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Dynamic contrast-enhanced 3D images of the kidneys, or 3D MR renography, has the potential for broad
clinical applications, but suffers from respiratory motion that limits analysis and interpretation. Manual
registration is prohibitively labor-intensive. In this paper, a fully automated technique, Wavelet Repre-
sentation and the Fourier Transform (WRFT) method, that corrects for translation and rotation motion
in 3D MR renography is presented. The method was composed by anisotropic denoising, wavelet-based
feature extraction, and Fourier-based registration. This was first evaluated on a set of simulated MR
renography images with defined degrees of kidney motion. The method was then tested on 24 clinical
patient MR renography data sets. Results of clinical testing were compared with the results obtained
using a mutual information registration method. Based on intrarenal time-intensity curves, our method
showed robust and consistent agreement with the results of manually coregistered data sets.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The kidneys are vital organs that serve to filter out harmful
waste products and excess water from the blood. Measurements
of kidney function are critical to patient care, with existing tests
limited primarily to measurements of global renal function. Single
kidney glomerular filtration rate and split renal function can be
non-invasively measured by gadolinium-enhanced 3D dynamic
MR renography [1]. With 3D dynamic MR renography protocol,
3D images are acquired repeatedly over time after intravenous
injection of a low dose of gadolinium, a safe and sensitive contrast
agent. Image analysis of these contrast-enhanced images aims to
extract and then model time-intensity curves from each functional
renal compartment (renal cortex, medulla, and the collecting sys-
tem). Since patients often cannot reproducibly hold their breath
during data acquisition, accurate computation of time-intensity
curves requires spatial alignment of images over time to correct
for respiratory motion. In an earlier study [1], manual 3D registra-
tion and segmentation of all images were performed separately for
each kidney by two experienced investigators, requiring approxi-
mately 2–3 h at a workstation per case. For clinical applications,
this approach is prohibitively time- and labor-intensive. Therefore,
ll rights reserved.
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automated image registration techniques to correct respiratory
motion are of great clinical interest and importance.

Due to that segmentation is also the base of the registration, a
brief introduction of segmentation is presented. The challenging
part for dynamic contrast-enhanced image segmentation is that
when contrast agent wash-in and wash-out occurs, image intensity
values change rapidly as the time series evolves. Of course poor kid-
ney function or stenotic vasculature may prevent the uptake of con-
trast agent, resulting in disjointed disjoined bright regions. Accurate
and continuous boundary delineation is not always feasible. Basi-
cally, kidney segmentation techniques can be divided in two basic
categories: spatial or temporal. In the spatial approach segmenta-
tion is performed separately at each time point [2,3]. Temporal or
vector segmentation considers each voxel’s intensity time course
as a vector and classifies the tissues according their different fea-
tures and behaviors occurring in the temporal domain [4–7].

There has been limited work related to the registration of
dynamic MRI images of the abdominal region. Prior studies were re-
stricted in 2D plus time and in-plane motion only [8]. Two registra-
tion methods for minimization of the effects of kidney motion on
2D images have been discussed by [9]. Both methods were semi-
automated and required the use to trace contours of the kidney
boundaries. Another integrated dynamic renal perfusion MR image
registration algorithm was used by [7] to correct for 2D in coronal-
plane translation component of respiratory motion. Their study
used Sobel edge detection filters to correct for large scale motion.
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Registration was then refined based on local gradients and auxiliary
2D image segmentation results. However in this study, rotation and
out-of-plane motion were not corrected. Sun et al. applied their
method, combined with a 2D subpixel registration algorithm to cor-
rect for respiratory motion, to rat renal perfusion MR images [10].
Their 2D method minimized an energy function that integrated a
translational motion model and temporal smoothness constraints.
Tests with rat kidney transplants showed that the algorithm com-
pensated for the breathing motion and extracted the kidneys, cor-
tex, and pelvis, where translational movement was limited to
head-to-feet within one pixel. Gerig et al. put forward a 2D scheme
for automatic detection of the kidney contours, extraction of in-
plane motion parameters per frame, and registration of 2D images
[11]. Boundary features are extracted first, and then the Hough
transform served as a model-guided global method of grouping. Fi-
nally, the displacement and rotation parameters of the objects were
determined by the location and the rotational parameters obtained
from the evaluation of correlation maxima. Giele et al. used a 2D
phase difference method for kidney image motion correction,
which is limited to in-plane registration [12]. Boykov et al. used a
mutual information method to correct for the translational dis-
placement among 3D serial renal images, without solving the rota-
tion problem [5]. However, a fully 3D registration method
correcting both translation and rotation is still not available.

