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ABSTRACT 

 
Intravascular ultrasound (IVUS) has been proven a reliable imaging modality that is widely employed in cardiac 
interventional procedures. It can provide morphologic as well as pathologic information on the occluded plaques in the 
coronary arteries. In this paper, we present a new technique using wavelet packet analysis that differentiates between 
blood and non-blood regions on the IVUS images. We utilized the multi-channel texture segmentation algorithm based 
on the discrete wavelet packet frames (DWPF). A k-mean clustering algorithm was deployed to partition the extracted 
textural features into blood and non-blood in an unsupervised fashion. Finally, the geometric and statistical information 
of the segmented regions was used to estimate the closest set of pixels to the lumen border and a spline curve was fitted 
to the set. The presented algorithm may be helpful in delineating the lumen border automatically and more reliably prior 
to the process of plaque characterization, especially with 40 MHz transducers, where appearance of the red blood cells 
renders the border detection more challenging, even manually. Experimental results are shown and they are 
quantitatively compared with manually traced borders by an expert. It is concluded that our two dimensional (2-D) 
algorithm, which is independent of the cardiac and catheter motions performs well in both in-vivo and in-vitro cases.  
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1- INTRODUCTION 
 

The number of cardiac intervention procedures supplemented with intravascular ultrasound (IVUS) imaging has been 
significantly increased due to its clinical applicability and reliability. Although the primary use of the IVUS is taking the 
cross-sectional images of arterial wall and stenosis, it has been shown that the spectral analysis of backscattered IVUS 
signals can also be employed for atherosclerotic tissue characterization1-3. The most significant plaques are the ones that 
are soft and rupture-prone, characterized by a thin superficial fibrotic cap with a large underlying necrotic core that may 
contain thrombosis or nodular calcium4. Keeping this in mind, it is reasonable to conclude that the ultimate goal of 
atherosclerotic tissue characterization is the algorithmic detection of plaque compositions especially rupture-prone 
plaques, which are ultimately identified by an expert that assesses the classified tissue color maps. Nevertheless, none of 
the existing algorithms is able to differentiate between the blood cavity and plaques. In other words, the developed 
algorithms for atherosclerotic tissue characterization cannot be directly deployed to detect the lumen border. For this 
reason, image processing techniques are used to extract the lumen border along with vessel wall but they fail to classify 
tissues5,6,7.   
 
In this paper, the texture segmentation algorithm based on discrete wavelet packet frame (DWPF) and two-dimensional 
(2-D) envelope detection introduced by Laine et al8 is used to detect the lumen border in an unsupervised fashion. In 
tissue characterization, we previously demonstrated that the extracted textural features were perfectly suited for 
classification and capture characteristics of the plaque with the highest correlation to histology10. On the other hand, our 
results show that the same features can be utilized to detect the blood regions in-vitro and in-vivo on the IVUS images.  
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             (a)                                                                              (b) 
        Figure1. Tissue cage fixture (a), experiment set up (b).  

System specifications, specimen preparation and data collection methodologies are introduced in Section 2. We review 
the wavelet packet representation and describe the method of filter selection and feature extraction in Section 3. In 
Section 4, we present the classification algorithm along with experimental results and discuss the performance, 
advantages and limitations of the algorithm. A summary and conclusions are provided in Section 5. 
 
 

2- SPECIMEN PREPARATION AND DATA COLLECTION  
 

Acquisition of cross-sectional ultrasound images of right coronary arteries (RCA), left anterior descending (LAD) and 
left circumflex (LCX) coronary arteries were performed using a 40MHz rotating single-element Boston Scientific 
(Fremont CA) transducer. The radiofrequency (RF) data were continuous-time, real-valued and band-limited signals, 

( )x t  , and were digitized ( ) [ ]s nx nT x n x= =  at periodic time intervals,  2.5 ( 400 )s sT ns f MHz= = , with two 12-bit Acqiris 
boards [Monroe, NY]. The catheter pullback speed was 0.5 mm/s and the frame rate 30 frames/s. Each raw frame 
contains 256 lines with 2048 samples per line. For in-vitro data, we collected hearts from two sources: autopsy and 
transplant surgery, within 24 hours postmortem. The arteries were dissected from the heart with an approximate size of 
20 60 20 20− × × mm ( )l w h× × . We tied off the major branches and attached the endplates to the distal and the proximal 
ends with sutures and tissue adhesive (LiquiVet) and placed the segment into a tissue cage fixture, Figure 1(a). 
Circulating phosphate buffered saline (PBS) was used to ensure constant pressure (100 mmHg) as well as flow and to 
maintain the artery physiologically opened at 37° C (Fig. 1 (b)).  
 
