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ABSTRACT 
 
With relatively high frame rates and the ability to acquire volume data sets with a stationary transducer, 3D ultrasound 
systems, based on matrix phased array transducers, provide valuable three-dimensional information, from which 
quantitative measures of cardiac function can be extracted. Such analyses require segmentation and visual tracking of the 
left ventricular endocardial border. Due to the large size of the volumetric data sets, manual tracing of the endocardial 
border is tedious and impractical for clinical applications. Therefore the development of automatic methods for tracking 
three-dimensional endocardial motion is essential. In this study, we evaluate a four-dimensional optical flow motion 
tracking algorithm to determine its capability to follow the endocardial border in three dimensional ultrasound data 
through time. The four-dimensional optical flow method was implemented using three-dimensional correlation. We 
tested the algorithm on an experimental open-chest dog data set and a clinical data set acquired with a Philips’ iE33 
three-dimensional ultrasound machine. Initialized with left ventricular endocardial data points obtained from manual 
tracing at end-diastole, the algorithm automatically tracked these points frame by frame through the whole cardiac cycle. 
Finite element surfaces were fitted through the data points obtained by both optical flow tracking and manual tracing by 
an experienced observer for quantitative comparison of the results. Parameterization of the finite element surfaces was 
performed and maps displaying relative differences between the manual and semi-automatic methods were compared. 
The results showed good consistency with less than 10% difference between manual tracing and optical flow estimation 
on 73% of the entire surface. In addition, the optical flow motion tracking algorithm greatly reduced processing time 
(about 94% reduction compared to human involvement per cardiac cycle) for analyzing cardiac function in three-
dimensional ultrasound data sets. A displacement field was computed from the optical flow output, and a framework for 
computation of dynamic cardiac information is introduced. The method was applied to a clinical data set from a heart 
transplant patient and dynamic measurements agreed with known physiology as well as experimental results. 
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Chapter 9 

Cardiac Motion Analysis Based on Optical Flow on Real-
Time 3D Ultrasound Data  

With relatively high frame rates and the ability to acquire volume data sets with a stationary 

transducer, 3D ultrasound systems, based on matrix phased array transducers, provide valuable 

three-dimensional information, from which quantitative measures of cardiac function can be 

extracted. Such analyses require segmentation and visual tracking of the myocardial borders. Due 

to the large size of the volumetric data sets, manual tracing of the endocardial border is tedious 

and impractical for clinical applications. In addition, manual tracing usually requires slicing the 

3D data set into 2D images which loses some of the spatial continuity and makes manual 

boundary detection more error-prone. Therefore the development of automatic methods for 

tracking three-dimensional endocardial motion is essential. In this study, we evaluate a four-

dimensional optical flow motion tracking algorithm to determine its capability to follow the left 

ventricular borders in three dimensional ultrasound data through time. The optical flow method 

was implemented using three-dimensional correlation. We tested the algorithm on an 

experimental open-chest dog data set and a clinical data set both acquired with a Philips’ iE33 

three-dimensional ultrasound machine. Initialized with left ventricular endocardial data points 

obtained from manual tracing at end-diastole, the algorithm automatically tracked these points 

frame by frame through the whole cardiac cycle. A finite element surface was fitted through the 

data points obtained by both optical flow tracking and manual tracing from an experienced 

observer for quantitative comparison of the results. Parameterization of the finite element 

surfaces was performed and maps displaying relative differences between the manual and semi-

automatic methods were compared. The results showed good consistency between manual 
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tracing and optical flow estimation on 73% of the entire surface with fewer than 10% difference. 

In addition, the optical flow motion tracking algorithm greatly reduced processing time (about 

94% reduction compared to human involvement per cardiac cycle) for analyzing cardiac function 

in three-dimensional ultrasound data sets. A displacement field was computed from the optical 

flow output, and a framework for computation of dynamic cardiac information was introduced. 

The method was applied to a clinical data set from a heart transplant patient and dynamic 

measurements agreed with physiological knowledge as well as experimental results.  

9.1 REAL-TIME 3D ECHOCARDIOGRAPHY 

Developments in three-dimensional echocardiography started in the late 1980s with the 

introduction of off-line three-dimensional medical ultrasound imaging systems. The evolution of 

three-dimensional ultrasound acquisition systems can be divided into three generations: freehand 

scanning, mechanical scanning and matrix-phased arrays. Many review articles have been 

published over the past decade, assessing the progress and limitations of three-dimensional 

ultrasound technology for clinical screening [1-10].  

