value of λ was assigned based on the image reconstruction

algorithm, as explained in Section II-E4.

For the segmentation process, the intensity distributions in an image I were modeled with

parametric distributions vθk (detailed in Section II-C) where θk is the mean of the

distribution for class k. The values θk have to be estimated simultaneously with q, and are

assigned a prior distribution Pθ(θ), defined in Section II-E1.

For a given image I, the posterior distribution for q and the associated parameter vector θ =

[θ1, θ2] is obtained from the Bayes rule:

(3)

where R is a positive normalizing constant.

The likelihood term in (3) is expressed as [15]:

(4)

Combining (1), (3), and (4), the respective maximum a posteriori (MAP) estimates q* and

θ* for q and θ are found by maximizing , where

(5)

Since the normalization term KR is constant and positive, the MAP estimate is found by

minimizing U(q, θ). The optimization was performed with the gradient projection

Newtonian descent method, as formulated in [15].

Finally in the second step of the segmentation, a binary label field f* was found by

maximizing P(f|q = q*, θ = q*, I), which is simply done by finding the mode of each q*(r)

(see [15]): f*(r) = 1, if , and f*(r) = 2, otherwise. An example of the HMMF

segmentation process is shown in Fig. 1.

C. Parametric functions for intensity distribution modeling

To obtain the likelihood values P(I|q, θ) in (4), we need to define the parametric functions

vθk that model the intensity distributions for the two classes k = 1, 2. Ideally, these

parametric distributions would have the same shape as the intensity distribution histograms

for the two classes in the image data.
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The intensity distributions within the lung were parameterized with skew-normal

distributions:

where αk is a skew parameter. The auxiliary variable zk is defined as:

where θk and σk represent the distribution location and scale, respectively.

The probability density function (pdf) for class k is defined as [23]:

(6)

where φ and Φ are the standard normal density and distribution function, respectively:

and

The notation erf refers to the error function:

The values for the parameters αk and σk were estimated from training data. To make the

model adaptive, as explained in Section II-B, the parameter θk was allowed to vary for each

individual image, while controlled by Pθ(θ), as in (5).

D. Data and preprocessing

1) Database of CT scans—The evaluation data set consisted of 365 inspiratory chest CT

scans from 87 subjects. The scans were collected in two different studies: in the EMCAP

study [21], between 2004 – 2009, and subsequently in the MESA COPD study [22], between

2009–2011. The number of scans for each year is listed in Table I.

In addition to the evaluation data set, a parameter training set included 44 CT scans of 22

subjects from the EMCAP study. The 44 scans were acquired by reconstructing each of the

22 CT acquisitions with two different kernels, as detailed below. Three subjects in the
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parameter training data set overlapped with the evaluation data set, but their scans were not

used when tuning parameter values between imaging protocols.

The subjects in the data set were 50 – 79 years old, with 10 or more pack-year smoking

history and who did not have clinical cardiovascular disease, stage IIIb-V kidney disease,

asthma prior to age 45 years, other lung disease, prior lung resection, cancer, allergy to

gadolinium, claustrophobia, metal in the body, pregnancy or weight > 300 lbs. [22]

In the EMCAP study, all subjects underwent non-contrast, full-lung CT scanning on a

Siemens Sensation 16 scanner, with 120 kVp, a current between 169 mA and 253 mA, and

speed 0.5 s. Of the total 278 scans in the evaluation data set, 259 were reconstructed with the

B60f (sharp) convolution kernel, and 19 with the B31f (smooth) kernel. The 22 subjects in

the parameter training set each had a single acquisition reconstructed with both the B31f and

the B60f kernel, bringing the total number of training images to 44.

In the MESA COPD study, full-lung CTs were acquired with a GE LightSpeed VCT 64

scanner, at 120 kVp, 200 mA, 0.984 pitch, and speed of 0.5 s. Images were reconstructed

with the standard (smooth) convolution kernel. This protocol is the same as the

SPIROMICS/MESA Lung protocol [24], except that the mA was held fixed.

From all the available scans in the EMCAP study, we included all full-lung scans with a

slice thickness of 0.75 mm. The EMCAP data in this study included 1 – 5 scans per patient,

with at least 12 months between repeated scans. In the subsequent MESA COPD study, a

single scan was acquired for each subject, bringing the total to 2 to 6 scans per subject.

The axial resolutions of the images used from the EMCAP data set were in the range [0.49,

0.87] mm and the slice thickness was 0.75 mm. For the MESA COPD data set, the axial

resolution range was[0.58, 0.88] mm, and all scans had a slice thickness of 0.625 mm.

Fig. 2 illustrates the image appearance in the lung for the different imaging protocols, with

detailed views of coronal slices from three scans of a single subject.

2) Preprocessing—Lungs and large airways were segmented from the background using

an approach similar to [25], by applying an intensity threshold of −400 HU and then locating

the largest connected objects in the resulting binary mask. Then, the trachea and some of the

large airways were removed from the lung mask by closed space dilation [26].