The IVUS catheter was introduced and advanced on a 0.014” guide wire and a complete automatic pullback was 
performed from the distal to the proximal side. We repeated the experiment using human blood instead of PBS. After 
imaging, the artery was pressure fixed with 10% buffered formaldehyde under 100 mmHg during three hours. After 
decalcification, the histology blocks were cut from distal to proximal every 2mm (corresponding to 120 frames of the 
IVUS pullback) using the side rods. Blocks were then embedded in paraffin. For each block, three sections were used for 
histology. The first two sections were stained with hematoxylin and eosin (H&E) and Movat Pentachrome, and the last 
section was kept unstained for additional future staining (e.g., Sirius Red). Hematoxylin and eosin are among the most 
commonly used stains in histopathology. Hematoxylin turns nuclei blue; eosin turns the cytoplasm (mostly composed of 
proteins arginine and lysine) pink. Another stain, the Movat pentachrome, colors cytoplasm in red, elastin fibers in black, 
collagen and reticulum fibers in yellow to greenish and proteoglycans in blue. Clear areas might represent water, 
carbohydrate, lipid, gas or decalcified areas. Sirius red, on the other hand, has been used exclusively for collagen staining 
in cardiovascular histopathology. Collagen fibers are stained red and can be distinguished morphologically from other 
tissue components in the plaque. 
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The in-vivo data were collected during a routine cardiac intervention procedure with the abovementioned acquisition 
specifications and stored for offline processing.  
 

3- METHODS  
 

The discrete wavelet packet transform (DWPT)11 is the over complete version of the decomposition process in the 
discrete wavelet transform (DWT)12,13, in which every generated coefficient in the decomposition tree is passed through 
a high-pass and low-pass filters. The cost of such a generalization is an increase in computational complexity. Unlike the 
DWT and DWPT the decompositions are translation invariant in DWPF and no decimation occurs between levels, (Fig. 
2). This makes the DWPF method superior for texture segmentation. Since the IVUS signals are sampled at the rate of 

sf , it is more appropriate to consider the discrete signals that can be represented by a set of wavelet packet coefficients 
at the first scale ( )0l = . For the tree-structured scheme demonstrated in Fig. 2, we can write: 

( ) ( ) ( ) ( ) ( ) ( )1 1
2 2 1, (1)l l l l

k l k k l kS G S S H Sω ω ω ω ω ω+ +
+= =  

where ( )l
kS ω  is the Fourier transform of the frame coefficients at channel k and level l . The ( )lG ω  and ( )lH ω are the highpass 

and lowpass filters at level l , respectively. 

 
3.1. Filter bank specification 
 
The highpass, ( )lG ω , and lowpass, ( )lH ω , filters at level l  can be written as9: ( ) ( )0 2l

lG Gω ω= . Consequently, the 

multi-channel wavelet schematic in Figure 2 behaves like a filter bank with channel filters ( ){ }0 2 1l l
kF kω ≤ ≤ − , where 

( )l
kF ω can be derived recursively as follows: 
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It has been shown that the selection of the filters ( )0G ω  and ( )0H ω  can have significant impact on texture classification 
performance8. The filter candidates must satisfy crucial criteria such as symmetry as well as boundary accuracy and have 
optimal frequency response. Hence, we selected Lemarie-Battle13 wavelets that are symmetric (have linear phase 
response) and quadrature mirror filters (QMF). The former property alleviates boundary effects through simple methods 
of mirror extension. The wavelets using QMF as well as constructed filter bank ( ){ }l

kF ω cover the entire frequency 
domain and satisfy the following property: 

Figure 2. Tree structure for discrete wavelet packet frames (DWPF) and associate indexes. G 
and H are the highpass and lowpass filters, respectively.  
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3.2. Feature extraction 
 