Development of real-time 3D (RT3D) echocardiography started in the late 1990s by 

Volumetrics [11] based on matrix phased arrays transducers. Recently, a new generation of 

RT3D transducers was introduced by Philips Medical Systems (Best, The Netherlands) with the 

SONOS 7500 transducer followed by the iE33 that can acquire a fully sampled cardiac volume in 

four cardiac cycles. This technical design enabled a dramatic increase in spatial resolution and 

image quality, which makes such 3D ultrasound techniques increasingly attractive for daily 

cardiac clinical diagnoses. Since RT3D ultrasound acquires volumetric ultrasound sequences 

with fairly high temporal resolution and a stationary transducer, it can capture the complex 3D 

cardiac motion very well.  

Advantages of using three-dimensional ultrasound in cardiology include the possibility to 

display a three-dimensional dynamic view of the beating heart, and the ability for the cardiologist 
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to explore the three-dimensional anatomy at arbitrary angles, to localize abnormal structures and 

assess wall motion. This technology has been shown, in the past decade, to provide more 

accurate and reproducible screening for quantification of cardiac function for two main reasons: 

the elimination of assumptions about ventricular geometry and the improved selection of the 

visualization planes for performing the ventricular volume measurements. It was validated 

through several clinical studies for quantification of LV function as reviewed in [12]. 

Nevertheless, full exploitation of three-dimensional ultrasound data for qualitative and 

quantitative evaluation of cardiac function remains sub-optimal for two reasons: lack of 

appropriate display and lack of automatic boundary detection. Manual tracing of myocardial 

borders is a tedious task that requires the intervention of an expert cardiologist familiar with the 

ultrasound machine. Also slicing the 3D data set into 2D images loses some of the spatial 

continuity and makes manual boundary detection more error-prone. For this reason, ventricular 

volumes are commonly estimated via visual inspection of two-dimensional B-scan images or 

semi-automated segmentation for difficult cases. Existing commercialized semi-automatic 

segmentation programs include TomTec by TomTec Inc (Munich, Germany) and QLAB by 

Philips (Best, The Netherlands). 

9.2 ANISOTROPIC DIFFUSION 

The presence of speckle noise patterns makes the interpretation of ultrasound images, either by a 

human operator or with a computer-based system, very difficult. It is highly desirable for certain 

applications such as automatic segmentation, to apply some denoising prior to scan conversion in 

order to remove speckle noise artifacts and improve signal homogeneity within distinct 

anatomical tissues. A number of methods have been proposed to de-noise and improve the 

ultrasound image quality including temporal averaging, median filtering, maximum amplitude 

writing (temporal dilation), adaptive speckle reduction (ASR) (statistical enhancement) [13-17], 

adaptive weighted median filter (AWMF) [18], homomorphic Wiener filtering, and wavelet 
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shrinkage (WS) [19, 20]. Most of these methods suffer from either insufficient denoising, image 

quality degradation or large computational cost. Furthermore, some of them require raw “radio-

frequency” data, available prior to  logarithmic compression [21]. Our group has presented 

previous work on applying brushlet denoising in spherical coordinates to RT3D cardiac 

ultrasound [22]. Experiments on phantom and clinical cardiac data sets have shown excellent 

performance of the method. However, the main limitation of this type of denoising remains the 

computational cost that prevents for the moment its implementation for real-time visualization 

applications in clinical practice.  

In this context, in [23], we have investigated the performance of a more computationally 

efficient denoising filter based on anisotropic diffusion for data represented in spherical 

coordinates. A similar framework can be found in the work of Abd-Elmoniem et al.[21, 24] who 

used two-dimensional anisotropic filtering in radial coordinates. Anisotropic diffusion methods 

are very efficient for speckle reduction in ultrasound and radar images. Yu and Acton [25, 26] 

applied their speckle reducing filter on synthetic aperture radar images and compared their 

performance to Lee and Kuan filters and Frost filters. These filters are all derived from 

anisotropic diffusion. Finally Montagnat et al applied a three-dimensional anisotropic diffusion 

filter for rotational cardiac 3D ultrasound data [27].  

Anisotropic diffusion methods apply the following heat-diffusion type of dynamic equation to 

the gray levels of a given 3D image data ( ), , ,I x y z t :  

 ( )( , , ,I div c x y z t I
t

∂
=

∂
)∇  (9.1) 

where ( ), , ,c x y z t  is the diffusion parameter, di denotes the divergence operator, and 

denotes the gradient of the image intensity. In the original work of Perona and Malik [28, 29], 

the concept of anisotropic diffusion was introduced with the selection of a variable diffusion 

parameter, as a function of the gradient of the data: 

v

I∇

 ( ) ( )( ), , , , , ,c x y z t g I x y z t= ∇  (9.2) 
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We used the diffusion function proposed by Weickert [30] defined as: 
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The parameter λ  serves as a gradient threshold, defining edge points kx as locations where 

kxI λ∇ > . This bell-shaped diffusion function acts as an edge-enhancing filter, with high 

diffusion values in smooth areas and low values at edge points. The structure of the diffusion 

tensor with separate weights for each dimension enables it to control the direction of the 

diffusion process, with flows parallel to edge contours. 