In this context, we propose a novel, fully automated dynamic
3D MR renography registration framework based on Wavelet Rep-
resentation and the Fourier Transform (WRFT) expansions. First, a
preprocessing step of denoising is employed using edge-preserving
anisotropic diffusion; second, edge detection is implemented using
a 3D over-complete dyadic wavelet expansion; third, using these
edge images, a 3D registration is accomplished using phase infor-
mation in Fourier space. In the sections below, we show how our
method was quantitatively evaluated on a phantom built from
clinical data as well as on 24 clinical data sets each compared with
manually registered ground truth data. Furthermore, this WRFT
framework was also compared with traditional 3D mutual infor-
mation based registration technique.
2. Methodology

2.1. Overview of processing steps

The WRFT framework was composed by three components:
anisotropic denoising, wavelet-based feature extraction, and Fou-
rier-based 3D registration. Given a series of multiple contrast-en-
hanced 3D renal MR images, 3D anisotropic diffusion was first
applied to reduce noise in the acquired image data. Based on these
denoised data, a 3D dyadic wavelet representation was applied to
extract major edge information and features relevant to the inter-
nal structure and compartments of the kidney. Next, these features
were fed into a 3D Fourier-based registration method to correct 3D
rotation and translation of the kidney due to the respiration.
2.2. Anisotropic diffusion

If edge detection is applied directly to the original serial 3D
images, false edges caused by noise prevent the registration pro-
cess from achieving sufficient accuracy. Therefore, a denoising pro-
cess is both beneficial and may be necessary for some patient data.
Montagnat and Weickert proved that anisotropic diffusion could
markedly reduce image noise without over-smoothing edges, and
showed that such denoising improves segmentation robustness
[13,14]. A Gaussian kernel has a major drawback in that it is diffi-
cult to obtain accurately the locations of the strong and useful
edges. Anisotropic filtering has the advantage of spatially encour-
aging intra-region smoothing in preference to inter-region
smoothing [15]. Therefore, we have applied a computationally effi-
cient denoising filter based on anisotropic diffusion previously
developed by [16] for 3D cardiac ultrasound data analysis.

In general anisotropic diffusion methods [15], apply the follow-
ing type of dynamic heat diffusion equation to the gray levels of
any given 3D plus time image data I(x, y, z, t):

@I
@t
¼ divðcðx; y; z; tÞrIÞ; ð1Þ

where c(x, y, z, t) is the diffusion parameter, div denotes the diver-
gence operator, and rI denotes the gradient of the image intensity.

In the original work of [15], the concept of anisotropic diffusion
was introduced with the selection of a variable diffusion parame-
ter, a function of the gradient of the data:

cðx; y; z; tÞ ¼ gðjrIðx; y; z; tÞjÞ: ð2Þ
We used the diffusion function proposed by [17] defined as:

gðx; kÞ ¼
1 x � 0

1� e
�3:315
ðx=kÞ4 x > 0

(
: ð3Þ

Eq. (1) can be numerically solved via explicit or implicit finite differ-
ence equations. The parameter k serves as a gradient threshold,
defining edge points xk as locations where jrIxk

j > k. This bell-
shaped diffusion function acts as an edge-enhancing filter, with
high diffusion values in smooth areas and low values at edge points.
The structure of the diffusion tensor with separate weights for each
dimension allows control of the direction of the diffusion process,
with flows parallel to edge contours.

Diffusion coefficient curves with different gradient threshold
values showed that the larger the gradient threshold, the wider
the range in which image gradients will be smoothed or weakened.
The curve also reduces to zero at about 5k. The gradient threshold
is selected based on the decreased properties of the diffusion coef-
ficient curve.