The features were extracted by processing of the IVUS signals for every frame in the (r,θ) domain. Each frame contains 
256 lines that span over 360 degrees with 2048 samples per line. In order to have an optimized frame size with respect to 
the computational complexity and the textural resolution, we interpolated (bilinear) and decimated the signals in the 
lateral and axial directions by a factor of 2 and 4, respectively, to generate the square , 512M M M× =  pixels frame. 
Figure 3 illustrates an IVUS image in (r,θ) and Cartesian (x,y) domain. For each IVUS frame, a tensor product extension 
was used in which the channel filters were denoted by ( ) ( ) ( ),l l l

i j r i r jF F Fθ θω ω ω ω× = . In the 1-D case, the wavelet and 
scaling functions concentrated mostly on one half of the frequency axis; on the other hand, the resulting 2-D basis will 
concentrate mostly around one direction. Consequently, such an extension will lead to the orientation selectivity in the 
decomposition tree. Four possible orientations can be considered excluding the root node, which is omnidirectional.  

1. The node last filtered by ( ) ( )l r lG H θω ω corresponds to the vertical orientation. The highpass filter lG and 
lowpass filter lH are applied in the axial and lateral directions, respectively. 

2. The node last filtered by ( ) ( )l r lH G θω ω corresponds to the horizontal orientation. The lowpass filter lH and 
highpass filter lG are applied in the axial and lateral directions, respectively. 

3. The node last filtered by ( ) ( )l r lG G θω ω corresponds to the diagonal orientation. The highpass filter lG is 
applied in the axial and lateral directions, respectively. 

4. The node last filtered by ( ) ( )l r lH H θω ω  has the same orientation as its parent. The lowpass filter lH is 
applied in the axial and lateral directions, respectively. 

Finally, the envelope of the signals was computed8 and the feature matrix was constructed as follows:  

( ){ }, , , 0 2 1 , , 1,..., (7)l l
i j k i jV e k i j M= ≤ ≤ − =
r

 

where , ,
l
k i je represents the envelope value of pixel ( ),i j for the k -th component at level l .  

 

                                 (a)                                                                  (b) 
Figure 3. An IVUS frame, (r,θ) domain (a), scan converted Cartesian (x,y) domain, 
(transducer at center) (b) 
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4- BORDER DETCTION METHODOLOGY AND RESULTS   

 
For every representation matrix M MX ×  that contains feature vectors, a label was assigned to every pixel by modulo cN . 

We computed the center of clusters { }0 1cC Nκ κ≤ ≤ −
r

by calculating the mean vector for each class. The pixel 

{ }, , 1,...,i jx i j M= was assigned to the class ,κ  if the Euclidean distance between the corresponding pixel and the class 

center Cκ

r
was the closest. The centers of the clusters were updated in an iterative fashion by recomputing the relative 

mean vectors. The procedure was terminated once no change in labeling occurred. Figure 4(b) demonstrates the 
segmented results after edge detection. In order to find the majority of pixels that lie on the lumen border, we identified 
the closest set of pixels r

r  in respect to the transducer surface and removed the outliers as follows: 

( ) ( )

[ ] ( )

{ }

1

22

, 1 min , 1,..., (8)

,
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=
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where ,E µ and 2σ denote the expectation, mean and variance, respectively. The resulting set of pixels has been 
illustrated in Figure 4(c). Finally, all the detected points are transformed into the Cartesian domain followed by an 
iterative spline interpolation until the closed form of contour is achieved, Figure 4(d).  

                                                                 (c)                                                                        (d) 
Figure 4. The original IVUS image in the (r,θ) domain (a), The segmented image using DWPF using Lemarie-Battle filter of order 
18, 4, 2cl N= =  (b), The closest set of pixels to the surface of the transducer (c), Lumen border after scan conversion (Cartesian 
domain) and spline interpolation (d). 

                          (a)                                                                       (b) 
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4.1. Experimental results and quantification 
 
As we mentioned in Section 1, none of the existing algorithms is able to characterize the atherosclerotic tissues and 
differentiate between blood and plaque signals (detect the lumen border) simultaneously. Our results show that the 
proposed algorithm can classify tissues and detect the lumen border reliably. Previously we used 64 cross section of 
interest (CSI) collected from thirty two cadaver hearts, including 26 LAD, 28 RCA and 20 LCX segments10. The overall 
classification performance was reported by two independent histopathologists to be 81.71%, 82.76% and 85.51% for 
fibrotic, lipidic and calcified regions, respectively. Figure 5 demonstrates the IVUS CSI, corresponding Movat 
Pentachrome histology image, and the IVUS-histology color map (IV-HCM). The blue, yellow and pink colors denote 
calcified, fibrotic, and lipidic plaque components, respectively. 
 