In the case of ultrasound, as the diffusion process evolves, image data properties change 

dramatically and it is desirable to modify the gradient threshold parameter value. In their paper, 

Montagnat et al. report a decrease in the value of significant edges as the homogeneous regions 

in the ultrasound data are filtered. They therefore chose to decrease the threshold gradient in time 

and proposed values based on a fraction of the cumulative histograms of the data gradients 

recomputed at each iteration of the diffusion process. In our case, we used a linear model in [23] 

where: 

 ( ) 0tλ λ at= +  (9.4) 
with 0λ an initial gradient value, a  is a slope parameter and t is the time iteration index. 

Parameters were set empirically for the data sets processed. Specifically in [23], we chose an 

increasing threshold in order to smooth out sampling artifacts as well as remove speckle noise.  

Filtering performance was assessed in terms of visual quality and for quantitative 

measurements on a phantom object in [23]. Our quantitative study showed that very high 

measurement accuracy could be achieved but required suitable parameter settings of the scan 

conversion method, while visual quality was similar for all interpolation kernels. 
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9.3 TRACKING OF LV ENDOCARDIAL SURFACE ON REAL-TIME THREE-
DIMENSIONAL ULTRASOUND WITH OPTICAL FLOW 

Clinical evaluation of 3D ultrasound data for assessment of cardiac function is performed via 

interactive inspection of animated data, along selected projection planes. Facing the difficulty of 

inspecting a 3D data set with 2D visualization tools, it is highly desirable to assist the 

cardiologist with quantitative tools for analysis of 3D ventricular function. Complex and 

abnormal ventricular wall motion, for example, can be detected, at a high frame rate, via 

quantitative four-dimensional analysis of the endocardial surface and computation of local 

fractional shortening [31]. Such preliminary studies showed that RT3D ultrasound provides 

unique and valuable quantitative information about cardiac motion, when derived from manually 

traced endocardial contours. Recent software tools provide interactive segmentation capabilities 

for the endocardium using a 3D deformable model that alleviates the need for full manual tracing 

of the endocardial border. To assist the segmentation process over the entire cardiac cycle, we 

evaluated the use of optical flow (OF) tracking between segmented frames and tried to answer 

the following questions in [32]: Can OF track the endocardial surface between ED and ES with 

reliable positioning accuracy? How does dynamic information derived from OF tracking on 

RT3D ultrasound compare to manual tracing method, given the high inter and intra variability of 

segmentation by experts?  Can OF be used as a dynamic interpolation tool for tracking the 

endocardial surface? 

Cardiac motion analysis from images has been an active research area over the past decade. 

However, most research efforts were based on CT and MRI data. Previous efforts using 

ultrasound data for motion analysis include intensity-based OF tracking, strain-imaging, and 

elastography. Intensity-based OF tracking methods described in [33-38] combine local intensity 

correlation with specific regularizing constraints (e.g. continuity). For strain-imaging or 

elastography, strain calculation and motion estimation are typically derived from auto-correlation 

and cross-correlation on RF data. The commercialized strain imaging package, “2D Strain” from 
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General Electric [39] uses such a paradigm. Most published papers on strain-imaging or 

elastography [39-43] are limited to 1D or 2D images. Early studies [44] used simple simulated 

phantoms while recent research [45] used 3D ultrasound data sequence for LV volume estimation. 

The presence of speckle noise in ultrasound prevents the use of gradient-based methods while 

relatively large region-matching methods are reasonably robust to the presence of noise. In this 

study, we propose a surface tracking technique based on a 4D correlation-based OF method on 

3D volumetric ultrasound intensity data.  

9.3.1 Correlation-based Optical Flow 

Optical flow tracking refers to the computation of the displacement field of objects in an image, 

based on the assumption that the intensity of the object remains constant. In this context, motion 

of the object is characterized by a flow of pixels with constant intensity. The assumption of 

intensity conservation is typically unrealistic for natural movies and medical imaging 

applications, motivating the argument that OF can only provide qualitative estimation of object 

motions. There are two global families of OF computation techniques: (1) Differential techniques 

[46-48] that compute velocity from spatio-temporal derivatives of pixel intensities; (2) Region-

based matching techniques [49, 50], which compute OF via identification of local displacements 

that provide optimal homogeneity measure between two consecutive image frames. Compared to 

differential OF approaches,  region-based methods using homogeneity measures are less sensitive 

to noisy conditions and fast motion [51] but assume that displacements in small neighborhoods 

are similar. For three-dimensional ultrasound, this latter approach appeared more appropriate and 

was selected for this study. Given two data sets from consecutive time frames: 

( ( , ), ( , ))I t I t tx x +Δ , the displacement vector  for each pixel in a small neighborhood xΔ Ω  

around a pixel x is estimated via maximization of the cross-correlation coefficient defined as: 
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In [32], correlation-based OF was applied to estimate the displacement of selected voxels 

between two consecutive ultrasound volumes in the cardiac cycle. The search window Ω  was 

centered about every (5×5×5) pixel volume and was set to size (7×7×7). To increase the 

robustness of the estimation, the final estimation of the displacement for each point is the average 

within a 6-connected neighborhood. 

9.3.2 Three-Dimensional Ultrasound Data Sets 

The tracking approach was tested on three data sets acquired with a SONOS 7500 3D ultrasound 

machine (Philips Medical Systems, Best, The Netherlands):  

(1) Two data sets on an anesthetized open chest dog were acquired before (baseline) and 2 

minutes after induction of ischemia via occlusion of the proximal left anterior descending 

coronary artery. These data sets were obtained by positioning the transducer directly on the apex 

of the heart, providing high image quality and a small field of view. Spatial resolution of the 

analyzed data was (0.56mm3) and 16 frames were acquired per cardiac cycle.  

(2) One transthoracic clinical data set was aquired from a heart-transplant patient. Spatial 

resolution of the analyzed data was (0.8mm3) and 16 frames were acquired for one cardiac cycle. 

Because of the smaller field of view used to acquire the open-chest dog data and the positioning 

of the transducer directly on the dog’s heart, image quality was significantly higher in this data 

set, with some fine anatomical structures visible. Cross-section views at end-diastole (ED) from 

the open-chest baseline data set, and the patient data set are shown in Figure 9.1.  

Figure 9.1 Cross-sectional views at ED for (a-c) Open-chest dog data, prior to ischemia, (d-f) Patient with 
transplanted heart. (a, d) axial, (b, e) elevation and (c, f) azimuth views. 
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9.3.3 Surface Tracing 

The endocardial surface of the left ventricle (LV) was extracted with two methods. (1) An expert 

performed manual tracing of all time frames in the data sets, on rotating B-scan views (long-axis 

views rotating around the central axis of the ventricle) and C-scan views (short-axis views at 

different depths). (2) The QLAB software, (Philips Medical Systems), was used to segment the 

endocardial surface. Initialization was performed by a human expert and a parametric deformable 

model was fit to the data at each time frame. Segmentation results were reviewed by the same 

expert and adjusted manually for final corrections. We emphasize here that QLAB is used as a 

semi-automated segmentation tool. The QLAB software was designed to process human clinical 

data sets. Because significant anatomical differences between canine and human hearts could 

lead to misbehavior of the segmentation software, we decided to only apply the software tool to 

clinical data sets. 

9.3.4 Surface Tracking with Optical Flow 

Tracking of the endocardial surface with OF was applied after initialization using the manually 

traced surfaces (for dog data and clinical data) and the QLAB segmented surfaces (for clinical 

data). Starting with a set of endocardial surface points (about three thousand points, roughly 1 

mm apart for manual tracing and about eight hundred points, roughly 3 mm apart for QLAB) 

defined at end-diastole, the OF algorithm was used to track the surface in time through the whole 

cardiac cycle. Since the correlation-based OF method is very sensitive to speckle noise, all data 

sets were pre-smoothed with edge-preserving anisotropic diffusion as developed in [23] and 

described above (§9.2). We emphasize here that OF was not applied as a segmentation tool but as 

a surface tracking tool for a given segmentation method. 

9.3.5 Evaluation 

We evaluated OF tracking performance via visualization and quantification of dynamic 

ventricular geometry compared to segmented surfaces. Usually comparison of segmentation 
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results is performed via global measurements like volume difference or mean-squared error. In 

order to provide local comparison, we proposed a novel comparison method in [52] based on a 

parameterization of the endocardial surface in prolate spheroidal coordinates [53] and previously 

used for comparison of ventricular geometries from two 3D ultrasound machines in [54]. The 

endocardial surfaces were registered using three manually selected anatomical landmarks: the 

center of the mitral orifice, the endocardial apex, and the equatorial mid-septum. The data were 

fitted in prolate spheroidal coordinates ( ), ,λ μ θ , projecting the radial coordinate λ  to a 64-

element surface mesh with bicubic Hermite interpolation, yielding a realistic 3D endocardial 

surface. The fitting process (illustrated in Figure 9.2 for a single endocardial surface) was 

performed using custom routines written in MATLAB. In this figure, we can observe the initial 

positioning of the data points and the surface mesh, and the finite element surface after fitting 

with very high agreement between the data and the mesh. A zoom is provided on a small region, 

showing the quality of agreement between the fitted surface and the points resulting from region-

based global optimization of radial projections.  

The fitted nodal values and spatial derivatives of the radial coordinate, λ, were then used to 

map relative differences between two surfaces, ε = (λseg – λOF) / λseg using custom software. A 

Hammer mapping was used to flatten the endocardial surface via an area preserving mapping 

[55].  For each time frame, root mean squared errors (RMSE) of the difference in λ, summed 

over all nodes on the endocardial surface, were computed between OF and individual 

segmentation methods. Ventricular volumes were also computed from the segmented and the 

tracked endocardial surfaces. Finally relative λ difference maps were generated for end-systole 

(ES), providing a direct quantitative comparison of ventricular geometry. These maps are 

visualized with iso-level lines, quantified in fractional values of radial difference. 

Figure 9.2 Fitting process of the endocardial surface at ES. (a) Initial FEM mesh and data points. (b)  Fitted 
FEM surface and data points. (c) Zoom on a small region with the FEM fitted surface and the data points. 
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9.3.6 Results 

Figure 9.3 Endocardial surfaces from open-chest dog data sets at ES. (a-c) Results on baseline data. (d-f) 
Results on post-ischemia data.  Three-dimensional rendering of endocardial surfaces were generated from 
manual tracing (dark gray) and OF tracking (light gray) for (a, d) lateral views and (b, e) anterior views. (c, f) 
Relative difference maps between OF and manual tracing surfaces. 

 

9.3.6.1 Dog Data 

On the dog data sets, RMSE results reported a maximum radial absolute difference of 0.19 

(average radial coordinate value was 0.7±0.2 at ED and 0.6±0.3 at ES) at frame 11 (start of 

diastole) on the baseline data set and 0.08 (average radial coordinate value was 0.7±0.3 at ED and 

0.6±0.2 at ES) at frame 12 (start of diastole) on the post-ischemia data set. Maximum LV volume 

differences were less than 7 ml on baseline data and 5ml on the post-ischemia data set. RMSE 

values were smaller for OF tracking on larger volumes. On the radial difference maps in Figure 

9.3, we observe similar difference patterns in the baseline and the post-infarct data except for a 

dark region near the apical lateral region, demonstrating repeatability of the OF tracking 

performance on a given ventricular geometry but with different contractility patterns. An area 

with large error in the baseline comparison localized on the anterior-lateral wall disappeared in 

post-ischemia tracking. This error is caused by a small portion of tracked points that were 

confused by acquisition artifacts at the boundary between the first and second quadrants of 

acquisition. Errors were rather evenly distributed over the endocardial surface with overall shape 

agreement. Similar maps can be used to examine local fractional shortening using the technique 

developed by the Cardiac Biomechanics Group at Columbia University [55] and revealed similar 

patterns of abnormal wall motion after ischemia using OF tracked surface or manual tracing, 

corroborating the accuracy of OF tracking to provide dynamic functional information. 

9.3.6.2 Clinical Data 

OF tracking was run with initialized surfaces provided by either manual tracing or the QLAB 

segmentation tool on the clinical data set. Because of lower image quality on the clinical data set, 
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compared to the open-chest dog data, we performed two sets of additional experiments. First, we 

checked if the time frame selected for initialization had an influence on the tracking quality.    

Figure 9.4 Clinical Data: (a) RMSE between OF tracking and manual tracing: forward (solid line) and 
backward (dashed line). (b) RMSE between OF tracking and QLAB segmentation: forward tracking without 
re-initialization (solid line), forward tracking with re-initialization every fourth frame (dashed line), forward 
tracking with re-initialization every second frame (dotted line), and average result from forward and backward 
tracking without re-initialization (dashdot line). 

 
Based on manual tracing, we initialized OF tracking for the whole cardiac cycle with ED 

(forward tracking) or ES (backward tracking) and compared RMSE over the entire cycle. Results, 

plotted in Figure 9.4a show very comparable performance, confirming that the OF seems to be 

repeatable and insensitive to initialization set up.  We therefore selected the first volume in the 

sequences, which always corresponds to ED in our experiments. A second experiment evaluated 

the agreement between QLAB and OF tracking when increasing the number of reference surfaces 

used to re-initialize OF over the cardiac cycle. Results, plotted in Figure 9.4b, show that 

agreement of OF tracking and QLAB segmentation increases with re-initialization frequency and 

reaches RMSE levels similar to the experiment with manual tracing for re-initialization (i.e. 

reload QLAB segmentation for that frame instead of using the tracing result from previous frame) 

every other frame. We point out that strong smoothing constraints, applied by the deformable 

model of the QLAB segmentation, lead to surface positioning that did not always correspond to 

the apparent high contrast interface. Finally, we compared RMSE values from forward tracking 

and from averaging forward and backward tracked shapes. We observed a large increase in 

agreement with the QLAB smooth segmentation when averaging tracked surfaces.  