The airway segmentation removed on average 0.9% (with standard deviation of 0.2%) of the

initial mask volume. Since most of the volume of the airway segmentation corresponded to

the trachea, we expect that any variability in the extent of the removed airways would have

had only a minor effect on the resulting emphysema measure. In the experiments included in

this paper, all the emphysema measures for a given scan were extracted using the same lung

mask.

E. Model implementation and estimation of parameter values

1) Intensity distribution priors—For each class k, the locations θk of the parametric

distributions p(zk, αk) (6) are controlled by a prior distribution Pθ(θ), which assigns
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probabilities for different values of θ. The prior distribution affects the computation of the

MAP estimate in (3) and (5). Using a uniform distribution for Pθ(θ) means that the values of

θ are driven entirely by the data, whereas a non-uniform distribution injects prior knowledge

to their values, biasing the resulting MAP estimate θ*.

In our segmentation task, the volume of emphysematous tissue in a given CT scan is

unknown prior to the segmentation process. It is therefore important to ensure that θ1, the

distribution location of the emphysema class, does not receive unreasonably high values for

healthier subjects due to a lack of samples in the emphysematous intensity range. On the

other hand, there is always some healthy parenchyma present, and θ2, which corresponds to

the location of the distribution representing lung parenchyma and small vessels, can be

allowed to vary more freely to fit the data.

The prior distribution Pθ(θ) was assigned a delta function  for θ1, so that the

value of θ1 was fixed at . The value was set as: , where Iair =

−1000 HU corresponds to the standard intensity of air outside the body in CT images, Itr =

−955 HU is a reference value of the tracheal air intensity, and  is an imaging protocol-

dependent tracheal air intensity estimate.  was obtained by averaging over the airway

segmentations generated in the preprocessing stage. For EMCAP, this was done with the

parameter training set, and for MESA COPD using 20 randomly selected scans. This

formula lowers the prior mean for class k = 1, if the intensity of tracheal air is lower than the

calibration value. Wiemker et al. [27] have used tracheal air intensities similarly to adjust

the intensity threshold for emphysema quantification. The values , estimated for

individual imaging protocols, are reported in Table II.

For θ2, Pθ(θ) was assigned a uniform distribution in the range [−995, −750] HU, to provide

adaptivity. Due to the positive skewness (α2 > 0) of the distribution p(z2, α2) (see Section II-

E2), the distribution peak is always located at a higher intensity than θ2, and therefore the

range of Pθ(θ) cannot be directly interpreted as the range of possible mean intensities of the

lung parenchyma.

2) Distribution parameter values—The parameterization of intensity distributions with

the pdfs p(zk, αk), as defined in (6), involves defining values for σk and αk for the two

classes, with k = 1 and k = 2 representing the emphysematous tissue and healthy

parenchyma, respectively.

To find the parameter values for class k = 2, subjects with the mildest cases of emphysema

in the parameter training set were selected for each imaging protocol. For these subjects, the

observed intensity values within the lung were assumed to correspond almost entirely to

healthy lung parenchyma, with the highest intensity values caused by the partial volume

effect from small vessels.

The scans representing mildest cases of emphysema within the parameter training set of

each imaging protocol were selected as follows:
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• EMCAP B31f: 10 subjects in the parameter training set with the lowest values of

the standard %emph at −950 HU (%emph−950) for B31f reconstructions, with all

%emph−950 < 5.0.

• EMCAP B60f: B60f reconstructions of the same 10 acquisitions as used for

EMCAP B31f.

• MESA COPD: Randomly selected 10 subjects, which all had %emph−950 < 1.0.

Skew-normal pdfs (6) were fitted to each of the normalized lung intensity histograms of the

training scans within the range [−1000, −750] HU, as illustrated in Fig. 3. From the fitted

skew-normal pdf, the estimated values  and , for the respective parameters α2 and σ2,

were collected for each scan. For each imaging protocol, the average values of the parameter

estimates over the training set (listed in Table II) were then used for the evaluation data set.

The skew-normal pdfs with the mean  and  are illustrated in Fig. 3(d) for the three

imaging protocols.

The fit accuracy was measured by computing the histogram intersection dH [28] between

each intensity histogram H(I) and the estimated skew-normal pdf v. The histogram

intersection is defined as: , where j denotes histogram bins,

and Ij is the center intensity of bin j. The range of dH is from 0, corresponding to entirely

non-overlapping histograms, to 1, for identical histograms.

For each imaging protocol, the average values of dH over individual fits were (mean ±

standard deviation): EMCAP B60f: 0.99±0.01; EMCAP B31f: ± 0.97±0.01; MESA COPD:

0.97 ± 0.02. With dH evaluated between the histograms and the pdfs using the mean

estimates  and , the average values over the training scans were: EMCAP B60f:

0.98±0.02; EMCAP B31f: 0.95 ± 0.02; MESA COPD: 0.92 ± 0.04. The histogram

intersection values show that individual fits were very accurate, and the accuracy was fairly

well retained when using the mean estimates  and . The variability in the MESA COPD

intensity distribution shapes may be due to variable breath-hold levels or conditions that

affect the density of the lungs.