We evaluated the algorithm performance on border detection using 18 in-vivo CSI collected from three in-vivo patients 
and 14 in-vitro CSI collected from two cadaver hearts. Figure 6 demonstrates the automatic detected lumen contours and 
the manually traced contours by an expert for both cases. Our results show that the manual and automated detected 
lumen borders are correlated very well ( )0.9854, 0.953 0.725r y x= = + , Figure 7(a). We also computed the Tanimoto 
coefficient ( )η to measure how well the automated detected contour is matched with corresponding manually traced 
contour 

(10)
contour
c

contour contour contour contour
a m c

N
N N N

η =
+ −

 

where, ,a mN N  are the number of enclosed pixels in automated and manually traced contours respectively and cN is the 
number of common pixels in both. Figure 6 shows the Box-Whisker plot of Tanimoto coefficients of automated and 
manually delineated lumen borders with length of 1.5 times interquartile range and confirms that the borders are matched 
reliably.  
 
 

5- SUMMARY AND CONCLUSION    
 
We employed a 40MHz single element mechanically rotating transducer and collected in-vivo and in-vitro RF data. In 
this paper, we presented a new processing technique based on multi-scale wavelet packets to differentiate between blood 
and non-blood signals on the IVUS images. The algorithm is also capable of classifying the atherosclerotic tissues into 
lipidic, fibrotic and calcified. Our proposed technique is unique in a sense that it is capable of detecting the lumen border 
and plaque components. The main advantage of the proposed algorithm is that it can reliably classify plaques and blood 
regardless of the transducer center frequency or spectrum while inconsistency among the alternative techniques 
employing spectrum-derived features within the transducer’s bandwidth still remains a major challenge2.  
 
The tissue classification accuracy had been evaluated to be 81.71%, 82.76% and 85.51% for fibrotic, lipidic and calcified 
regions, respectively. The tissue classification accuracy by IVUS virtual histology (IVUS-VH)1 technique using 
autoregressive (AR) analysis in combination with a classification tree for 30 MHz single element transducers has been 
reported to be 90.4%, 92.8%, 90.9% and 89.5% for the training dataset and 79.7%, 81.2%, 92.8% and 85.5% for the test 
dataset in fibrotic, fibro-lipidic, calcified and calcified necrotic regions, respectively. We validated the performance of 
the algorithm for differentiating between blood and non-blood regions on IVUS images using 32 in-vivo and in-vitro CSI 
and the results demonstrated promise for reliable lumen border detection. The automated and manually detected lumen 
areas were highly correlated ( )0.9854, 0.953 0.725r y x= = + and comparable to the results of the study conducted by 
Sonka et al5 using 38 in-vitro CSI at 30 MHz ( )0.96, 1.02 0.52r y x= = + .  
 
However, a fully automated atherosclerotic tissue characterization algorithm is required to identify the vessel wall in 
addition to lumen border prior to tissue classification. We will examine the possibility of differentiation of vessel 
adventitia and plaque, or detection of internal elastic lamina, media and external elastic lamina in future studies. 
 
 

 
 

Proc. of SPIE Vol. 6920  69200H-6

Downloaded from SPIE Digital Library on 24 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



 

 

 

Figure 7. Comparison of automated detected lumen area and expert-defined lumen area (a), Box-Whisker plot of Tanimoto 
coefficients of lumen border. 

                          (a)                                                                    (b)                                                                      (c)  
Figure 5. Movat Pentachrome histology image of cross section of interest (a) corresponding IVUS image (b), resulting IVUS-
histology color map generated by the algorithm using Lemarie-Battle filters of order 18, decomposition level L=2, number of 
classes Nc=4 (c). Blue, yellow and pink colors represent calcified, fibrotic and fibro-lipidic tissues. 