As shown in Figure 9.5, experiments showed that OF tracking initialized with manual tracing 

provides ventricular endocardial surfaces similar to that obtained by manual tracing, with less 

than 0.1 maximum absolute differences in RMSE and maximum LV volume differences below 

10 ml. When initialized with QLAB, OF tracking with re-initialization shows results with less 

than 0.08 maximum RMSE difference and less than 13 ml for LV volume differences. These 
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differences are similar to inter and intra-observer variability for measurement of LV volume by 

echocardiography [56, 57]. 

Figure 9.5 Results on clinical data. (a) RMSE of radial difference for OF initialized with manual tracing (solid 
line) and QLAB segmentation with 2-frame re-initialization (dashed line); (b-c) LV volumes over one cardiac 
cycle: (b) Manual tracing (solid line) and OF initialized with manual tracing (dashed line); (c) QLAB 
segmentation (solid line) and OF initialized with QLAB segmentation (dashed line). 

 
Ventricular geometries are illustrated in Figure 9.6. We again observed high overall 

agreement between endocardial geometries provided by manual tracing and OF tracking. Radial 

differences were distributed over the entire surface, with higher values on the lateral-posterior 

wall. The QLAB segmentation provided very smooth surfaces, well tracked by the OF. Larger 

errors were again observed on the lateral posterior wall. Comparison of the two experiments 

shows that OF over one time-frame can preserve the smoothness of the surface but will tend 

towards more convoluted surfaces during temporal propagation of the tracking process.  

 

Figure 9.6 Endocardial surfaces from clinical data at ES. (a-c) Manual tracing; (d-f) QLAB segmentation. 

Three-dimensional rendering of endocardial surfaces from segmentation method (dark gray) and OF tracking 

(light gray): (a, d) lateral view; (b, e) anterior view. Relative radial difference maps between OF tracking and 

the segmentation method. 

 

The time needed for computing optical flow is about 30 seconds per frame, comparing with 

5-10 minutes per frame with manual tracing. With optical flow, the processing time for model-

based 3D cardiac motion analysis can be cut from 30-60 minutes to 3 minutes, which makes the 

application of 3D cardiac motion analysis much more practicable in clinical applications. 

Based on the high agreement with manual tracing, we can infer that OF might be a good 

candidate method to guide a deformable model with high smoothness constraints to better adapt 

to the ultrasound data and incorporate temporal information in the segmentation process. On the 

other hand, OF tracking could be adapted to these smoothness constraints, better ranked by 

cardiologists, to track larger spatial windows around the endocardial surface. 
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9.4 DYNAMIC CARDIAC INFORMATION FROM OPTICAL FLOW 

In [58], we extended our approach to the extraction of motion fields, generated from the optical 

flow algorithm that efficiently described complex 3D myocardial deformations. Traditional 

approaches convert displacement information recovered from the image data in Cartesian 

coordinates into polar (2D) or cylindrical (3D) coordinates to adapt to the natural shape of the left 

ventricle. Most efforts to quantify cardiac motion from echocardiography focus on radial and 

circumferential displacements, but ignore gradients of displacements, like thickening and twist. 

These gradients are of great diagnostic interest and are critical for biomechanical modeling. In 

this context, we proposed a framework based on semi-automatic four-dimensional optical flow to 

compute important dynamic cardiac information using RT3D ultrasound. 

In this study, optical flow algorithm sequentially estimated the displacement field between 

two consecutive frames throughout the ejection phase from ED to ES on the clinical data set in 

previous section. Myocardial motion is estimated via optical flow tracking using a similar 

scheme in [32]. Cardiac dynamic measurements (displacements and their derivatives) are then 

computed. A flowchart of the computational framework is provided in Figure 9.7. 

 

Figure 9.7 Flowchart of the computational framework. 