The parameter values for class k = 1 (emphysema class) could not be estimated in the same

manner as for class k = 2, since the intensity distributions of emphysematous voxels overlap

with parenchymal intensity distributions. Also, since CT image intensities were limited to be

higher than −1024 HU, finding a proper parameterization of the distribution from data could

prove challenging even if reliable delineations were available.

Since the appropriate values of σk are affected mostly by image noise, it seems reasonable to

assume that σ1 ~ σ2. The exact correspondence was not investigated in this study, and the

parameter was assigned as σ1 = σ2. The shape of the class k = 1 intensity distribution is also

unknown, and the skew parameter was set to α1 = 0, making the parametric distribution p(z1,

α1) a standard normal distribution.
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3) Model initialization—To minimize computational cost and to simplify the optimization

process, the initial values  for θ were chosen with the aim that they would be

close to their final values, on average, for each imaging protocol. For class k = 1, the value

was assigned simply as the location of the prior distribution: . The values  were

determined by fitting a skew-normal distribution in the range [−1000, −750] HU on a

training data set, using the estimated parameters  and  (see Table II), and taking the

median value of the resulting locations. For EMCAP, this estimation was performed using

the 22 images in the parameter training data set, and for MESA COPD, the same 20

randomly selected scans as in II-E1 were used. The resulting values of θ0 are reported in

Table II.

The initial values  for q were assigned at each voxel r using the initial values θ0:

and .

4) Markov field regularization parameters—The value of the Markov field weight λ

should be assigned based on the level of noise in the image. The value of λ was tuned

between the EMCAP B31f and B60f scans. For MESA COPD scans, λ was assigned to be

same as for EMCAP B31f, due to similar noise levels. Of the 22 subjects in the EMCAP

parameter training set, the 3 subjects included in the evaluation data set were removed when

optimizing the λ parameter, to separate training and evaluation sets.

First, the CT scans reconstructed with the smooth kernel (B31f) were segmented with a low

value for λ, namely λ = 1.0. This provided reference emphysema measures, denoted

. Then, for the sharp reconstructions (B60f) of the same CT acquisitions, λ was

varied and the absolute differences between the resulting  and the corresponding

 were computed. Finally, the B60f reconstructions were assigned a value for λ

that minimized the mean absolute difference (MAD) over the training data set.

The MAD values and their standard deviations for different values of θ are shown in Fig. 4.

The minimum MAD was 0.5, with a standard deviation of 0.4. This value was obtained

using λ = 5.0 for the B60f images, and the other parameter values as presented in Table II.

Fig. 5 illustrates the effects of varying the value of λ, on two image reconstructions.

Related to the λ parameter, the parameter σW (2) controls the decrease of the Markov weight

with respect to distance. Since the slice thicknesses in the scans used in this study were

similar to the in-plane resolutions, σW had only a minor influence on the results.

Nonetheless, it has the desired effect of reducing the weight at the corners of the

neighborhood. The same value σW = 1.5 mm as in [20] was used.
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F. Instructions for model employment

To conclude the Section, we provide step-by-step instructions to employ the presented

model on a new full-lung CT data set. The steps should be applied sequentially and

separately for each imaging protocol in the data set.

1. Apply preprocessing on all the CT scans to generate segmentations of the lungs and

the main airways.

2. Select scans with the least emphysema (for example by choosing the 10 subjects

with the lowest %emph−950). Fit a parametric distribution to each of the histograms

of the selected scans and collect the parameter values to model the likelihood

function for the parenchyma class. In this study, skew-normal distributions were

used, so this step produced estimates for the scale ( ) and skew ( ) parameters.

The distributions learned from mild cases in this step are expected to provide

accurate likelihood values for the parenchyma class.

3. Select scans randomly from the data set. Fit the parametric distribution obtained in

the previous step on the intensity histograms and find an estimate of the median of

the parenchymal distribution location θ2, and use this as the initialization value .

Choosing an initialization value near the data set average provides more reliable

results and faster optimization than using a predefined initial value.

4. Estimate the mean tracheal intensities using the airway segmentations of the scans

in the previous step. Use the tracheal intensity mean to define the intensity

distribution location θ1 for the emphysema class. Airway intensity values provide

an indication of average emphysema intensity values, and this information is used

to provide accurate likelihood values for the emphysema class.

5. Assign a value for the Markov field weight λ. If multiple reconstructions of CT

acquisitions are available, the approach used in the present study can be replicated.

This requires defining a low λ value for the smoothest scans and adjusting the value

for noisier scans, by minimizing the mean absolute difference of %emphMF

between the reconstructions. Alternatively, the weight value can be inferred from

results in previous studies, based on the parametric distribution scale or some

measure of image noise, such as the local noise estimation in [7]. The Markov

weight is intended to improve the segmentation results by reducing uncertainty

caused by image noise. Here, the Markov field is implemented with a 3D

neighborhood to enforce segmentation regularity between image slices, as well as

within them. For scans with thicker slices, 2D neighborhoods may suffice (i.e. not

enforcing regularity across slices).