                                                              (a)                                                                       (b)   
Figure 6. Automated detected lumen contour (green) by the algorithm using Lemarie-Battle filters of order 18, decomposition 
level L=4, number of classes Nc=2 and manually traced contour (red) by and expert. In-vivo (a), In-vitro using circulating human 
blood (b) 

0 2 4 6 8 10 12 14 16
0

5

10

15

Observer defined lumen area (mm2)

A
ut

om
at

ed
 d

et
ec

te
d 

lu
m

en
 a

re
a 

(m
m

2 )

 

 

r = 0.9854
Y=0.953 x + 0.725
n = 32

Lumen Border
0.85

0.9

0.95

1

Ta
ni

m
ot

o 
co

ef
fic

ie
nt

 ( 
η 

)

Proc. of SPIE Vol. 6920  69200H-7

Downloaded from SPIE Digital Library on 24 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Boston Scientific Inc. (Fremont, CA) for providing the transducers and acquisition 
systems.  We also thank Jennifer Lisauskas and Stephen Sum, at InfraRedx (Burlington, MA), who developed the artery 
fixation cage and their invaluable help in collecting IVUS data. The histology samples were processed at CVPath 
(Gaithersburg, MD) under the supervision of Dr. R. Virmani. 

 
 

REFERENCES 
 
[1] Nair, A., Kuban, B.D., Obuchowski, N., Vince, D.G., “Assessing spectral algorithms to predict atherosclerotic plaque 

composition with normalized and raw intravascular ultrasound data,” Ultrasound in Med. & Biol., vol. 27, no. 10, pp. 1319–1331, 
2001. 

[2] Katouzian, A., Sathyanarayana, S., Baseri, B., Konofagou, E.E., Carlier, S.G., “Challenges in Atherosclerotic Plaque 
Characterization with Intravascular Ultrasound (IVUS): From Data Collection to Classification,” IEEE Trans. on Information 
Technology in Biomedicine, Special issue on IVUS (in press). 

 
[3] Kawasaki, M., Takatsu, H., Noda, T., Sano, K., Ito, Y., Hayakawa, K., Tsuchiya, K., Arai, M., Nishigaki, K., Takemura, G., 

Minatoguchi, S., Fujiwara, T., Fujiwara, H., ” In Vivo Quantitative Tissue Characterization of Human Coronary Arterial Plaques 
by Use of Integrated Backscatter Intravascular Ultrasound and Comparison With Angioscopic Findings,” Circulation, vol. 105, 
no. 21, pp. 2487- 2492 May 2002. 

[4] Virmani, R., Burke, A.P., Kolodgie, F.D., Farb, A., “Pathology of the thin-cap fibroatheroma: A type of vulnerable plaque,” J. 
Inteven. Cardiol., vol. 16, No. 3, pp. 267-272, 2003. 

[5] Sonka, M., Zhang, X., Siebes, M., Bissing, M.S., DeJong, S.C., Collins, S.M., Mckay, C.R., “Segmentation of intravascular 
ultrasound images; a knowledge-based approach,” IEEE Tran. on Medical Imaging, vol. 14, no. 4, pp. 719-732, 1995.  

[6] Meier, D.S., Cothren, R.M., Vince, D.G., Cornhill, J.F., “Automated morphometry of coronary arteries with digital image 
analysis of intravascular ultrasound,” Am. Heart J., vol. 133, no. 6, pp. 681-690, 1997. 

[7] Unal, G., Bucher, S., Carlier, S.G., Slabaugh, G., Fang, T., Tanaka, K., “Shape-driven segmentation of intravascular ultrasound 
images,” CVII-MICCAI, pp. 50-57, 2006 

[8] Laine, A.F., Fan, J., “Frame representation for texture segmentation,” IEEE Trans. Image Proc., vol. 5, no. 5, pp. 771-780. 
[9] Rioul, O., Vetterli, M. “Wavelet and signal processing,” IEEE Sig. Proc. Mag., pp. 14-38, Oct. 1991. 
[10] Katouzian, A., Baseri, B., Konofagou, E.E., Laine, A.F., “Texture-driven coronary artery plaque characterization using wavelet 

packet signatures,” submitted to IEEE Int. Symp. on Biomed. Imag. 2008, under review. 
[11] Coifman, R.R., Wickerhauser, M.V., “Entropy-based algorithms for best basis selection,” IEEE Trans. Inform. Theory, pt. II, vol. 

38, no. 2, pp. 713-718, Mar. 1992. 
[12] Rioul, O. “A discrete-time multiresolution theory,” IEEE Trans. Sig. Proc., vol. 41, no. 8, pp. 2591-2606, Aug. 1993. 
[13] Mallat, S.G. “A theory of multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Patt. Anal. Mach. 

Intell., vol. 11, no. 7, pp. 674-693, 1989. 
 

Proc. of SPIE Vol. 6920  69200H-8

Downloaded from SPIE Digital Library on 24 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms


