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Abstract
Images from different individuals typically cannot be registered precisely because anatomical
features within the images differ across the people imaged and because the current methods for image
registration have inherent technological limitations that interfere with perfect registration.
Quantifying the inevitable error in image registration is therefore of crucial importance in assessing
the effects that image misregistration may have on subsequent analyses in an imaging study. We
have developed a mathematical framework for quantifying errors in registration by computing the
confidence intervals of the estimated parameters (3 translations, 3 rotations, and 1 global scale) for
the similarity transformation.

The presence of noise in images and the variability in anatomy across individuals ensures that
estimated registration parameters are always random variables. We assume a functional relation
among intensities across voxels in the images, and we use the theory of nonlinear, least-squares
estimation to show that the parameters are multivariate Gaussian distributed. We then use the
covariance matrix of this distribution to compute the confidence intervals of the transformation
parameters. These confidence intervals provide a quantitative assessment of the registration error
across the images. Because transformation parameters are nonlinearly related to the coordinates of
landmark points in the brain, we subsequently show that the coordinates of those landmark points
are also multivariate Gaussian distributed. Using these distributions, we then compute the confidence
intervals of the coordinates for landmark points in the image. Each of these confidence intervals in
turn provides a quantitative assessment of the registration error at a particular landmark point.
Because our method is computationally intensive, however, its current implementation is limited to
assessing the error of the parameters in the similarity transformation across images.

We assessed the performance of our method in computing the error in estimated similarity parameters
by applying that method to real world dataset. Our results showed that the size of the confidence
intervals computed using our method decreased – i.e. our confidence in the registration of images
from different individuals increased – for increasing amounts of blur in the images. Moreover, the
size of the confidence intervals increased for increasing amounts of noise, misregistration, and
differing anatomy. Thus, our method precisely quantified confidence in the registration of images
that contain varying amounts of misregistration and varying anatomy across individuals.
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1. Introduction
Image registration is the process of spatially transforming images into a common coordinate
space such that anatomical landmarks in one image match the corresponding landmarks in
another image. Ideally, these landmarks match perfectly across the images. In practice,
however, errors in image registration are inevitable. These errors proportionately increase the
level of noise in any subsequent processing or statistical analysis of the images. For example,
in functional magnetic resonance imaging (fMRI) datasets, noise in the analysis caused by
error in registration of the functional images will reduce the likelihood of detecting significant
task-related change in signal from the brain. Given the need to minimize error, a number of
excellent methods for image registration have been proposed (Brown, 1992; Viola and Wells,
1997; Lester and Arridge, 1999; Hanjal et al., 2001; West et al., 1996). When these methods
are applied in a real world setting, information specific to the imaging application determines
the number of parameters of the spatial transformation, and it determines the features of the
image and the cost function that will be used to estimate the optimal values of the transformation
parameters. However, none of these methods can register images perfectly, for two reasons.
First, variation in brain anatomy across individuals is inevitable, making perfect registration
of the images impossible, even when using high-dimensional transformations of the images.
Second, image registration is fraught with inherent methodological limitations and challenges,
such as the need to use degrees of freedom during spatial transformation that are inadequate
to provide perfect matching of image features, and difficulties in determining the global optima
of the cost function for registration (Collins and Evans, 1997; Brett et al., 2001; Nieto-Castanon
et al., 2003; Hellier et al., 2003; Thirion et al., 2006). Given that images cannot be registered
perfectly, quantitative assessment of the accuracy of image registration is desirable to help
investigators decide whether to avail themselves of any number of options that can reduce the
error in registration, which includes removing images with large amounts of error from
subsequent analyses.

A number of methods have been proposed to quantify error in the registration of images. These
methods fall roughly into five classes: (1) This class estimates transformation parameters using
images that have been transformed by known parameters and then compares the estimated
parameters with the known ones. Estimated parameters will equal known parameters if the
images are perfectly registered (West et al., 1997). (2) This class predicts and quantifies the
error across images by computing the average of the Euclidean distances between
corresponding landmarks external to a region of interest (ROI) in the registered images (West
et al., 1997; Pennec and Thirion, 1997; Fitzpatrick et al., 1998). (3) This class computes the
average of the Euclidean distances between corresponding landmarks within a ROI (for
example, between the anterior commissure (AC) and posterior commissure (PC)) (Grachev et
al., 1999). (4) This class computes the average of the Euclidean distances between
corresponding edges in the registered images (Crum et al., 2004; Fox et al., 2006). In classes
2, 3, and 4, the average distance would equal zero if the images were perfectly registered. (5)
Finally, this class quantifies error by computing the overlap of corresponding structures that
are defined in the registered images (Rogelj et al.,2002; Jannin et al., 2006; Hellier et al.,
2003). The delineated structures overlap completely if the images are registered precisely.
Because the variability in anatomy across individuals cannot be quantified directly, methods
in all five categories include the effects of anatomical variability on image registration when
determining the accuracy of either the estimated parameters or the matching of corresponding
landmarks and structures across images.
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These methods for quantifying the error in image registration have two major limitations. First,
they cannot precisely assess the accuracy of registration of images that have already been
transformed. For example, methods that quantify error either as the average distance between
corresponding landmarks or as the amount of overlap of corresponding structures across
individuals, and these landmarks and overlap of a given structure may not be features of the
image that are of central importance or relevance in image registration. Other structures and
landmarks in the images may not match well even when the landmarks or structures specified
within the registration process do match perfectly. Therefore, if the goal was to coregister entire
images, precise matching of only several specific landmarks and structures, and the use of these
registered structures to compute error, would underestimate the registration error across the
entire image. On the other hand, the registration error may be either overestimated or
underestimated if a different set of landmarks other than the set used to register the two images
is used to compute the registration error. In addition, methods that use images with known
amounts of misregistration obviously cannot be used to quantify error retrospectively.
Furthermore, the error computed using these methods includes the error in the manual
delineation of the landmarks and structures within the image. These methods alone therefore
cannot precisely quantify the error in registering the images.

The second limitation in extant methods for quantifying the error in image registration is that
they do not sufficiently describe the stochastic nature (Viola and Wells, 1997) of the
transformation parameters, and hence they cannot precisely quantify the registration error. The
estimated transformation parameters are random variables in part because voxel intensities
themselves are stochastic. In addition, delineating the features used to register the images
introduces error, differences in anatomy across individuals adds to error in registration, and
the methods used to estimate the optimal transformation parameters are often also stochastic.
We expect the estimated transformation parameters will be intercorrelated, and therefore we
must estimate the multivariate distribution and compute the confidence intervals of the
parameters if we are to quantify accurately and completely the error in image registration.

We have developed a mathematical framework that retrospectively quantifies the error in
registration across entire images by computing the confidence intervals of the estimated
parameters of a transformation. Confidence intervals specify a range of parameter values that
includes the true parameters at a specified level of confidence, confidence intervals can be used
to quantify the reliability of the estimated parameters (Lehmann and Casella, 1998). Our
method computes confidence intervals using image intensities directly. Therefore, it does not
require a user to delineate landmark points or to define the anatomical boundaries of structures
within images. Using the theory of nonlinear least-squares estimation, we show that
asymptotically the estimated parameters are Gaussian distributed and -consistent – i.e. that
their standard deviation shrinks in proportion to  as the sample size n grows. We then use the
nonlinear relationship between those parameters and the coordinates of a given landmark point
within the image to compute the multivariate Gaussian distribution and the confidence intervals
of the coordinates. These confidence intervals provide a quantitative measure of the registration
error at the landmark point. Similar to our method, one advanced method has been proposed
previously for computing the covariance matrix of the transformation parameters that have
been estimated using mutual information (Bromiley et al., 2004). The covariance matrix in this
approach, however, is estimated using the lower-bound estimates on the log-likelihood
function, and therefore it underestimates the error in the estimated transformation parameters.