6. Finally, using the parameter values learned in the previous steps, initialize the

HMMF model and apply the segmentation method. The values of %emphMF are

obtained by computing the volume classified as emphysema, divided by the total

lung volume.
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III. Results

A. Average emphysema scores over the evaluation database

In the following, %emphMF refers to the %emph measure obtained with the presented

HMMF model. %emph−950 represents the standard %emph using a threshold of −950 HU,

which is commonly used in clinical studies [29], [30], and PD15 is the 15th percentile

density.

The %emph measure obtained by thresholding at −950 HU after 3D Gaussian filtering is

denoted as . The filter scale σG was optimized in the same way as the value of λ,

by minimizing the MAD on the parameter training data set (see Section II-E4 for details).

For Gaussian filtering, MAD was minimized at 1.1 ± 1.3, using σG = 0.74 (see Fig. 4).

The values provided by these four emphysema measures are generally referred to as

emphysema scores. All %emph scores are reported in the range [0, 100], corresponding to

percentages of total lung volume, and PD15 scores are reported in HU.

A general overview of the emphysema scores over the evaluation data set of 87 subjects is

provided in Table III, with mean values, standard deviations, and minimum and maximum

values reported using the four emphysema measures, for each imaging protocol. In addition,

the values are reported using the most recently acquired EMCAP B60f scan for each subject.

For 49 subjects, the most recent B60f scan was acquired in 2008-09, for 35 subjects in 2007

and for the remaining 3 subjects in 2006. This scan grouping enables a comparison to the

same population of 87 subjects that was available in MESA COPD.

Based on the assumption that emphysema is irreversible, %emph should theoretically not

decrease with time. Since the majority of the population in this study represented mild cases

of emphysema, only a minor increase in the mean of %emph values was expected. The PD15

measure should decrease slightly for the same reasons.

The overall statistics show that the average %emphMF remained fairly stable, while the

average %emph−950 varied greatly depending on the imaging protocol. Indeed, between

imaging protocols the mean of %emphMF increased by 1.7 from the most recent EMCAP

B60f scans to the MESA COPD scans, while the mean of %emph−950 decreased by 29.6 for

the same data. With prior Gaussian smoothing ( ) on B60f scans, the mean

decreased by 3.4. The PD15 measure increased by 95 HU. In a paired t-test, all these

changes were statistically significant at the 5% level.

As the EMCAP B31f and MESA COPD scans were reconstructed with smooth kernels and

acquired 1 or 2 years apart, they were expected to give similar emphysema scores. However,

the mean values of %emph−950 declined significantly, from 8.5 to 2.6, and the mean PD15

values increased by 22 HU. In comparison, %emphMF showed only a slight increase for the

same data set, from 4.7 to 5.5. Also these changes were statistically significant at the 5%

level.
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B. Pairwise intra-measure correlations between longitudinal scans

Pairwise correlations between emphysema scores from longitudinal scans of individual

subjects were computed. The results are reported in Table IV (evaluations with fewer than

16 cases were omitted for space considerations). In the following, comparisons of

correlations were performed using Fisher’s r-to-z transformation and a two-tailed test of the

resulting z-score. Fig. 6 shows scatterplots of the emphysema scores from EMCAP 2008 –

09 and MESA COPD.

The results show that %emphMF achieved very high correlations between longitudinal scans

regardless of the imaging protocol. All 10 comparisons with more than 20 scans had

correlations of 0.95 or higher, whereas the overall minimum was 0.85. In only one

comparison (18 scans between 2004 and 2007, B60f reconstruction) the correlation for

%emphMF was lower than for another measure (PD15), but the difference was not

statistically significant (p = 0.92).

While the correlation values for %emph−950 were relatively high when comparing scores

between EMCAP B60f scans, in the range [0.73, 0.89], their values declined significantly

when comparing scores from B60f scans to scores from EMCAP B31f scans [0.64, 0.69], or

to scores from MESA COPD scans [0.52, 0.70]. Gaussian filtering of B60f scans before

thresholding improved the correlation values, particularly for comparisons to MESA COPD

scans. Interestingly, correlations between B60f scans were also higher for  than

for %emph−950. Correlations of PD15 were similar to or lower than correlations of

%emph−950.

When comparing EMCAP B60f scores to MESA COPD scores, all correlation values were

higher for %emphMF than for any other measure. This difference was significant (p < 0.01)

for all comparisons, except for EMCAP B60f 2004 (p = 0.07), where the sample size was

the smallest (N = 23). Between EMCAP B31f and MESA COPD, %emphMF also had the

highest correlation (0.96), but the difference to the PD15 value (0.87) was not statistically

significant (p = 0.08) due to the small sample size (N = 19).

C. Correlations between emphysema measures

To study the correspondence between %emphMF and %emph−950, pairwise correlations were

computed. The results are reported in Table V.