As the contrast agent washes in, image data properties change,
and it becomes necessary to modify the gradient threshold param-
eter value within each time series of data. In [13] a decrease in the
value of significant edges was used as the homogeneous regions in
ultrasound data were filtered. They decreased the threshold gradi-
ent over time and proposed values based on a fraction of the cumu-
lative histograms of the data gradients recomputed at each
iteration of the diffusion process. After experimenting with differ-
ent strategies for setting the gradient threshold value on our data,
we used a linear model where

kðtÞ ¼ k0 þ at; ð4Þ

with k0 is the initial gradient value, a is a slope parameter and t is the
time iteration index. Parameters for the data sets processed as k0 ¼ 7
and a = �0.02 with 10 iterations were set empirically. Since all the
images are using the same MR protocol (i.e. same acquisition param-
eters, e.g. TR, TE, etc.) which gave the similar signal to noise ratio, the
selection of parameter a is not sensitive across patient’s and time
frames. The gradient magnitudes of the image features were larger
than 35 pixel intensities whereas the gradient magnitudes of noise
were within 10 pixel intensities. Therefore, in order to preserve im-
age features, the initial gradient threshold was set to one fifth of the
lower bound of feature gradient, 7, with a slightly decreasing slope
of �0.02. Sample slices before and after anisotropic diffusion are
shown in Fig. 1, from which it can be clearly seen that noise is sup-
pressed, while important image features are preserved.

2.3. Wavelet edge detection

In dynamic MRI tissue contrast varies with time and different
compartmental organs of the kidney are enhanced in time after



Fig. 1. Sample anisotropic diffusion comparison (coronal view): first row contains original images; second row shows diffused images. Columns from left to right are the 1st
(pre-contrast), 10th (cortex enhanced), 18th (modulla enhanced), 37th (collecting system enhanced) time frames. Signals within each tissue are visibly smoother and more
homogeneous after diffusion.
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injection. Variable patterns of enhancement means that intensity
image alone are not reliable for organ registration. Instead, we
must rely on stable edge information which is preserved well
throughout the serial 3D image volumes. One way of implementing
a multi-dimensional discrete dyadic transform is to use a filter
bank scheme with separable wavelet bases [18]. Since the research
in this paper focuses on three-dimensional image processing, we
used a three-dimensional discrete dyadic transform. Wavelet bases
were constructed as a tensor product of a separable bases function
for each dimension. Similar to the 1D case, wavelet bases can be
designed as derivatives of spline functions, which are excellent
multi-scale edge detectors. A 3D discrete dyadic wavelet transform
of M level analysis can be represented as a set of wavelet
coefficients

SMsðn1;n2;n3Þ; W1
Msðn1;n2;n3Þ;W2

Msðn1;n2;n3Þ;W3
Msðn1;n2;n3Þ

n on o
;

ð5Þ

where Wk
Msðn1;n2;n3Þ ¼ hs;wk

m;n1 ;n2 ;n3
i; k ¼ 1;2;3 are coefficients

after high-pass filtering, SMs(n1, n2, n3) are coefficients after low-
pass filtering, and the scale m = 1, . . . , M. The wavelet bases are di-
lated and translated from wavelet functions:

wk
m;n1 ;n2 ;n3

ðx; y; zÞ ¼ 1

23m=2 wk x� n1

2m ;
y� n2

2m ;
z� n3

2m

� �
; k ¼ 1;2;3:

ð6Þ

Notice that a 3D dyadic wavelet transform consists of three compo-
nents at each level of expansion. They provide representations of
detail information along each of the Cartesian coordinate directions
at each expansion level (scale). The wavelet modulus Mmf of a 3D
signal f at scale m can then be computed from these individual
wavelet coefficients [19,20]:

Mmf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jW1

mf j2 þ jW2
mf j2 þ jW3

mf j2
q

: ð7Þ

An example of a 3D dyadic over-complete wavelet expansion is
shown in Fig. 2. The coarse and detail channels at three distinct lev-
els of analysis are shown with the corresponding extracted edge
information. From the plot, it can be seen that wavelet modulus,
or extracted edges, from a 2-level expansion retains the most
important compartmental features of the kidney without losing
too much detail. Based on this experimental rationale and the ma-
trix size of our raw data, we selected the modulus at level 2 analysis
for registration.

Moreover, with over-complete wavelet expansion and zero-
phase filters; there is no spatial shift of the position of edges across
levels of expansion. This mathematical property of translation
invariance is essential under our registration application. This
property cannot be achieved by the other methods when combined
with regular multi-resolution analysis techniques that may include
frequency dependent phase shifts across scales of an expansion.