Our method, in contrast, is independent of the method used to coregister the images, and
therefore images may be registered using any one of several excellent existing techniques for
registration of images. Furthermore, our method estimates the covariance matrix from the data
using the principles of nonlinear estimation, and therefore the estimated error is more
representative of the true error in registration. We also show that estimation parameters for
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image registration asymptotically are Gaussian distributed. We validate our formulation using
brain images from living subjects and by computing the confidence intervals for parameters
of similarity transformation and for the coordinates at five landmarks points. Finally, we assess
the size of the confidence intervals when noise and anatomical differences increased across
the brain images acquired from 169 individuals.

2. Method
Voxel intensities within and across images of the brain are related nonlinearly to one another,
and this relation can be estimated only from the joint histogram of intensities within images
that are closely registered. In general, because the intensity across images from different
individuals vary locally, the relation of intensities across images is not a uniquely defined
function (i.e. a single intensity in one image may map to multiple intensities in another image
when images are from different imaging modality). In our formulation, however, we assume
a nonlinear relation between intensities across the two images, an assumption that is true for
typical sets of medical images. For example, the relations between intensities across images
of the brain from various MR modalities can be modeled using nonlinear functions. We should
note that intensities across CT and MR images are not functionally related, however, and in
this case our method may not be useful in assessing the accuracy of their estimated parameters
for registration. Because various methods (Grachev et al., 1999; Hellier et al., 2003; Penney
et al., 1998; Viola and Wells, 1997; West et al., 1997; Wang and Staib, 2000; Cachier et al.,
2001; Johnson and Christensen, 2002) register MR images with sufficiently high accuracy, we
use the joint histogram of the registered images to estimate this nonlinear function f(·) between
intensities across images (Figs. 2 and 10). In general, the relation between intensities is a
function, and therefore modeling the relation using a nonlinear function in our method will
overestimate the variance of the transformation parameters. Given the nonlinear function f(·),
and assuming a conditional Gaussian distribution of intensities because of Gaussian noise, the
optimal transformation parameters minimize the sum of the square differences between the
intensities in the float image and the intensity predicted by the function f(·). Therefore we use
the nonlinear function f(·) and the theory of nonlinear least-squares to compute the confidence
regions of the registration parameters.

2.1. Confidence region of transformation parameters
We use the theory of nonlinear least-squares to compute the confidence intervals of the
parameters of spatial transformation between images and at specific coordinates across images.
Our method assumes that before computing the confidence intervals, the images have been
registered using one of the excellent methods (Grachev et al., 1999; Hellier et al., 2003; Wang
and Staib, 2000; Cachier et al., 2001; Johnson and Christensen, 2002; West et al., 1996)
proposed in the literature. Although any one of these methods can be used to register two
images, we have elected to use a method that maximizes the mutual information (Viola and
Wells, 1997) across images for image registration. We then use the joint histogram of intensities
to estimate the nonlinear relation f(·). We formulate the problem of quantifying the error in
registration using the theory of nonlinear least-squares estimation. Second, we show that
asymptotically the estimated parameters are multivariate Gaussian distributed. Third, we use
the covariance matrix of the Gaussian distribution to compute Wald’s statistic, which is used
to calculate the confidence region of the transformation parameters. Finally, we use a numerical
method based on Parzen windows with Gaussian kernels to estimate the covariance matrix of
the Gaussian distribution.

2.1.1. Least-squares formulation—Let ri denote the intensity of the ith pixel in the
reference image and si denote the intensity of the corresponding pixel in the float image. Let
β = (TxTyTzRxRyRzS)′ be the column vector of the transformation parameters, and f(ri,β) be the
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nonlinear function that maps intensity ri to si for the specified set of parameters β. The optimal
estimates β ̂N of the transformation parameters, in the nonlinear least-squares sense, are

We estimate the nonlinear function f(ri, β) as the expected value of s for a specified value ri.
The gradient of the cost function QN(β) is computed as

and the  is calculated as

The Hessian  is approximated by the first-order derivatives only, i.e.

when the estimation error ei = si − f(ri, β) at a location i is uncorrelated with

 and the second-order derivatives of the function f(·) are small. Therefore,
the consistent estimator of the Hessian HN(β) is calculated as the sample average, i.e.

We use the consistent estimator of HN(β) to compute the covariance matrix of the
transformation parameters.

2.1.2. Transformation parameters are Gaussian distributed—Let β* be the
parameters that globally minimize the cost function E[QN(β)], β ̂N is the set of parameters that
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minimize QN(β),  and are some parameters between β* and β ̂N. Because β* and β ̂N are
expected to be close, by the mean value theorem (Rudin, 1976) the expansion of ∇βQN(β ̂N)
around β* is

Furthermore, because β ̂N is the optimal estimate that minimizes QN(β ̂N), i.e. ∇βQN(β ̂N) = 0,
and because β* and β ̂N and are close, we have

(1)

The approximation in the second equation follows from the fact that  converges to β* because
β ̂N converges to β* for large values of N. Therefore,  is distributed according to
the distribution of , which is multivariate Gaussian distributed by the
Central Limit Theorem. Let  denote the covariance matrix of , i.e.

where the second equation follows from the independence of the errors ei at all voxels for the
optimal parameters β*, and

is assumed to be independent of i (homoskedasticity condition). Therefore

which is a consistent estimator. Thus

(2)
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Furthermore, we have

(3)

and therefore

(4)

Thus, from Eqs. (1), (3) and (4), the Gaussian distribution of the estimated transformation
parameters β ̂ around the optimal parameters β* is

the covariance matrix  is β ̂N estimated as

(5)

2.1.3. Calculating the confidence region of parameters for the transformation—
To compute the confidence region of β*, we first calculate the Wald’s statistic

Because β ̂N is root-n consistent and asymptotically normal, the Wald’s statistic is
asymptotically equivalent to the F-statistic, except for the factor 1/7. Therefore, if cα denotes
the 1 − α quantile of the F(7, N − 7) distribution, then the 1 − α confidence region for β* is the
set of all β for which

(6)

We use this relation to compute the confidence region of the transformation parameters.
Appendix A details our method for computing the covariance matrix .

2.2. Confidence region of the landmark coordinates
In images registered into a common coordinate space, the coordinates (x, y, z) of a point are
transformed to new values (xt, yt, zt) by the estimated parameters β ̂ (Eq. (7)). Because β ̂ is a
random vector, the transformed coordinates (xt, yt, zt) will also be a random vector. Using the
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relation between β ̂ and (xt, yt, zt), we compute the multivariate distribution that governs the
random vector (xt, yt, zt). We show that this distribution is multivariate Gaussian. We then use
the covariance matrix of this distribution to compute the Wald statistic and the confidence
region of the coordinates (xt, yt, zt) in the reference image.