The correlation values show that there was a good agreement between %emphMF and

%emph−950 for the MESA COPD scans. For the EMCAP scans, the correlation values were

significantly lower. When taking into account the high intra-subject correlations of

%emphMF in Table IV, the high correlation for the MESA COPD data indicates that

%emphMF values from the EMCAP scans are also comparable to the MESA COPD

%emph−950 values.
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D. Progression of emphysema measures

Subject-specific differential %emph scores (δ%emph(tE)) were generated by subtracting the

MESA COPD %emph value (%emph(tMC)) from all preceding (EMCAP) %emph values

(%emph(tE)) of the same subject:

This way, negative values of δ%emph(tE) indicate growth over time.

The mean values and standard deviations of δ%emph(tE) for the three %emph measures are

shown in Fig. 7. The annual progression rate of %emph−950 has been previously estimated

as 0.63 (SE 0.03) [31], albeit for a different patient population. This estimate is used as a

reference progression rate in Fig. 7.

The figure shows that on average, %emphMF increased steadily and the differential scores

had a relatively low standard deviation throughout the studied data set. Also, the average

progression rate of %emphMF seems to agree well with the progression rate reported in [31].

For the standard measure %emph−950, the values of δ%emph−950(tE) were large and had

high variability. With prior Gaussian filtering of B60f scans,  had better

agreement with the MESA COPD values than %emph−950, but the differential scores still

had high variability. Moreover, the %emph−950 values from MESA COPD were clearly

lower than  values from EMCAP, suggesting a decrease of %emph in time (see

also Table III).

To evaluate annual changes Δa%emph in the emphysema measures, the changes in %emph

between consecutive scans were computed and divided by the number of years between the

scans at time points t1 and t2 (equivalently for ΔaPD15): Δa%emph = (%emph(t2) −

%emph(t1))/(t2 − t1). Histograms of the annual changes are shown in Fig. 8.

The histograms show that the values of Δa%emphMF were centered close to 0, with more

instances in the positive values, indicating an increase in %emphMF. Out of 278 evaluations

of Δa%emphMF, 81% were in the range [−1, 2]. On the other hand, the values of

Δa%emph−950 and ΔaPD15 had very wide and irregular distributions.

The annual progression rates were computed by taking the mean of Δa%emph for each

subject. First, the annual progression rate was evaluated using only the EMCAP B60f data

set. The means and standard deviations of the annual progression rates over the 87 subjects

for the four emphysema measures in EMCAP B60f were: %emphMF : 0.54 ± 0.91,

%emph−950 : 2.15 ± 2.60,  : 0.51 ± 2.67, and PD15 : −16.3 ± 13.1. The results

show very similar progression rates between %emphMF and , but the latter

suffers from higher variability.

The overall annual progression rate of %emphMF was computed over the entire evaluation

data set. The mean and standard deviation were 0.56 ± 1.37. The progression rate depended

on the degree of emphysema. Out of the 87 subjects, 32 had %emphMF above 5.0 for the
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MESA COPD scan, and for these subjects the mean and standard deviation of Δa%emphMF

were 1.3 ± 1.0. For the remaining 55 milder cases, the corresponding values were 0.4 ± 0.3.

For reference, a study by Parr et al. [5] estimated the annual progression rate of %emph−950

within a range [0.1, 2.0], and the annual progression rate of PD15 within [−1.2, −1.9]. The

progression rate depended on disease status, so that more severe disease progressed faster.

The presented results for the annual progression rate of %emphMF agree with these

estimates, as well as with the reference value in Fig. 7.

E. Example case

Fig. 9 presents an example of emphysema masks and the associated emphysema scores from

six scans for a single subject. The figure illustrates how %emphMF increased gradually with

time, while %emph−950 depended largely on the image acquisition protocol. The figure also

exemplifies the quality of the emphysema masks produced by the HMMF segmentation, as

the emphysema regions are seemingly consistent across the different scans.

F. Sensitivity to parameter value estimation

The sensitivity of the HMMF model with respect to the σ2, α2 and  parameter values was

evaluated with 22 B60f and B31f scans in the EMCAP training set, and a randomly selected

subset of 20 scans from the MESA COPD data set, where mean ± standard deviation of

%emphMF were 5.4±5.2. The changes in %emphMF were quantified when adjusting each

parameter value, while keeping other values unchanged. The changes Δσ2 for σ2 and Δα2 for

α2 were given values of ±1, ±2 times the standard deviations of the respective estimates 

and  for each imaging protocol, as listed in Table II. Since  was estimated by taking the

median over randomly selected scans, the range of values  was defined by estimating 

25 times (see Section II-E3) on EMCAP B60f and on MESA COPD, each time with a

different randomly selected set of 20 scans (for EMCAP B31f, not enough scans were

available for repeating the estimation). The standard deviation of the resulting  estimates

was 4.1 HU for EMCAP B60f and 4.5 HU for MESA COPD (the respective means were

−981 HU and −933 HU). Therefore,  was assigned values between −10 and 10 HU, to

approximate the range of the first two multiples of the estimate standard deviation.