2.4. Fourier-based registration

Using edge images acquired from the previous step, a 4D regis-
tration framework was accomplished by considering the first
frame as the reference of a 3D kidney volume; the subsequent
3D frames in time were then registered to the first one. Our work
utilizes a 3D motion correction method [21] based on the Fourier
transform. One of the benefits of the method is that it makes use
of all available information instead of a limited set of features from
the images. We will show that this makes the procedure very
robust.

The procedure is described as follow. Let f(x, y, z) be a 3D vol-
ume data, and let g(x, y, z) be a translated and rotated version of
f(x, y, z), then

gðx; y; zÞ ¼ f ðRðx; y; zÞT þ tÞ; ð8Þ

where t 2 R3 is a translation vector, and R 2 SO(3) is a rotation
matrix.

The 3D Cartesian Fourier transform of g(x, y, z) would be

F½g�ðwx;wy;wzÞ ¼
Z Z Z

gðx; y; zÞe�j2p½wxxþwyyþwzz�dxdydz: ð9Þ

To simplify notation, vector representation will be adopted. Let X
denote the column vector (x, y, z)T, and let W denote the column
vector (wx, wy, wz)T in frequency domain. Then we can rewrite the
Eq. (9) as



Fig. 2. Illustration of a 3D dyadic over-complete wavelet expansion (levels 1–3, rows 1–3) and corresponding extracted detail and modulus information after anisotropic
diffusion as shown in Fig. 1.
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F½g�ðWÞ ¼
Z Z Z

gðxÞe�j2pWT X dX: ð10Þ

Then the Fourier transform of g could be expressed in the Fourier
transform of f:

F½g�ðWÞ ¼
Z Z Z

f ðRX þ tÞ�j2pWT X dX: ð11Þ

Let X0 = RX + t, then X = R�1X � R�1t. Since R is a unitary matrix,
R�1 = RT and dX = dX0.
R ¼
cos wþx2

x ð1� cos wÞ xxxyð1� cos wÞ �xz sin w xy sin wþxxxzð1� cos wÞ
xz sin wþxxxyð1� cos wÞ cos wþx2

yð1� cos wÞ �xx sin wþxyxzð1� cos wÞ
�xy sin wþxxxzð1� cos wÞ xx sin wþxyxzð1� cos wÞ cos wþx2

z ð1� cos wÞ

264
375

3�3

: ð14Þ
F½g�ðWÞ ¼
Z Z Z

f ðX0Þe�j2pWT ðR�1X0 � R�1tÞdX 0

¼
Z Z Z

f ðX0Þe�j2pðRWÞT X0ej2pðRWÞT t dX0

¼ F½f �ðRWÞej2pðRWÞT t ð12Þ

Moreover, we can get

jF½g�ðWÞj ¼ jF½f �ðRWÞj: ð13Þ
From the above equations, we can see that the estimation of rota-
tion can be decoupled from the estimation of translation. Thus,
the first estimation of R should be implemented before the estima-
tion of t. In 2D space, rotation can be completely expressed by one
angle in polar coordinates, in order to represent a rotation. In 3D
space, three angles are needed (Euler’s rotation theorem to describe
rotation). Rodrigues’ rotation formula is adopted, which gives an
efficient method for computing the rotation matrix R 2 SO(3) corre-
sponding to a rotation by an angle w 2 R about a rotation axis spec-
ified by the unit vector ~x ¼ ðxx;xy;xzÞ 2 R3. Then R is given by
Since any unit vector in 3D space can be expressed by two angles
(h, /), the rotation axis unit vector can be calculated by three angles
(h, /, w):

xx ¼ cos h cos /; xy ¼ sin h cos /; xz ¼ sin /: ð15Þ

From a 3D phantom (a Gaussian ellipsoid) example, rotation and
translation corrections are next demonstrated. A homogeneous 3D
image g was generated by rotating image f with rotation parameters:
[0 90 9] degrees. Both images have dimensions of [32 32 32]. After
correction, the results showed rotation parameter: [0 89.98 8.97].



Fig. 3. Illustration of rotation effects on magnitude spectrum. A homogeneous 3D
image g was generated by rotating image f with rotation parameters: [0 90 9]
degrees. Both images have dimensions of [32 32 32]. (a) and (b) are the 16th slice in
XY plane of images f and g; (c) and (d) are the 16th slice of magnitude spectrums in
xxxy plane corresponding to images f and g.
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From Fig. 3, we can see that the rotation of the magnitude spectrum
represents the original image rotation.