For coordinates in 2D images, we compute the covariance of the transformed coordinates (xt,
yt) in two ways. First, we show that the transformed coordinates (xt, yt) are multivariate
Gaussian distributed and analytically derive its covariance matrix. Second, we use a method
based on Monte Carlo simulation to compute the covariance matrix of (xt, yt). Our experiments
show that the covariance matrices computed by the two methods match well. Because the two
covariance matrices match well, for the 3D coordinates we used the method of based on Monte
Carlo simulation to compute the confidence regions of the transformed coordinates (xt, yt, zt).

2.2.1. Theoretical development for coordinates in 2D images—Let (xc, yc) denote
the coordinates of the center of a spatial transformation, and let (xt, yt) denote the coordinates
of the location (x, y) transformed by the parameters β ̂. Then the (xt, yt) are related to (x, y) as

(7)

Because in our method we use the float image that is registered and reformatted into the
coordinate space of the reference image, θ ≈ 0, and therefore cos θ ≈ 1 and sin θ ≈ θ. The above
relation can be rewritten as

(8)

where (x, y) and (xc, yc) are constants and the transformation parameters β = (S, θ, Tx, Ty) are
multivariate Gaussian distributed. The transformed coordinates (xt, yt), which are linear sums
of random variables, therefore will be Gaussian distributed if the product S · θ of jointly
Gaussian random variables S and θ is Gaussian distributed. We show below that this in fact is
true. Thus, the transformed coordinates (xt, yt) are also multivariate Gaussian distributed.

2.2.1.1. Normality of the product S · θ: Because the float image was reformatted into the
coordinate space of the reference image using the estimated transformation parameters, the
mean values μS and μθ of the transformation parameters S and θ will equal 1 and 0, respectively.
Furthermore, μS ~ 1 and σS is small because most methods register images with sufficient

accuracy and the ratio  is large; consequently, both the skew and the kurtosis excess of the
product S · θ equal zero, i.e. skew(S · θ) ≈ 0 and excess(S · θ) ≈ 0 The distribution of the product

S · θ therefore approaches normality if  and  remains constant (0 in our case)
(Aroian, 1947; Craig, 1936). Thus, the product term S · θ is Gaussian distributed, and the
random variables (xt, yt) are jointly Gaussian distributed. We use the mean E[S · θ] and the Var
(S · θ) of the product S · θ, computed as
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to calculate the covariance matrix Σxy of the transformed coordinates (xt, yt).

2.2.2. Computing the covariance matrix using Monte Carlo simulation—We
estimate the covariance matrix of the transformed coordinates (xt, yt) using Monte Carlo
simulation. The coordinates (xt, yt) are related to the transformation parameters (Tx Ty θS)′ by
Eq. (7). We use the mean values and covariance matrix of the parameters (Tx Ty θS)′ to generate
100,000 simulated values from their multivariate Gaussian distribution. These simulated values
of (Tx Ty θS)′ are used to generate 100,000 values for the transformation coordinates (xt, yt),
from which we compute their sample mean ( ) and covariance matrix Σsim as

2.2.3. The confidence interval of the transformed coordinates—The transformed
coordinates are Gaussian distributed; therefore, the Wald’s statistic will be χ2(2) when
computed using the covariance matrix Σxy that was computed analytically. However, when the
simulated covariance matrix Σsim is used, the normalized Wald statistic will be distributed
according to Fisher F-distribution.

2.2.3.1. Theoretical derivation: Let Σxy be the covariance matrix of the transformed
coordinates (xt, yt). Then the Wald statistic

is χ2(2) distributed. If χα denotes the 1 − α quantile of the χ2(2) distribution, then the 1 − α
confidence region is the set of all (xy) for which

2.2.3.2. Monte Carlo simulation: The Wald statistic

computed using Σsim is equivalent to the F-statistic, except for the factor 1/2. Therefore, if
cα denotes the 1 − α quantile of the F(2, N − 2) distribution, then the 1 − α confidence region
is the set of all (xy) for which
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(9)

2.3. Details of implementation
Calculating the confidence region of transformation parameters using our method makes
extreme demands on computer time and memory. Although calculation of the covariance
matrix of β ̂ is not computationally intensive, to calculate the confidence region we need to find
all parameters that satisfy the inequality in Eq. (6) for each significance level α. To reduce
significantly the computational time and memory requirements, we computed Wald’s statistic
(used to evaluate the inequality) at only 25 different values within the range of ±6 times the
standard deviation of the mean value of each parameter. We selected this range of ±6 standard
deviations because the multivariate distributions have more probability mass in their tail than
does a univariate distribution. Therefore, sampling the parameters in the range of ±6 times the
standard deviation ensured that we nearly sampled the entire confidence region of the
parameters. This sampling required us to compute the Wald statistic for 257 = 6 × 109 different
combinations of the parameter values, requiring 9 h of compute time on a 3.4 GHz PC. Although
this is a coarse sampling of the parameter space, the estimated confidence regions were
sufficiently accurate.

The confidence interval of a parameter is obtained by projecting the confidence region R onto
the coordinate axis of that parameter. Our confidence region R in the seven-parameter space
assigns a value of (1 − P) to each point sampled in the seven-parameter space, where P is the
probability value computed using Wald statistic at that point. The null hypothesis used to
determine the P-value for a set of transformation parameters is that β* = β ̂. For example, to
obtain the confidence interval of the parameter Tx, we project R onto the axis of Tx in the
parameter space: at a specific value of Tx, the projection operator π(R, Tx) assigns the smallest
value in R for any combination of the other parameters with Tx set equal to the specified value.
That is

where β|Tx denotes that the minimum is computed for all parameters in β except for Tx, which
is set equal to the specified value.

The accuracy of the estimated confidence region depends on the bin size of the joint histogram
of intensities. We use the joint histogram to compute the nonlinear function f(·) and its
derivatives. In the joint histogram, we set the bin size equal to 7, which we have found
empirically generates the best estimates of the function f(·) and its derivatives. To ensure that
this bin size works well for any set of images, we scaled the voxel intensities independently in
each image within the range from 0 to 1000. We therefore could apply our methods to all
images without any adjustment of the bin size. Furthermore, to ensure that estimates of the
function f(·) and its derivatives are stable, we used only those bins that had greater than 200
samples of intensities from the float image. Thus, the effect of bin size was minimal on the
estimated confidence regions.

3. Testing our algorithm
We tested the efficacy of our mathematical framework in computing confidence intervals
whose size varied predictably for varying amounts of noise, blur, and registration errors, and
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for differing anatomy across individuals. These tests included three sets of experiments using
2D and 3D brain images from healthy individuals. The images were of good quality, having
high signal-to-noise and contrast-to-noise ratios. To prepare images for our experiments, we
preprocessed each image independently to (1) remove inhomogeneities in voxel intensities
(Sled et al., 1998), (2) isolate brain from nonbrain tissue, and (3) rotate and reslice the brain
into a standard orientation, such that the AC and PC landmark points were within the same
axial slice. The brains were reformatted into the standard orientation using trilinear
interpolation. Finally, we scaled the voxel intensities in each image to fall within the range of
0 to 1000. We selected at random one image as the reference and estimated the parameters for
the similarity transformation that best registered other images to the reference by maximizing
mutual information (Viola and Wells, 1997) across the registered images. The centers of the
image volumes were set as the origin of the transformation between the two images. The
registered images were then resliced into the coordinate space of the reference using the
estimated parameters. The resliced, registered image (the float) and the reference image were
used in our experiments as described below.