The resulting changes in %emphMF are shown in Fig. 10. The model was more sensitive

with respect to  than the other two parameters. When the change in σ2 or α2 was within

one standard deviation of the parameter value estimate, the absolute mean change in

%emphMF was less than 1.0, for all imaging protocols. Adjusting  by ±5 HU also changed

the mean %emphMF by less than 1.0, except for EMCAP B60f, where increasing  by 5 HU

resulted in a mean change of 1.1.

Of the three data sets, MESA COPD showed the most sensitivity with respect to σ2,

although this is at least partially caused by the high standard deviation associated with the σ2

estimates. EMCAP B31f scans displayed the least sensitivity with respect to , while the

most sensitive were EMCAP B60f scans. The sensitivity of the EMCAP B60f scans is

assumed to be due to the high Markov field weight λ used for this imaging protocol. With a
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high value of λ, spatial regularity is strongly enforced, causing the initialization to have

more influence on the result than with a lower value of λ.

These results show that the presented model is somewhat sensitive to the parenchyma class

location initialization ( ), although this value can be estimated fairly consistently for a

given imaging protocol. Decreasing the value of  resulted in a smaller absolute change in

%emphMF than increasing its value. The resulting %emphMF always increased with an

increase in , indicating that changes in  alter %emphMF in a consistent direction. The

value of  could therefore be used to adjust the sensitivity of %emphMF, and provide lower

and upper bounds for the extent of emphysema, as proposed for tumoral growth estimates in

[32].

G. Computational expense

The computational expense of the HMMF model depends on the number of voxels within

the lung segmentation and the convergence speed of the optimization process. A typical lung

region in this study included between 10 · 106 and 25 · 106 voxels. With the current C

programming language implementation, the HMMF segmentation was computed for 100

images in 407 minutes using four computing cores, corresponding to an average

computation time of 16.3 min/N per image, where N is the number of cores used. We expect

code optimization to reduce the required computation time.

IV. Discussion and future work

This study presented a novel method for the quantification of emphysema from lung CT

images. The method is based on a segmentation of emphysematous regions from the lung

parenchyma with a HMMF model. This approach is analogous to the original density mask

[3], which has become popular in clinical studies. The presented segmentation model

introduces a parameterization of the intensity distributions and a probabilistic labeling of

voxels that enforces spatial coherence of the resulting label regions. These qualities were

shown to provide segmentations that were robust to changes in imaging protocols, and

subsequently enabled consistent and robust quantification of emphysema with the %emphMF

measure.

The presented method was shown to be valuable for quantifying emphysema in a

longitudinal data set where imaging protocols and CT scanners changed over time. Using

CT scans from the EMCAP and the MESA COPD studies, the results showed that

thresholding-based %emph−950 values were not comparable between the two studies,

whereas %emphMF values showed good agreement. Prior Gaussian filtering improved the

thresholding-based measure on noisy scans, but the correlation values were still lower than

for %emphMF. Interestingly, %emphMF also resulted in higher intra-subject correlations than

%emph−950 for longitudinal scans acquired with a single imaging protocol.

For the MESA COPD scans, the %emphMF values were on average higher than the values

for %emph−950. This means that %emphMF would correspond on average to a standard

thresholding-based %emph measure using a higher threshold value than −950 HU. However,
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this does not mean that a higher threshold would replicate the HMMF masks, or that the

%emphMF values could be replicated by simply identifying an intensity threshold value for

each imaging protocol. The presented HMMF model adapts to the intensity distribution of

each individual scan to provide a unique separation of the emphysematous regions from the

lung parenchyma, while imposing a spatial regularization that goes beyond labeling by pure

intensity-based analysis.

Even though the values of %emphMF were higher than %emph−950 on average for the

MESA COPD data, the correlation between the two measures was high, indicating a good

agreement for this imaging protocol. The average %emph values from MESA COPD scans

for the studied population were relatively low. While this study showed that the HMMF

segmentations are able to provide consistent %emph values between imaging protocols, a

future study should be performed on a population with more severe cases of emphysema.

The annual progression rate of %emphMF in this study was similar to what has been found

previously for %emph−950 in other studies [5], [31]. In comparison, the estimated annual

progression rate of %emph−950 in the present study was significantly affected by changes in

imaging protocols, and did therefore not correspond to the estimates found in studies using

data acquired with a single imaging protocol. Also, for %emphMF the progression rate in

mild cases of emphysema was found to be slower than for severe cases.

For the EMCAP scans, the mean of %emph−950 showed a relatively large average annual

increase. However, this change might not be indicative of emphysema progression, as the

mean of %emph−950 for the latest scans in MESA COPD was relatively low. Still, the intra-

subject correlations for %emph−950 in the EMCAP data remained relatively high. These

qualities suggest that the %emph−950 values for the EMCAP scans hold patient-specific

information, but their absolute values should be used with caution, and the differences

between longitudinal scans may be mostly due to changes in image acquisition protocols.