 

9.4.1 Coordinate Systems 

Three coordinate systems are involved in the computational framework (see Figure 9.8): pixel 

coordinates (i, j, k), Cartesian coordinates (x, y, z), and cylindrical coordinates (r, θ, z). The OF 

estimation was performed in pixel coordinates. For computation of dynamic information, 

displacements in pixel coordinates were converted into Cartesian coordinates and centered inside 

the ventricular cavity so that the z-axis is aligned with the long axis of left ventricle. This 

coordinate transform is performed via rigid transformation:  
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where R is a rotation matrix, T is a translation vector, equal to the negative pixel coordinates of 

the origin O of the Cartesian coordinate system. The ventricular axis was defined as the axis 

connecting the center of the mitral orifice and the endocardial apex. This axis has a very stable 

position during the whole cardiac cycle [55]. Based on the Cartesian coordinate system, a 

corresponding cylindrical coordinate system is established with the r-θ  plane corresponding to 

the x-y plane and with the x-axis used as the reference forθ . 

Figure 9.8 Coordinate systems for data acquisition, and computation. 

 

9.4.2 Dynamic Cardiac Information Measurements 

Besides displacement ( , , )x y zu u u in Cartesian coordinates, we computed the following dynamic 

measurements: 

• Flow magnitude |u| (mm) 

• Radial displacement ur (mm) 

• Circumferential displacement uθ (mm)  

• Thickening  /ru r∂ ∂

• Circumferential stretch  /uθ θ∂ ∂

• Longitudinal stretch  /zu z∂ ∂

• Twist  /u zθ∂ ∂

Gradient values were computed directly in pixel coordinates and converted into the 

cylindrical coordinate system via the chain rule. Derivatives in pixel coordinates were 

approximated by central difference operators to accommodate second-order continuity of the 

flow field after RBF Interpolation. 
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9.4.3 Data 

We used the heart transplant clinical data set described in the previous section. Due to the heart-

transplant surgery procedure, the patient had reduced cardiac function and his septum had 

significant motion reduction. Due to field of view limitations, the apical epicardial surface was 

not visible in the ultrasound volume. Therefore only the basal and middle parts of left ventricle 

were used for dynamic analysis. In fact, myocardial shape in this region can be well 

approximated by a cylinder, which can reduce geometric errors in radial displacement estimation.  

9.4.4 Results and Discussion 

We present results for computation of myocardial flow field (Figure 9.9), radial displacement 

(Figure 9.10), thickening (Figure 9.11), and twist (Figure 9.12) during the systolic phase. 

Most of the radial displacement components showed inward motion (negative displacement) 

of the ventricular wall, except on the septal side, where reduced amplitude and outward motion 

was observed (Figure 9.10). These findings were in agreement with clinical observations on the 

dataset and typical findings after heart-transplant surgery. The gradient of radial displacement, or 

thickening, yielded positive thickening at the endocardial surface except for the septal wall where 

zero or small thinning at the epicardium border were observed (Figure 9.11). Such a pattern 

agrees with experimental findings [60, 61]. Regarding twist, most parts of the wall exhibited 

clockwise twist patterns relative to the base, when looking from base to apex. This result also 

agrees with experimental findings [60, 61] of positive (clockwise) twist during the systolic phase. 

However, we observed negative twist values in the septal wall. For most parts of the wall, twist 

values increased radially from the epicardial to the endocardial surface, which concurs with 

theoretical and experimental results [61]. 

Figure 9.9 Flow field: (a) 1 slice; (b) 3D rendering. 

Figure 9.10 Radial displacement: (a) 1 slice (blue: inward); (b) 3D rendering 

Figure 9.11 Thickening: (a) 1 slice; (b) 3D rendering. 

Figure 9.12 Twist: (a) 1 slice (blue: clockwise); (b) 3D rendering 
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9.4.5  Discussion on Estimation of Myocardial Field 

Different schemes exist to estimate the myocardial motion field using optical flow in real-time 

3D echocardiography. In [62], four different optical flow based schemes, including the one 

proposed in [58], were investigated under a generalized framework. 

Scheme 1: Boundary tracking with RBF interpolation [59], as we proposed in [58].  

Scheme 2: Direct tracking within a myocardial mask. A straightforward alternative to 

scheme 1 is to track with OF every voxel within a myocardial mask defined by the myocardial 

surfaces, instead of interpolating the OF tracking result of these surfaces. 

Scheme 3: Full-field OF estimation. A more global approach consists of estimating the 

motion field for all the voxels in the input volumes using OF. The myocardial motion field is 

then extracted by masking the motion field of the voxels belonging to the myocardium. 

Scheme 4: Full-field OF estimation with smoothing. The RBF interpolation of scheme 1 

provided a 2nd-order continuity which is not used in direct OF estimation. We tested an 

alternative to Scheme 3 by adding smoothing via cubic spline regularization on the full field OF 

computation.  

The experiment results showed that: 

The radial displacement fields derived from the four different schemes were similar except 

for fine details within the myocardium. This is expected since all the methods depended on the 

OF tracking results. For the radial thickening, Scheme 1, 3, and 4 provided similar results as well 

whereas Scheme 2 produced flawed results due to the derivative calculation across the boundary. 