The sizes of the confidence intervals computed using our method depended upon many factors.
For increasing amounts of noise, misregistration, and differing anatomy across images, we
expected the size of the confidence intervals to increase, thereby accurately quantifying our
decreasing confidence in the registration of the images. However, for increasing amounts of
blur, the definition of anatomy will become less precise. As a consequence, anatomical
differences will increase across images from a single individual, but they will decrease across
images from differing individuals. Therefore, for increasing amounts of blur, we expected our
method to compute confidence intervals that increased in size for images from a single
individual but decreased for images from different individuals, thereby accurately quantifying
our confidence in the registration of the images in the presence of blur.

We first computed confidence intervals using images from a single individual. In these
experiments, we generated synthetic float images by introducing increasing amounts of
translation, rotation, scaling, and blurring into copies of the reference image. The images were
blurred using isotropic Gaussian kernels of varying standard deviation. Because the simulated
float images that were not blurred contained anatomical information identical to that of the
reference image, changes in the confidence intervals would reflect the effects of misregistration
alone on the computed confidence intervals.

In the second set of experiments, we used images from two different individuals to demonstrate
that our method computed confidence intervals as we expected for increased level of
complexity in real world. In these experiments, we generated simulated float images by
introducing increasing amounts of translation, rotation, scaling, and blurring into copies of the
float image. Because anatomy differed across the reference and float images, we expected the
confidence intervals to be larger in these experiments than those generated using copies of
images from a single individual. We also expected our method to compute larger confidence
intervals for larger amounts of misregistration across images. Increasing amounts of blur
reduces variability in anatomical definitions across images, however, and therefore we
expected the confidence intervals to decrease for increasing amounts of blur across images
from different individuals.

Finally, in a third set of experiments we demonstrated that the confidence intervals computed
using our method increase for increasing amounts of noise and differing anatomy. We
computed confidence intervals for the coordinates of the anterior commissure in a set of 169
brain images. Each image in this set was registered assuming similarity transformation to the
reference image using a similarity transformation such that mutual information was maximized
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across images. We expected larger confidence intervals in images with larger amounts of noise,
motion artifact, and variability in anatomy.

3.1. Image acquisition protocol
The high-resolution T1-weighted MR images were acquired with a single 1.5-T scanner (GE
Signa; General Electric, Milwaukee, WI) using a sagittal 3D volume spoiled gradient echo
sequence with repetition time = 24 ms, echo time = 5 ms, 45° flip angle, frequency encoding
superior/inferior, no wrap option, 256 × 192 matrix, field of view = 30 cm, two excitations,
slice thickness = 1.2 mm, and 124 contiguous slices encoded for sagittal slice reconstruction,
with voxel dimensions 1.17 × 1.17 × 1.2 mm.

3.2. 2D Analysis
In these analysis, we selected as the 2D reference image a single axial slice (slice number 50,
Fig. 1) from the 3D volume of the reference image. The corresponding slice from the 3D float
volume was used as the 2D float image. We used these images to compute the confidence
intervals of the affine parameters and of the coordinates of the top left-most point in the
reference image. The confidence interval of the coordinates was computed in two ways:
theoretically, and using Monte Carlo simulation. We compared the two confidence intervals
that were computed in these two ways to assess the accuracy of our Monte Carlo simulations
in calculating the confidence intervals.

3.3. 3D Analysis
Confidence intervals are stochastic because they are computed from the covariance matrix of
the multivariate Gaussian distribution estimated from a finite sample of voxel intensities.
However, because the estimated covariance matrix is consistent, we expected that our method
would compute confidence intervals of affine parameters that converge for a larger number of
samples from 3D images and that therefore yield a more valid analysis of the effects of
misregistration and differing anatomy on confidence intervals.

3.4. Confidence region of landmarks in MR images from two individuals
Our method computes confidence intervals while accounting for differing anatomy and
misregistration across images; we therefore expected landmarks in the float image to be within
the confidence interval of the corresponding landmarks identified in the reference image. To
assess the accuracy of the confidence intervals computed using our method, an expert
delineated five landmarks in the reference image and the corresponding landmarks in the float
image. These five landmarks were: the AC and PC points, the most anterior point of the genu
of the corpus callosum, a point on the dorso-lateral aspect of the prefrontal cortex (DLPFC),
and a point in the occipital cortex (OC). We selected these landmarks because they can be
identified reliably across images from individuals with differing anatomy. We expected that
the size of the confidence intervals computed using our method would be small for the AC,
PC, and genu because they were close to the origin of transformation. However, because the
DLPFC and OC points were located on the surface of the cortex, and therefore were
comparatively farther from the origin of transformation, we expected the size of the confidence
intervals at these points would be larger than those at the AC and PC points.

3.4.1. The AC and PC points—The AC and PC are bundles of white matter fibers that
connect the two hemispheres of the brain across the midline. These are key landmarks because
they can be defined unambiguously in anatomical MR images. In the midline slice, the PC
point was identified as the centermost point of the PC, and the AC point was identified as the
most superior point on the AC. The coordinates of the AC point were 73, 59, 72 in the reference
and 73, 61, 72 in the float image. For the PC point, the coordinates were 72, 82, 70 in the
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reference and 72, 81, 72 in the float image. The coordinates of various points are specified in
the coordinate space of our images reformatted in the standard orientation.

3.4.2. The genu of the corpus callosum—The genu is the anterior portion of the corpus
callosum. We identified its anterior-most extremity unambiguously at the midline of coronal
images. The coordinates of this point were 74, 36, 64 in the reference and 74, 35, 67 in the
float image.

3.4.3. The DLPFC and OC points—These were identified manually on the surface of the
cortex by two experts in neuroanatomy. The DLPFC point was centered over the inferior frontal
gyrus, in the mid-portion of the pars triangularis. The OC point was centered on the lowermost
portion of the occipital lobe immediately to the left of the interhemispheric fissure, such that
the medial edge of the spherical deformation was tangential both to the interhemispheric fissure
and the cistern immediately superior to the cerebellum. We have shown elsewhere that these
points can be identified with high inter-rater reliability across images from different individuals
(Bansal et al., 2005). The coordinates of the DLPFC point were 118, 34, 69 in the reference
and 119, 40, 66 in the float image. For the OC point, the coordinates were 86, 143, 76 in the
reference and 81, 143, 77 in the float.

3.5. Effect of differing anatomy on confidence intervals
We showed that the size of the confidence intervals increased for increasing amounts of noise
and differing anatomy. We computed confidence intervals using our high-resolution, T1-
weighted MR images from 169 different individuals. This group of 169 individuals included
76 males and 93 females, with ages ranging from 6 to 72 years. We selected one image (Fig.
16a) as the reference based on its high quality and because the individual’s demographics were
representative of the demographics of the group as a whole. We registered the other 168 brains
to this reference brain using a method that mutual information (Viola and Wells, 1997)
assuming a similarity transformation across images. To test the accuracy of image registration,
we identified and compared coordinates of the AC point in each of these 169 registered brains.
Because the AC was identified in the individual brains registered to the reference, we expected
that the absolute values of the difference between the coordinates to equal zero in the reference
and registered brains. We then used our method to compute the confidence interval of each
coordinate of the AC for every brain. Because the brains were well registered, we expected
that the confidence intervals would be small and would not correlate with the differences in
the coordinates of the AC point. Differences in the confidence intervals therefore would be
caused by differing anatomy across individuals in the group. We expected our method to
compute larger confidence intervals for images with larger amounts of noise and differing
anatomy.

4. Results
4.1. Distribution of Wald’s statistics

The product random variable S × θ is Gaussian distributed (Fig. 3). Therefore, the transformed
coordinates of a point are multivariate Gaussian distributed, and the normalized Wald’s statistic
is distributed according to Fisher F-distribution. Thus we used the normalized Wald statistics
to compute the confidence intervals of the coordinates.

4.2. Monte Carlo simulation
In these experiments, we used Monte Carlo simulation to compute the confidence intervals of
the coordinates of the top left-most point in the reference image. These confidence intervals
were computed using the reference image and simulated float images with varying amounts of
blur and misregistration. Confidence intervals computed using this method (Fig. 7) matched
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well those calculated using our theoretical formulation (Figs. 6a and 6b), thus demonstrating
that Monte Carlo simulation is sufficiently accurate to compute precisely the confidence
intervals of coordinates of points in 3D images.

4.3. Images from a single individual
The confidence intervals of the parameters of similarity transformation, as well as the (0, 0)
coordinates in 2D and 3D analyses, were smaller than a single voxel when the confidence
intervals were computed using identical copies of the reference brain (Figs. 4 and 8). Thus,
based on confidence intervals computed using our method, we could correctly conclude that
the images were registered with high precision.

For increasing amounts of blur, X-shift, and rotation in the simulated float images, the size of
the confidence intervals increased, as expected (Figs. 5a, 5b, and 9). The true transformation
parameters fell within the 68.5% confidence intervals. Increasing the amounts of blur in the
images increased the anatomical differences across simulated float images and the reference
image, thereby decreasing our confidence in the precision of image registration. This decline
in confidence was reflected by an increase in the size of the confidence intervals for the
transformation parameters (Fig. 5b), which is reflective of increasing amount of spread of
intensities in the joint histogram of the images (Fig. 10). These results demonstrated that our
method computed confidence intervals whose size varied as expected for varying amounts of
misregistration and blur in images from single individual, thus validating our method for
computing the confidence intervals of the transformation parameters.

4.4. Images from two individuals
As expected, the size of the confidence intervals increased with increasing amounts of
misregistration (i.e. with increasing translation, rotation, and scaling) in the simulated float
images from different individuals (Figs. 6a and 11). Increasing amounts of blur, however,
initially had the opposite effect of reducing the size of the confidence intervals (Figs. 6b and
11) because it reduced the anatomical differences across the reference and the simulated float
image. The confidence intervals did not increase linearly with increasing scale and instead
seemed to converge to a certain size for large scale. For increasing amounts of blur, the
confidence intervals initially decreased for kernel widths up to 6–7 voxels (7.2–8.4 mm) and
then increased for wider kernels. Therefore, initially blurring images reduced the anatomical
differences between the two individuals increasing our confidence in the image registration,
which was reflected by smaller confidence intervals. Larger amounts of blur, however,
substantially degraded the anatomical definitions thereby decreasing our confidence in the
image registration, which was quantitatively reflected by larger confidence intervals.
Furthermore, these results suggest that a smoothing of about 8 mm may be optimal to register
images from different individuals, a finding that is consistent with those in studies that found
a smoothing kernel of width = 8 mm to be optimal for smoothing functional MRI datasets
(Kiebel et al., 1999;Fransson et al., 2002). Thus, our method computed confidence intervals
that varied as expected for increasing amounts of blur and varying scale, while also reflecting
unexpected, nonlinear variation with differing levels of blur.

4.5. Confidence intervals of landmark points
We found that the differences in the X-, Y-, and Z-coordinates of the AC and PC points across
these two individuals were less than two voxels (Table 1). This result indicated that the float
image was well registered to the reference image and it suggests that the increase in confidence
intervals of these landmark points compared with those for copies of an image from a single
individual (Fig. 12) reflects differences in anatomy across these individual images. The large
difference in the coordinates for the DLPFC and OC points likely reflected a combination of
operator error in locating the corresponding point on brain images (more difficult with these
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points than with the AC, PC, and genu), differences in anatomy across images, and errors in
registration. Because the origin of transformation was located at the center of the imaging
volume and because the DLPFC and OC points were on the surface of the brain (Fig. 14), far
from the origin, even small amounts of misregistration would have caused disproportionately
large differences in the coordinates of the corresponding points. As expected, confidence
intervals for the coordinates of the genu, which was closer to the origin of transformation, was
smaller than the confidence intervals for the DLPFC and OC points but larger than those for
the AC and PC (Fig. 13). Therefore, the confidence intervals computed using our algorithm
was larger for points further away than points closer to the origin of transformation because of
imprecision in the registration of images, irrespective of differences in anatomy across images.
Furthermore, corresponding points in the float image were within the 68.5 interval. In contrast,
for identical copies of the reference image, our method computed confidence intervals that
were less than a voxel in size at the DLPFC and OC points (Fig. 15), thereby accurately
quantifying our high confidence that the images are precisely registered.

Our method computed confidence intervals that are conservative. Although the 99%
confidence intervals of the coordinates were much larger than their displacements (Figs. 12–
14), the 68.5% confidence intervals more accurately reflected the magnitude of this
displacement. The 68.5% confidence regions of the landmark points were as large as the width
of the sulci or gyri in the image. This was expected because corresponding landmarks could
be displaced by this amount in brain images from different people. Thus, although our
confidence intervals were conservative, they nevertheless accounted for differing anatomy,
amounts of noise and blur, and misregistration across images.

4.6. Effects of varying anatomy across individuals
The absolute values of the differences in the X- and Z-coordinates of the AC were less than 3
for most images (Fig. 16b). Because the AC was identified in the slice through the midline,
the small difference in the X-coordinate shows that the midline matched well at the AC and
PC across brains. Furthermore, the small difference in the Z-coordinate shows that the axial
plane that intersects the AC and PC points also matched well across brains. The large
differences in the Y-coordinates are attributable to anatomical differences across brains: (1) the
reference brain was more spherical in shape than the other brains and (2) the varying size of
the ventricles in turn varied the position of the AC along the anterior–posterior axis. The images
therefore were well registered to the reference brain, with the variability in confidence intervals
reflecting variability in brain anatomy across individuals. The size of the confidence intervals,
however, did not correlate with the difference in the coordinates because of the variability in
the manual identification of the AC across images (Fig. 16b). The confidence intervals were
larger for images that had some motion artifact and noise, as well as for images with differing
anatomy (top row of images, Fig. 16c) than confidence intervals for images that had less noise
and motion artifact (bottom row of images, Fig. 16c). For the top row of images in Fig. 16c,
the average 68.5% confidence intervals for the X-, Y-, and Z-coordinates were ±3.93, ±3.2, and
±2.3 voxels, respectively. For the other images (bottom row of Fig. 16c), the average 68.5%
confidence intervals for the X-, Y-, and Z-coordinates of the AC were ±1.88, ±2.26, and ±1.89
voxels, respectively (Fig. 16d). Thus, as expected, the confidence intervals computed using
our algorithm increased for increasing levels of noise and increasing anatomical differences,
thereby helping to validate our method for computing the confidence intervals of
transformation parameters and coordinates of landmark points.

5. Discussion
We have developed a mathematical framework for quantifying the errors in image registration.
Our method uses the theory of nonlinear least-squares estimation to show that the
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transformation parameters are multivariate Gaussian distributed. We used the covariance
matrix of the Gaussian distribution to compute the confidence intervals of the transformation
parameters. We then used the nonlinear relationship between the transformation parameters
and the coordinates of a landmark point to compute the multivariate Gaussian distribution and
the confidence intervals of the coordinates. As expected, our method generated confidence
intervals whose magnitude declined with increasing blur in images from different individuals,
although the decline was nonlinear. Moreover, confidence intervals increased with increasing
noise, misregistration, and anatomical differences across images. In addition, our method for
quantifying error is independent of the method used for coregistering images, i.e. the images
could have been coregistered using any one of the excellent methods from the field of medical
image processing and our method could still be used to quantify the error in registration. Thus,
our method correctly accounted for differing anatomy across individuals as well as for blur,
noise, and misregistration in the images, reflecting and quantifying reasonably our degree of
confidence in image registration.

The size of the confidence intervals computed using our algorithm depended upon an interplay
of four sometimes competing factors: (1) anatomical differences, (2) the amount of blur present,
(3) the degree of misregistration, and (4) noise level. Increasing rotation, for example, caused
more voxel intensities to be interpolated, thereby increasing the amount of blur in the simulated
float images. Therefore, although the confidence intervals would tend to increase with
increasing rotation, the increasing blur that accompanies registration across greater rotational
angles would tend to reduce the confidence intervals. Thus, the combined effect of rotation
and blur could attenuate the increase associated with rotation, or even decrease the size of the
confidence intervals with a sufficient level of blur. In addition, because the parameters for
perfect registration are generally unknown in practice, the increasing misregistration could
actually improve the registration images across individuals, thereby reducing the confidence
intervals for increasing misregistrations. Thus, the interaction between differing anatomy
across subjects, blur and noise in the images, and misregistration determines the size of the
confidence intervals of the transformation parameters.

Increasing blur in an image causes a progressively poorer definition of anatomy. When the
images to be registered were copies of the image of a single individual, increasing blur reduced
the anatomical similarities and therefore the accuracy of registration that was based on the
similarity of anatomy across images. Our algorithm correctly reflected this altered anatomical
similarity by computing larger confidence intervals for the estimated registration parameters.
When the images to be registered were from two different individuals, however, increasing
blur using smoothing kernels of width up to 8 mm increased anatomical similarities (or,
equivalently, it reduced anatomical differences) across images. Reducing anatomical
differences in turn increased our confidence in the accuracy of image registration, which our
method accurately quantified as smaller confidence intervals. Further increases in the amount
of blurring, however, severely altered the anatomy in each image and across images, thereby
decreasing our confidence in the accuracy of image registration. Thus, our method
distinguished and correctly described the differing effects of blurgin on the registration of
images that derived from one or two individuals.

Our finding that confidence in the estimated registration parameters increased for increasing
amounts of blur across images from different individuals suggests that varying amounts of blur
can be used to register more precisely images from different individuals. Indeed, scale-space
methods register images iteratively with varying amounts of blur (ter Haar Romeny and
Florack, 1993; Florack et al., 1992; Fritsch, 1993; Pizer et al., 1994; Romeny et al., 2001;
Eldad et al., 2005). In the initial iterations, images with large amounts of blur are used to
estimate transformation parameters. The parameters estimated in that iteration then are used
as the initial estimates for the next iteration for images with lesser amounts of blur. The intuition
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behind these methods is that blurring of images reduces local minima in the cost function and
therefore helps the method to converge to a globally optimal set of parameters. Our method
provides quantitative support for the value of these scale-space methods. For larger amounts
of blur, not only are fewer local minima present in the cost function, but also the registration
parameters are estimated with greater accuracy. A greater accuracy of registration parameters
in the initial iterations with large amounts of blur can help to guide the scale-space methods to
converge on a more globally optimal set of registration parameters more accurately and more
efficiently.

Our method can be used to control the quality at the many levels of automatic, post-acquisition
processing of images. Images are generally registered initially and in several levels of
postprocessing. Errors in registration can seriously affect the accuracy of subsequent image
processing and statistical analyses. Our method provides a quantitative assessment of error in
image registration by providing confidence intervals for the parameters of transformation. If
the confidence intervals for those parameters are larger than expected, further processing of
the images should be interrupted and problems in the registration procedures or quality of
images should be addressed. The postprocessing of functional MRI datasets, for example,
involves a large number of images and many levels of processing and image registration to
detect significant task-related activity in the brain. Our method can be used to quantify the
accuracy of image registration at each of these steps. In functional MRI, a subject typically
performs a sequence of tasks repeatedly in several runs of an experiment. Hundreds of images
are acquired in each run. A typical fMRI paradigm therefore may take 20–30 min to acquire
thousands of images per subject. The duration of the scan and the performance demands
increase the likelihood that a subject may move during image acquisition, thereby introducing
motion artifact into the images. These motion artifacts increase noise in statistical analyses of
the data, and therefore may obscure findings of interest. Our results suggest that the confidence
intervals for registration of such images will increase in the presence of motion artifact (Fig.
16d). By monitoring the magnitude of the confidence intervals, our algorithm can detect and
remove automatically these few images from further analysis, thereby reducing noise in
subsequent statistical analyses.

Applying our method to a larger number of voxels from 3D images produced more accurate
estimates of confidence intervals compared with those computed using 2D images. Confidence
intervals are stochastic variables because they are estimated from finite samples of voxel
intensities, which themselves are randomly distributed because of the necessary and ubiquitous
presence of noise in MR images. Our analytic results show that the estimated covariance matrix
is -consistent. Therefore, use of a larger number of voxels should produce better estimates
of the confidence intervals. This was confirmed by results that showed clearer trends for the
changes in confidence intervals with increasing misregistration in 3D images. We therefore
conclude that although our method can be used to compute confidence intervals for 2D images,
the algorithm should ideally be used to estimate confidence intervals of parameters using 3D
images.

Our estimated confidence intervals are finite and nonzero for every parameter, even if
parameters equal their true value. For example, if confidence intervals are estimated using the
reference and simulated float images obtained by shifting copies of the reference along the X-
axis alone, our method will compute a nonzero confidence interval for Ty. This is because even
if an image is shifted only along the X-axis, local anatomy changes along both the X-axis and
the Y-axis across the two images. Our cost function QN(β) therefore depends upon Ty also,
albeit to a lesser extent than its dependence upon Tx. Thus, a change in only one transformation
parameter will lead to estimated confidence intervals that are nonzero for the other parameters
as well.
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Although we computed confidence intervals of parameters for the similarity transformation,
our method can be extended with little effort to compute confidence intervals of parameters
for affine and higher-order transformations across images as well. The computation of
confidence intervals for a larger number of parameters, however, is computationally expensive
and fundamentally intractable for high-dimensional, nonrigid methods for coregistration based
on elastic or fluid dynamic models (Christensen et al., 1994; Thirion, 1998; Maintz et al.,
1998; Likar and Pernus, 2000; Shen and Davatzikos, 2001; Johnson and Christensen, 2002;
Bansal et al., 2004). To compute confidence intervals, we must first calculate the covariance
matrix of the parameters, sample the parameter space at several points, and compute the Wald
statistic at those points. The Wald statistic then is used to calculate the confidence region in
this high-dimensional space of the transformation parameters. We finally project this high-
dimensional confidence region onto the axis of a parameter to yield its confidence interval.
The computational requirements for calculating this high-dimensional confidence region
become prohibitively large both for an increasing number of parameters and for an increasing
number of points sampled in parameter space. For example, we sampled the seven-dimensional
space of the parameters for the similarity transformation at only 25 values of each parameter.
Even with such a coarse sampling of parameter space, we had to compute Wald statistic at
6.1035 × 109 points in parameter space, requiring 9 h of computer time on a PC with a 3.4 GHz
Xeon CPU. A further increase in the number of parameters or a finer sampling of the parameter
space would increase prohibitively these computational requirements. Furthermore, because
the current implementation of our method is computationally intensive, it may not be well
suited for assessing the accuracy of image registration in the real-time clinical applications.
Thus, to apply our method to higher-order transformations, one must address the computational
limitations imposed by currently available computing platforms or develop an alternative
computational approach.
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Appendix A. Estimating the covariance matrix

To compute the confidence region using Eq. (6), we need the covariance matrix , which
is computed from the function f(ri,β) and its first-order derivative ∇βf(ri,β) (Eq. (5)). Assuming
that the images are closely registered, we estimate the function f(ri,β) from the joint histogram
of the voxel intensities across the two images. To calculate f(ri,β), for which a first-order
derivative exists, we use the Parzen window (Duda and Hart, 1973) with a Gaussian kernel, as
follows:

where Z is the normalization constant and M is the number of intensities in the first sample
from the float image used to compute the expected value. The probability p(sk|ri,β) and Z are
computed as
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where  is the variance of the Gaussian kernel, the calculation of which is detailed below,
and where T is the number of intensities in the second sample from the float image. Therefore,
the nonlinear function between the voxel intensities is estimated as

The partial derivatives of this function are computed as

where for example

Therefore,  is a 7 × 1 vector for each value of
ri.

Estimating 

 is the variance of the Gaussian kernel in the Parzen window estimate of the nonlinear

function f(·). To estimate  we form a 2D joint histogram of voxel intensities from the two
images and locate the bin corresponding to intensity ri. We then sample this bin in the joint
histogram to obtain two sets, A and B, of intensities of sizes Na and Nb, respectively, from the
float image. We use these two set of intensities to determine the maximum-likelihood estimate

of  using a method that minimizes entropy (Viola and Wells, 1997). Let h(s) denote the
entropy of the sample of voxel intensity; then the change  in entropy h(s) with respect to
the standard deviation σ is computed as

Bansal et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2010 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where

and

We then use the following iterative scheme to estimate the optimal σ. First, we compute the
variance of the intensity of float voxels in the bin corresponding to intensity ri. Then one tenth
of this variance is set as the initial estimate of σ. Finally, we iterate by sampling sets A and B
from the bin to update the estimate of σ until convergence.

We set the variance  equal to the converged value of σ.
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Fig. 1.
Three orthogonal views through the brain images of two individuals used in our 3D analysis.
The brain image of one individual was selected as the reference image (top row). The brain
image of the other individual was registered and resliced into the coordinate space of the
reference by maximizing mutual information (Viola and Wells, 1997) across images. The
resliced image is called the float image (bottom row). The right column shows the two axial
slices (slice number 50) used in our 2D analysis. The X-axis is left to right, the Y-axis is posterior
to anterior, and the Z-axis is inferior to superior of the brain.
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Fig. 2.
Joint histogram of intensities across the coregistered reference and float images shown in Fig.
1. Voxel intensities in each image ranged from 0 to 1000 and we formed the joint histogram
with bin size 40. The X-axis and Y-axis plot the bins of intensities in the reference and the float
images, respectively. The Z-axis plots the number of voxels in each bin. The joint histogram
shows that the mapping between the intensities across these two registered images can be
approximated by a function, and this function can be estimated from this histogram.

Bansal et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2010 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Scale · θ is Gaussian distributed. We sampled values of S and θ from their joint multivariate
Gaussian distribution and computed product of the values. From a sample of the product values
and a sample of values from the standard Gaussian distribution, we generated the histogram
(left) and the quantile–quantile (QQ) plot (right). The red line in the histogram displays the
Gaussian distribution whose variance equals the variance of the sample of product values. Both
the histogram and the QQ plot show that the distribution of the product values S · θ closely
follows a Gaussian distribution. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 4.
Ellipsoids of the confidence regions for the parameters of 2D similarity transformation (left
and middle) and the coordinates (0,0) (right). The confidence regions were estimated using
identical copies 2D reference image (top-right image in Fig. 1). For transformation parameters,
we first computed confidence region in the four-dimensional space of the parameters, and then
projected the region on the 2D parameter spaces of the X-translation and Y-translation (left),
and the scale and theta (middle). Blue: region of 68.5% confidence; green: region of 95%
confidence; and orange: region of 99% confidence. Because we used identical copies of the
reference image, the confidence regions are less than a pixel wide. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5.
Fig. 5a. Confidence intervals of similarity parameters and X-, Y-coordinates (0, 0) for
increasing amounts of X-shift and rotation of copies of the 2D reference image. The confidence
intervals for X- and Y-coordinate, X- and Y-translation, and X-shift are in voxels. Copies of the
2D reference image were (i) shifted along the X-axis and (ii) rotated about the Z-axis by
increasing amounts. The confidence intervals increased for increasing amounts of
misregistration. Blue: region of 68.5% confidence; green: region of 95% confidence; and
orange: region of 99% confidence. Only the upper limits are shown for the confidence intervals
that are symmetric around 0.0. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 5b. Confidence intervals for increasing amounts of scale and blur. The confidence
intervals for X- and Y-coordinate, X- and Y-translation, and X-shift are in voxels. In these
experiments, we generated the simulated float images from copies of the 2D reference image
for increasing amounts of (iii) scale and (iv) blur. The images were blurred using Gaussian
kernels of increasing width specified as the standard deviation of the kernel. The size of the
confidence intervals increases for increasing amounts of scale. For varying amounts of blur,
the size increases for small amounts of blur and then decreases for larger amounts of blur.
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Fig. 6.
Fig. 6a. Confidence intervals of the coordinates (0, 0) and parameters for similarity
transformation using image from two individuals. The confidence intervals for X- and Y-
coordinate, X- and Y-translation, and X-shift are in voxels. Simulated float images were
generated by (i) translating and (ii) rotating by increasing amounts the copies of the float image.
The size of the confidence regions increases for increasing amounts of misregistrations and is
larger than those estimated using images from single individual (Fig. 5a). Blue: region of 68.5%
confidence; green: region of 95% confidence; and orange: region of 99% confidence. For the
confidence intervals that are symmetric around 0.0, only the upper limits are shown. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 6b. Confidence intervals generated using simulated float images for increasing amounts
of (iii) scale and (iv) blur in copies of 2D float images. The confidence intervals for X- and Y-
coordinate, X- and Y-translation, and X-shift are in voxels. The size of confidence intervals
tends to decrease for increasing amounts of blur in the simulated float images.
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Fig. 7.
Using Monte Carlo simulation to estimate the confidence intervals of the coordinates (0, 0) for
increasing amounts of (i) translation along the X-axis, (ii) rotation about the Z-axis, (iii) scale,
and (iv) blur in copies of the float image. The confidence intervals for X- and Y-coordinate,
X- and Y-translation, and X-shift are in voxels. These intervals match well with those estimated
using our theoretical formulation (Fig. 6a and 6b). We therefore use Monte Carlo simulation
to estimate the confidence intervals for the coordinates (0, 0, 0) in our 3D analysis.
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Fig. 8.
Confidence regions of the parameters of the 3D similarity transformation and X-, Y-, and Z-
coordinates (0, 0, 0) estimated using identical copies of the 3D reference image. The confidence
intervals for X-, Y- and Z-coordinate, X-, Y- and Z-translation, and X-shift are in voxels. The
confidence intervals for the transformation parameters and the coordinates are within one
voxel. Because we subsampled the space of transformation parameters, the confidence regions
of the transformation parameters are of lower resolution than those for the X-, Y-, and Z-
coordinates. Blue: region of 68.5% confidence; green: region of 95.0% confidence; orange:
region of 99.0% confidence. Small confidence regions accurately quantify our confidence that
the images are precisely registered. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 9.
68.5% Confidence intervals for increasing amounts of misregistration in 3D images from
single individual. Simulated float images were generated from copies of the reference image
by adding increasing amounts of (i) translation along the X-axis, (ii) blur, and (iii) rotation
about the Z-axis. The confidence intervals for the parameters of the similarity transformation
and coordinates (0, 0, 0) are plotted. The images were blurred using 3D Gaussian kernel with
increasing width, which was defined as the standard deviation of the Gaussian kernel. For
increasing amounts of blur (second row of images), the size of confidence intervals initially
increased and then remained constant for large amounts of blur. The small confidence regions
accurately quantify our confidence that the images are precisely registered.
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Fig. 10.
Effect of blurring on joint histogram of intensities. We generated float images by blurring
copies of the reference image (in Fig. 1) using 3D Gaussian kernels of standard deviations 1,
2, and 4. We then formed joint histogram, with bin size 40, of intensities across the float images
and the reference image. Voxel intensities in each image ranged from 0 to 1000. X-axis and
Y-axis plot the bins of intensities in the reference and the float (blurred reference image) images,
respectively. The Z-axis plots the number of voxels in each bin. Increasing amounts of blur
increased the spread of intensities in the joint histograms. The relation between the intensities
across images, however, can be approximated by a nonlinear function.
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Fig. 11.
68.5% Confidence intervals for increasing amounts of misregistration using images from two
individuals. Simulated float images were generated for increasing amounts of (i) translation
along the X-axis, (ii) blur, and (iii) rotation about the Z-axis in the copies of the float image.
We estimated the confidence intervals for the parameters of the similarity transformation and
the coordinates (0, 0, 0) in the reference image. For increasing amounts of blur, the confidence
intervals initially decreased for kernel widths up to 6–7 voxels (7.2–8.4 mm) and then increased
for wider kernels.
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Fig. 12.
Confidence region of the coordinates of the anterior- and posterior-commissure. Coordinates
of the AC and PC were (73, 59,72) and (72, 82,70) in the reference image, and (73, 61,72) and
(72,81,72) in the float image. The confidence regions are displayed on axial slices from the
reference image. Blue: 68.5% confidence region; green: 95.0% confidence region; orange:
99.0% confidence region of finding the AC and PC in the float image. The AC and PC in the
float image are within their respective 95% confidence intervals. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13.
Confidence region of the coordinates of the genu. The coordinates of the genu in the reference
and the float images were (74, 36,64) and (74, 35,67), respectively. The confidence regions
are superimposed on axial slices at the genu point in the reference image. The genu in the float
image is within the 99% confidence region around the genu in the reference image.
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Fig. 14.
Confidence region of the coordinates of the DLPFC and OC points computed using the float
image registered to the reference image. In the reference image, the coordinates of the DLPFC
and OC points were (118,34,69) and (86,143,76), and in the float image the coordinates were
(119,40,66) and (81,143,77), respectively. The 99% confidence regions for the two points
spanned nine slices within the reference image.
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Fig. 15.
Confidence regions of the coordinates of the DLPFC and OC points computed using identical
copies of the reference image. The 99% confidence regions for both points are smaller than a
voxel, the white voxels pointed at by the yellow arrows. These confidence regions correctly
quantify our confidence that the images are precisely registered. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16.
Fig. 16a. The reference brain used to study of the effect varying anatomy on the estimated
confidence region for the coordinates of the AC and PC. The reference brain was rotated into
the Talairach space and the axial slice containing the AC and PC is shown.
Fig. 16b. Differences versus 68.5% confidence intervals of the X-, Y-, and Z-coordinates of the
AC point delineated in the reference and 168 brains registered to the reference. Differences in
the coordinates of the AC identified in the reference brain and the other 168 brains are plotted
against their confidence intervals. Differences in the X and Z-coordinates are small, indicating
that the images are well registered along the left to right and inferior to superior directions.
Larger differences in the Y-coordinate are indicative of the anatomical variability along the
anterior–posterior direction across individuals. Because the brains were well registered to the
references, differing confidence intervals are caused by differing anatomy and differing
amounts of noise across individuals. On the other hand, the confidence intervals did not
correlate with the differences in coordinates because of the inaccuracies in identifying manually
the AC across individuals.
Fig. 16c. Axial images through the AC–PC plane in a representative set of 10 individuals before
they were registered to the reference brain (Fig. 16a). In the images registered to the reference
image, we computed the differences in X-, Y-, and Z-coordinates of the AC point in the
individual and the reference images. The difference was ±1 voxels for the X- and Z-coordinates,
and ±2 voxels for the Y-coordinate. The images in the top row have larger amounts of both
motion artifacts and noise than the images in the bottom row.
Fig. 16d. Confidence region of the coordinates of the AC for 10 example individuals (Fig. 16c).
The confidence regions are superimposed on the slice 73 (slice containing the AC and PC)
from the reference image (Fig. 16a). Blue: region of 68.5% confidence; green: region of 95%
confidence; orange: region of 99% confidence. In the images numbered 5, 19, 24, 102, and
148 (top row), the average 68.5% confidence intervals of the X-, Y-, and Z-coordinate were
±3.93, ±3.21, and ±1.91 voxels, respectively. In images numbered 13, 50, 98, 112, and 129
(bottom row), the average 68.5% confidence intervals were ±1.8, ±2.0, and ±1.55 voxels for
the X-, Y-, and Z-coordinates. The images in the top row have larger amounts of both motion
artifacts and noise than the images in the bottom row. Confidence regions are larger for images
with larger amounts of noise and differing anatomy than the reference image. (For
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interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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