Generating emphysema masks using a robust and consistent segmentation method may have

significant value beyond merely extracting a single estimate of emphysema extent. The

masks provide information needed to assess the spatial distribution and regional progression

of emphysema. The presented model enforces smoothness of the emphysema masks, which

is particularly important for scans with high levels of noise. This may prove very valuable

for morphological analysis of segmentation masks, used for emphysema quantification and

subtyping [33], [34], [35]. Visually, the generated HMMF-based emphysema masks seemed

to correspond to each other between longitudinal scans. Our future work will include intra-

subject registration of scans to quantify the overlap of the generated emphysema masks, and

their regional evolution on longitudinal data.

One of the shortcomings of the HMMF model is the requirement to learn parameter values

for each CT imaging protocol. Estimation of the parenchymal intensity distribution

parameters requires either normal subjects or mild cases of emphysema. In our preliminary

work [19], the intensity distributions were modeled as normal distributions. However,

normal distributions were not able to account for the typical heavy tails of the intensity

distributions towards higher parenchymal intensities. This led to poor fits that often affected
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the final location of the parametric distribution, and caused unreliable estimates of

emphysema. By adding the skew parameter that is fairly simple to estimate, the skew-

normal distribution improves the fit to the data. The method was shown to be somewhat

sensitive to the initial value of the parenchymal likelihood function location, but with a

predictable effect on the resulting emphysema estimate. This issue will be investigated in

future work, by studying the effect of the initial value on the intermediate measure field.

Also, sensitivity might be reduced by adopting a re-initialization scheme after the initial

optimization of the distribution location for a given scan. Another drawback of the method is

the computational cost of generating the HMMF segmentation, which is obviously higher

than for simple thresholding. However, with currently available computational resources this

should not be a critical issue, even though real-time processing does not seem achievable.

Further development is still possible to improve the segmentation of emphysematous regions

from lung CT scans. In particular, gravity often causes the average intensity within the lung

parenchyma to vary spatially. Sometimes this unevenness can affect the thresholding-based

%emph values as the intensity values may decrease below the set threshold and cause an

over-estimation of emphysema. The presented version of the HMMF model does not fully

alleviate this problem, as the intensity distribution is modeled globally over the whole lung

region. Future development will focus on regional intensity distribution modeling, to adjust

the lung parenchyma intensity mean estimate according to the effect of gravity.

Alternatively, the CT intensity values could be adjusted for the effect of gravity in the

preprocessing stage, as proposed in [36]. Future work will also include a comparison study

with other emphysema quantification approaches [7], [8], [9].

The lack of ground truth is a shortcoming of the evaluation performed in this study.

Establishing ground truth would require repeated pathological sections, which is not feasible

in humans. However, this study showed that the proposed method can be used to obtain

robust and replicable estimates of emphysema extent across imaging protocols, which is a

prerequisite for further study of their clinical relevance.

While providing extraordinary data for diagnostic purposes, the increase in repeated CT

scans for patient monitoring has raised concerns about imaging-based health risks caused by

radiation. The presented emphysema quantification method may prove valuable for

accurately quantifying emphysema even as image noise levels are elevated when reducing

scanner radiation doses. The method was already shown to improve the quantification of

emphysema on existing heterogeneous image data, enabling better understanding of the

disease.
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Fig. 1.
Example of the HMMF emphysema segmentation process with corresponding coronal views

of: (a) original CT data in the range [−1024, −700] HU, (b) segmented lung region, (c)

continuous-valued MAP estimate of the Markov measure field q1, which represents the

emphysema class, and (d) final binary segmentation result f, with red corresponding to the

emphysema class, found by maximizing P(f|q = q*, θ = θ*, I), where q* and θ* represent

respective MAP estimates of q and θ, given image I.
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Fig. 2.
Coronal views of a small lung region for a single subject on three CT scans acquired with

different imaging protocols: (a) EMCAP B60f (sharp) from 2007, (b) EMCAP B31f

(smooth) from 2008, and (c) MESA COPD from 2009.
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Fig. 3.
(a)-(c) Fitting of skew-normal distributions to normalized intensity histograms of 10 training

scans for each imaging protocol. The vertical line indicates the −950 HU threshold used for

standard emphysema quantification. (d) Skew-normal distributions with estimated parameter

values , , and  for the three imaging protocols (see Table II).
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Fig. 4.

Mean absolute differences (MAD) and standard deviations of  and %emphMF in

the parameter training set, as a function of σG and λ, respectively.
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Fig. 5.
Illustration of the HMMF segmentation results for different values of the Markov field

weight λ. The images represent a cropped coronal view of a scan reconstructed with the two

different kernels, with B31f reconstruction on the top row and B60f reconstruction on the

bottom row. The red color represents regions classified as emphysema.
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Fig. 6.
Scatterplots of emphysema scores between EMCAP scans acquired in 2008-09 and MESA

COPD scans. The total number of scans was 68, of which 19 were reconstructed with the

B31f kernel in EMCAP. Diagonal line represents one-to-one correspondence.
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Fig. 7.
Means and standard deviations of differential emphysema measures δ%emph between

EMCAP (2004 – 2008) and MESA COPD (2009 – 2011). Number of scans for each year is

reported in Table I. A reference annual progression rate of 0.63 for %emph−950 [31] is

plotted in blue, by assigning a value of −0.63 · (2009 – Y ) for each year Y.
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Fig. 8.
Histograms of 278 evaluations of annual changes for the four emphysema measures. Please

note the different x-axis for the PD15 measure in (d).
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Fig. 9.
Example of emphysema masks and %emph values for six scans for a single subject, between

the years 2004 and 2010. The top row shows original image slices, and the three bottom

rows show emphysema masks generated by the HMMF method (%emphMF), thresholding at

−950 HU (%emph−950), and thresholding at −950 HU with prior Gaussian smoothing

( ). Scans from 2004 to 2008 were from the EMCAP study, and the latest scan

was from MESA COPD. Scans between 2004 and 2007 were reconstructed with the B60f

kernel and the last EMCAP scan with the B31f kernel.

Häme et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 10.
Mean differences (D) in the %emphMF scores, resulting from modifying the values of the

parameters (a) σ2 by Δσ2, (b) α2 by Δα2, and (c)  by . The notation ‘std’ refers to the

standard deviations of the estimated parameter values reported in Table II. The errorbars

represent standard deviations of D, evaluated over the 22 EMCAP B60f and B31f training

scans, and a randomly selected set of 20 scans from MESA COPD.
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TABLE I

Number of scans for each year for the 87 subjects in the evaluation data set. Each subject had no more than

one scan each year. Of the last EMCAP scans (2008-2009), 6 were acquired in early 2009, with the remainder

in 2008. Of the 87 MESA COPD scans, 55 were acquired in 2009, 27 in 2010 and 5 in 2011. The total number

of scans was 365.

Year
Siemens

B60f
Siemens

B31f GE

Total 2004 – 2011 259 19 87

MESA COPD 2009 – 2011 87

2008 – 2009 49 19

2007 73

EMCAP 2006 72

2005 42

2004 23
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TABLE II

Estimated imaging protocol-dependent parameter values used in the evaluation study, and descriptions of the

training data used for their estimation (details of the data are presented in the text): mean values and standard

deviations of  and  of skew-normal distributions for class 2 (parenchyma), location  for class 1

(emphysema) prior distribution and the associated tracheal air intensity , initial value , and the Markov

field weight λ.

σ2
∗(HU) α2

∗ μθ1

∗ ( = θ1
0)(HU) θ2

0(HU) λ

CT scans used for parameter
value estimation Low %emph−950 Low %emph−950 Any Any

Multiple
reconstructions

EMCAP B60f 124.4(±6.3) 1.25(±0.26) −1000 (Itr
∗

 = −954) −982 5.0

EMCAP B31f 76.9(±10.5) 3.01(±0.42) −1028 (Itr
∗

 = −983) −949 1.0

MESA COPD 79.5(±17.7) 3.74(±0.51) −1000 (Itr
∗

 = −931) −931 1.0
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TABLE III

Means, standard deviations, and minimum and maximum values of the emphysema scores over the entire data

set. 1) EMCAP B60f, all (2004 – 2009); 2) EMCAP B60f, most recent (2006 – 2009); 3) EMCAP B31f (2008

– 2009); 4) MESA COPD, subjects in EMCAP B31f (2009 – 2011); 5) MESA COPD, all (2009 – 2011)

Data
set

N
subjects

N
scans

%emphMF
mean ± std., [min,max]

%emph−950
mean ± std., [min,max]

%emphG
−950

mean ± std., [min,max]
PD15

mean ± std., [min,max]

1 87 259 3.4 ± 4.4, [0.2, 36.4] 30.1 ± 7.2, [10.3, 54.1] 6.0 ± 7.6, [0.0, 51.1] −998 ± 19, [−1024,−922]

2 87 87 3.8 ± 4.5, [0.4,36.4] 32.4 ± 6.3, [18.5, 54.1] 6.2 ± 7.7, [0.0, 51.1] −1007 ± 15, [−1024, −967]

3 19 19 4.7 ± 3.0, [1.4,12.4] 8.5 ± 6.1, [1.0, 26.6] - −934 ± 16, [−965, −901]

4 19 19 5.5 ± 4.1, [1.8,17.2] 2.6 ± 2.8, [0.3,11.7] - −914 ± 16, [−945, −876]

5 87 87 5.5 ± 5.9, [0.7,45.3] 2.8 ± 4.7, [0.1, 38.3] - −912 ± 21, [−976, −841]
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TABLE V

Pairwise correlations between %emphMF and %emph−950, with all p-values < 0.0001, except for the year 2004

(p < 0.01).

Year Correlation Number of scans

MESA COPD 2009 – 11 0.98 n = 87

EMCAP B31f 2008 – 09 0.79 n = 19

2008 – 09 0.74 n = 49

2007 0.60 n = 73

EMCAP B60f 2006 0.70 n = 72

2005 0.64 n = 42

2004 (0.57) n = 23
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