The thickening values of the normal part of the wall from Schemes 1, 3, and 4 (around 

0.1~0.25) were close to the normal values reported in [63] (0.1~0.4) and [64] (20-40%) . 

The segmental averaged thickening result showed that anterior and lateral segments had 

normal motion whereas the septal segment had outward motion and negative thickening (i.e. 

thinning) values; the posterior and anteroseptal segments had reduced motion; the inferior 

segments had very small deformation or thickening. 



18 Recent Advances in Diagnostic and Therapeutic Ultrasound Imaging for Medical Applications 

All schemes required the same amount of manual initialization, i.e. endo- and epicardial 

tracing at ED. In terms of accuracy, Scheme 3 was more accurate in displacement estimation; 

however, Scheme 4 was more robust in estimating thickening, benefited from its intrinsic 

smoothness constraints.  

One important thing needed to be pointed out is that although on some “normal” data sets, the 

interpolated scheme (scheme 1) and the full field schemes (schemes 3, 4) may have similar 

results, we still recommend using a full field scheme, e.g. scheme 4 or more sophisticated field 

fitting techniques, for myocardial deformation estimation instead of using an interpolated version 

from the ventricular boundary, in order to capture the abnormal motion patterns within the 

myocardium. Interpolated scheme should not been used in clinical settings. 

9.5 SUMMARY 

Real-time three-dimensional echocardiography (RT3DE) provides valuable three-dimensional 

information, from which quantitative measures of cardiac function can be extracted. In this 

chapter, we proposed an optical-flow based method to extract the ventricular boundaries semi-

automatically and validated on experimental and clinical data sets. Information extracted by 

optical flow can be fed into model-based motion analysis tools. With huge saving in processing 

time, optical flow makes such cardiac motion analysis on RT3DE more practicable in clinical 

applications. Myocardial motion field can also be estimated based on the optical flow estimation, 

from which clinical meaningful cardiac dynamic metrics can be derived.  
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(a) 

(d) 

(c) 

(f) 
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(e)  

Figure 9.1 Cross-sectional views at ED for (a-c) Open-chest dog data, prior to ischemia, (d-f) Patient with 
transplanted heart. (a, d) axial, (b, e) elevation and (c, f) azimuth views. 
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(b) (c)(a)  
Figure 9.2 Fitting process of the endocardial surface at ES. (a) Initial FEM mesh and data points. (b)  Fitted 
FEM surface and data points. (c) Zoom on a small region with the FEM fitted surface and the data points. 
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Figure 9.3 Endocardial surfaces from open-chest dog data sets at ES. (a-c) Results on baseline data. (d-f) 
Results on post-ischemia data.  Three-dimensional rendering of endocardial surfaces were generated from 
manual tracing (dark gray) and OF tracking (light gray) for (a, d) lateral views and (b, e) anterior views. (c, f) 
Relative difference maps between OF and manual tracing surfaces. 
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Figure 9.4 Clinical Data: (a) RMSE between OF tracking and manual tracing: forward (solid line) and 
backward (dashed line). (b) RMSE between OF tracking and QLAB segmentation: forward tracking without 
re-initialization (solid line), forward tracking with re-initialization every fourth frame (dashed line), forward 
tracking with re-initialization every second frame (dotted line), and average result from forward and backward 
tracking without re-initialization (dashdot line). 
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Figure 9.5 Results on clinical data. (a) RMSE of radial difference for OF initialized with manual tracing (solid 
line) and QLAB segmentation with 2-frame re-initialization (dashed line); (b-c) LV volumes over one cardiac 
cycle: (b) Manual tracing (solid line) and OF initialized with manual tracing (dashed line); (c) QLAB 
segmentation (solid line) and OF initialized with QLAB segmentation (dashed line). 
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Figure 9.6 Endocardial surfaces from clinical data at ES. (a-c) Manual tracing; (d-f) QLAB segmentation. 

Three-dimensional rendering of endocardial surfaces from segmentation method (dark gray) and OF tracking 

(light gray): (a, d) lateral view; (b, e) anterior view. Relative radial difference maps between OF tracking and 

the segmentation method. 
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Figure 9.7 Flowchart of the computational framework. 
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Figure 9.8 Coordinate systems for data acquisition, and computation. 
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Figure 9.9 Flow field: (a) 1 slice; (b) 3D rendering. 
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Figure 9.10 Radial displacement: (a) 1 slice (blue: inward); (b) 3D rendering 
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Figure 9.11 Thickening: (a) 1 slice; (b) 3D rendering. 
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Figure 9.12 Twist: (a) 1 slice (blue: clockwise); (b) 3D rendering 
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