Similarly, translation in the spatial domain will introduce a
phase shift in spectrum. In the phase domain, as illustration in
the example, Fig. 4, translation with parameters [0 �2 0] was cor-
rected by exactly the same parameters of the algorithm.
(a)

(c)

Fig. 4. Illustration of translation effects on phase correlation coefficient plot. A homoge
Both images have dimensions of [32 32 32]. (a) and (b) are the 16th slice in XY plane of i
the contour plot of figure (c), in which the peak value location is the exact translation e
2.4.1. Recovering the rotation matrix
By using the relationship between the Fourier transform magni-

tudes in Eq. (13), the rotation matrix can be recovered by minimiz-
ing the energy

E ¼
Z Z Z

ðF½g�ðWÞ � F½f �ðRWÞÞ2dW; ð16Þ

and the optimum rotation axis and rotation angle can then be
recovered by

ðĥ; /̂; ŵÞ ¼ arg min
h;/;w

E: ð17Þ

The minimization problem in Eq. (17) can be most efficiently solved
by the Quasi-Newton method [22].

2.4.2. Recovering the translation vector
After the rotation estimation, the rotational version of f, Rf, is

calculated. Thus, the translation vector can be easily recovered
by a phase-correlation technique:

dcorr ¼ F½g�ðWÞF � ½f �ðRWÞ
jF½g�ðWÞjjF½f �ðRWÞj ¼ ejWT �t ; ð18Þ

where � denotes complex conjugate and g denotes vector dot prod-
uct. The inverse Fourier transform of the right-hand side of Eq. (18)
is the Dirac impulse function. So the translation vector can be found
by simply finding the position of that impulse function. According
to the rotation and translation estimation, an aligned image from
g to f can be denoted as ~g and ~f , whose spectrum are eF and eG,
respectively.

In the Fourier registration process, a 3D window was applied to
eliminate the spurious introduction of high-frequency spectral en-
ergy due to boundary effects [23]. Experimentally, we found the
Blackman window worked best for this dynamic renal data since
it makes use of more information in the center of the image. The
window size was adapted to voxel resolution and the size of the
kidney.
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y

x

15

10

5

0

-5

-10

-15
-15

-10 -5 0 5 10 15

neous 3D image g was generated by translating image f with parameters: [0 �2 0].
mages f and g; (c) is the 16th slice of phase correlation coefficient in XY plane; (d) is
stimation between image f and g.



Table 1
Simulated motion for each time frame (T).

T Motion T Motion T Motion

1 Baseline 8 LR(�1.66 mm) + (90, 0, 5) 15 HF(3.32 mm)
2 AP(�2.5 mm) + (0, 90, �9) 9 AP(2.5 mm) 16 AP(5.0 mm)
3 LR(3.32 mm) + (90, 0, �2) 10 Baseline 17 Baseline
4 HF(6.64 mm) 11 HF(1.66 mm) 18 HF(�4.98 mm)
5 (0, 0, �4) 12 HF(�1.66 mm) 19 Baseline
6 HF(�6.64 mm) 13 Baseline 20 LR(�4.98 mm)
7 Baseline 14 LR(6.64 mm)
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3. Experiments and results

3.1. Simulated clinical study

The anatomy of the intrarenal regions was constructed based on
the in vivo MRR images acquired at 1.5 T (Avanto; Siemens Medical
Solutions, Erlangen, Germany) with a T1-weighted 3D gradient echo
sequence (TR/TE/FA = 2.84/1.05/12, interpolated matrix 256 �
256 � 40, FOV 425 mm � 425 mm � 100 mm, parallel imaging fac-
tor of 3, acquisition time 3 s) and segmented manually into cortex,
medulla, and collecting system by an experienced radiologist.

Based on a manually registered 4D MR renography data set, a
simulated data set with dimension [x, y, z, t] = [77 97 40 20] and
voxel resolution 1.66 mm � 1.66 mm � 2.5 mm was generated by
translating and rotating the kidney. Simulated motions included
head-to-feet (HF) translation, left to right (LR) translation, anterior
to posterior (AP) translation and rotation (Rot) with respect to
three different axes, represented in terms of (h, /, w) (Table 1).

Translation estimation errors with mean value and standard
deviation were 0.53 ± 0.47, 0.51 ± 0.46, and 0.60 ± 0.41 in x, y,
and z direction, respectively. For rotation, the errors were
0.003 ± 0.003, 0.07 ± 0.26, and 1.14 ± 0.72 degrees for (h, /, w).

3.2. Clinical evaluation

In order to evaluate the performance of our Wavelet Represen-
tation and Fourier transformation (WRFT) algorithm clinically, our
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Fig. 5. Average intensity curves for one of the data sets using man
algorithm was applied to 12 patient datasets (24 kidneys in total).
Our study used 3D manual registration and manual segmentation
results from experienced radiologists as ground truth. All datasets
consisted of at least 41 3D acquisitions acquired over 20 min. Each
3D dataset was comprised of 40 interpolated partitions of 2.5 mm
thickness, with an in-plane matrix of 256 and in-plane voxel size
1.66 � 1.66 mm.

In order to extract time course, after registration, three intrare-
nal regions, the cortex, medulla, and collecting system, were differ-
entiated by applying manual segmentation labels on the first
frame, assuming that the following frames have been correctly reg-
istered. The time-intensity curves of cortex, medulla, and collecting
systems were calculated both for the manually registered data sets
and our automatically registered data sets. As a comparison with
an alternative 3D registration method, the time-intensity curves
based on mutual information (MI) [24] were also calculated.

In Fig. 5, results from the three registration methods are shown
for each kidney region for a sample representative subject. Qualita-
tively, time-intensity curves based on WRFT registration were
much closer to the ground truth than MI derived measures. The
root mean squared (RMS) relative errors of time-intensity curves
between automatic registration methods, WRFT or MI, and ground
truth were calculated and are shown in Fig. 6.

From the box-plot, the relative errors based on our WRFT meth-
od were much smaller than the MI methods in terms of average
and standard deviation of RMS measurements. The average errors
for cortex, medulla, and collecting systems in WRFT method were
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ual registration, WRFT, and mutual information registration.
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Fig. 6. Boxplot for RMS evaluation of the time-intensity curves generated from WRFT (A) and MI (B) methods. ‘ct’ stands for cortex; ‘md’ stands for medulla; ‘cs’ stands for
collecting system. (a) left kidneys, (b) right kidneys.
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3.24% ± 1.41%, 5.31% ± 2.19%, and 8.23% ± 3.35%, respectively, for
the left kidney and 3.99% ± 2.23%, 5.67% ± 4.13%, and 9.26% ±
5.94% for the right kidney.

Evaluation of the statistical differences of results from the two
registration methods was performed at the significance level 0.05
with a Wilcoxon signed rank test for paired data. Significance val-
ues for the three regions for each pair of registration methods
showed small p values (below 0.05), which indicated a significant
statistical difference between the methods. According to the
box-plot, we can see WRFT had lower mean and smaller standard
deviation compared with MI, so WRFT statistically performed bet-
ter than MI.

The total processing time for the whole WRFT framework was
no more than 12 minutes to register each 4D dataset, executing
on a Pentium 4 class PC.
4. Conclusions

In 4D (3D plus time) MRI renography, image misalignment
due to respiration complicates downstream analysis for comput-
ing single kidney glomerular filtration rate and split renal func-
tion. Manual correction of such motion for each 4D dataset
typically requires approximately 3–4 h at the workstation per
case, which is prohibitively time- and labor-intensive for practi-
cal clinical use. In this paper, we proposed a novel fully auto-
mated four-dimensional MRI renography registration
framework which will need 15–20 min based on an over-com-
plete dyadic Wavelet Representation and Fourier Transform
(WRFT) method. An edge-preserving anisotropic diffusion opera-
tor was also introduced as a denoising method and an optimal
edge detection method were compared. The complete method
was tested in terms of automation, robustness, and accuracy
by both simulated motion and clinical evaluation of patient
studies. A comparison between WRFT and mutual information
(MI) was implemented to illustrate the effectiveness of the pro-
posed scheme with an alternative existing state-of-art approach.
Experimental results showed accurate time-intensity plots
resulting from automated registration when compared to data
from manually registered images. Executing on a Pentium 4 class
PC, it took no more than 12 min to register each 4D dataset. This
is about a 10-fold saving in time compared to manual align-
ments and processing. Furthermore, as a fully automated meth-
od, our framework requires no manual involvement or
intervention from radiologists. As a complete 4D registration
framework, the method may also be applied to additional
time-series MRI data, especially other abdominal soft tissue or-
gans, such as lung tumors.
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