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Abstract

We present a two-step algorithm for the recognition of circles. The first step uses a 2D Hough Transform for the detection of the centres of
the circles and the second step validates their existence by radius histogramming. The 2D Hough Transform technique makes use of the
property that every chord of a circle passes through its centre. We present results of experiments with synthetic data demonstrating that our
method is more robust to noise than standard gradient based methods. The promise of the method is demonstrated with its application on a
natural image and on a digitized mammogram.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Hough Transform (HT) is a standard method for
shape recognition in digital images [1,2]. It was first
applied to the recognition of straight lines [3,4] and later
extended to circles [5], ellipses [6] and arbitrarily shaped
objects [7]. Its advantages include robustness to noise,
robustness to shape distortions and to occlusions/missing
parts of an object. Its main disadvantage is the fact that
computational and storage requirements of the algorithm
increase as a power of the dimensionality of the curve.
This means that for straight lines the computational com-
plexity and storage requirements areO(n2), for circles
O(n3) and for ellipsesO(n5).

In this article we study the problem of circle recognition
with the use of the HT. Even though there have been
attempts towards the recognition of circles via the standard
3D HT [8], it has been recognized that there is a need for a
decomposition of the search space, to simplify the problem
both in terms of computation and storage. Many attempts
have been based on the property that the normal to a point of
the circumference of a circle passes through the centre of the
circle [9]. This approach works well for high signal to noise
ratios and/or simple environments. As the signal to noise
ratio decreases, the accuracy of the gradient estimation
decreases [9,10]. The fact that gradient-based methods are

heavily dependent upon the accuracy of the gradient estima-
tion explains why they are not robust to noise. Another
disadvantage is that, sometimes, the edge detector of choice
does not provide gradient information. A comparative study
of various HT based techniques for circle recognition has
been performed by Yuen et al. [11].

The approach taken in this article is to decompose the 3D
search into a 2D HT and 1D radius histogramming. For the
first part, instead of relying on a 2D gradient-based HT we
use a 2D bisection based HT. The property we exploit is that
the line that perpendicularly bisects any chord of a circle
passes through its centre (see Fig. 1). Experimentation with
synthetic data demonstrated that our approach is more
robust to noise than gradient-based techniques.

The second part of the algorithm, 1D radius histogram-
ming, is used to validate the existence of these circles and
calculate their radius. We show that extracting information
from the radius histogram is not a trivial task and we devise
a filtering technique that solves this problem.

In Section 2, we discuss the steps of our algorithm. In this
section we give details about the implementation of the
algorithm and analyse the effects of various factors, such
as digitization of the image, discretization of the parameter
space, noise, etc., on the accuracy and the computational
efficiency of the method. In Section 3, we provide test
demonstrations of the algorithm with synthetic and real
images. In the first part of this section, we use synthetic
data to demonstrate the robustness of the technique and
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compare it with the gradient-based 2D HT. In the second
part of this section, we present results with a natural image
and a digitized phantom. Finally, in Section 4, we present
conclusions and summary.

2. Algorithm

2.1. A 2D Hough transform based on bisection

After edge detection, the resulting connected components
are labelled. Each connected component is expressed as a
chain of the coordinates of its points. We connect pairs of
points, of the same component, using a sliding window (see
Fig. 2). If the coordinates of the points areA(xA, yA) andB(x
B, yB), the equation of the line that perpendicularly bisects
AB is

y¼
xA ¹ xB

yA ¹ yB
xþ

x2
A þ y2

A ¹ x2
B ¹ y2

B

2(yA ¹ yB)
(1)

All points (members of the parameter space) belonging to
this line have their votes increased by one. Highly voted
points provide an indication of the existence digital circles.
These points are the centres of these circles.

Since we are dealing with digital circles the points of their
circumference are affected by digitization and, therefore, do
not exactly satisfy the standard circle equation:

r2 ¼ (x¹ x0)2 þ (y¹ y0)2, (2)

wherer is the radius of the circle and (x0, y0) are the coor-
dinates of the centre of the circle. Further, there is a need for
a discretization of the parameter space for two reasons:

1. Computational efficiency. It is impossible to account for
all the digital circles that may exist in the image, and

2. The line that perpendicularly bisects a chord of the circle
is highly unlikely to pass through its centre.As a result of
the digitization of the image, pixels belonging to a
digital circle do not exactly satisfy Eq. (2) and, therefore,
their chords do not coincide with the chords of the true
circle.

The discretization of the parameter space makes the vot-
ing scheme robust to noise and errors induced during the
edge detection and other preprocessing operations. How-
ever, it introduces some error in the determination of the
position of centres of circles. The larger the size of the
members of the parameter space, the higher the uncertainty
of the estimation of the position of the centre of the circle. In
our implementation the parameter space is congruent with
the image space(this is dictated by the adopted parameter-
ization) and the size of a member of the parameter space is
the same as the size of a pixel. This choice is reasonable but
not necessary. For example, one may choose a more robust
scheme where the size of a member of the parameter space
is 2h by 2h (h is the size of the pixel). Such a discretization
will not only increase the uncertainty of the estimation of
the position of the centre of the circle but will also increase
the probability of getting accidental peaks. Its advantage is
that there is a smaller chance of missing real centres.

Simple detection of centres of circles is not enough. The
reasons are as follows.

1. Highly voted pixels provide only an indication of the
existence of a circle. There is a need for verification of
this hypothesis. Highly voted local maxima may be
formed accidentally, and

2. The need for a determination of the third parameter of the
circle (its radiusr).

Next we describe an efficient method towards the verifi-
cation of the existence of a circle, and the extraction of its
radius via radius-histogramming.

2.2. Analysis of radius histogram

After detecting possible centres, we can use the histogram
of the distances of all feature points from the centres to
verify the existence of circles and extract their radii (see
Fig. 3). In the ideal case (continuous circle, exactly deter-
mined centre) the analysis of the radius histogram would be
an easy goal. This is the case because circles would show up
as sharp local maxima in a noisy background in the radius

Fig. 1. Demonstration of the fact that the center of circlec, O, belongs to the
line that perpendicularly bisects the segment defined by pointsA and B
(both points belong to the circumference of the circle).

Fig. 2. Figure illustrating the idea of our implementation of a 2D HT for
circle center localization. PointsP0 andP3 of the connected componentP0,
P1;…;P9, are assumed to belong to the same circle and all points that
belong to the line that perpendicularly bisects the line segment they define
get voted. The same process is repeated for the pairsP1 ¹ P4, P2 ¹ P5 etc.
For this particular case the length of the window is equal to three. If one
chooses to connect pointsP0 ¹ P5, P1 ¹ P6, etc., the length of the window
is equal to five.
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histogram. The reasons why this does not happen in the
discrete space are:

1. Digitization/discretization errors. Even for the case
where we can exactly detetermine the centre of the circle
the digitization of the circle, the digitization of the image
combined with the discretization of the histogram make
almost certain that the votes of the pixels will be spread
to a number of neighbouring bins of the histogram. As
one can see from Fig. 4, this effect is similar to the
spreading of the straight line standard HT [12]. Under
the boundary quantization scheme [13], it can be shown
that digital circles can be bounded by twoeuclidean
circles with the same centre and radii that differ byh
[14]. This is illustrated in Fig. 4 where a digital circle
is bounded by continuous circlesc1 andc2. If Dr is the
size of the bins of the histogram the maximum spreading
for a circle is equal to:

nr ¼ b h
Dr

c þ 2, (3)

where the symbolbzc denotes the largest integer less
than z,

2. Distortion of the shape caused by imperfections in the
image formation, errors during the edge detection stage,
and imperfections in the boundary of the object.

3. Noisy pixels and other objects that appear in the neigh-
bourhood of the circle.

4. Pixels missing from the boundary. This can happen
because of occlusions, missing parts of the object, etc.

5. Errors in the localization of the centre during the
previous steps, mainly during the 2D Hough voting
step. If the localization of the centre of the circle is not
accurate, two peaks will appear in the radius histogram
of the estimated centre (Fig. 5). This was discussed by
Yuen et al. [11]. For a digital image if the error in the
estimation is small, say less than two pixels, there
appears a single extended peak. The length of the peak
is 3–4 bins. If the error in the position estimation of the
centre is larger, two local maxima appear in the histo-
gram. As the error increases so does the distance between
the two peaks. Fig. 5 illustrates these ideas.

6. The number of pixels belonging to a digital circle and a
digital ring increases almost linearly. Kulpa showed that
asr → þ `

Pc(r) ¼ 4
���
2

p
r , (4)

wherePc is the number of points of a digital circle with
radius r. He also provided experimental evidence that
good approximation of the number of pixels belonging to
a digital ring (the digital object bounded by two continuous
circles whose radii differ byh) is given by

Pr (r) ¼ 2pr : (5)

We should emphasize here, that the equivalent of a bin in a
digital image is a digital ring andnot a digital circle.

Fig. 3. The radius histogram of center of a circle. All bins get a small
number of votes except for the bin to which the circle belongs. A sharp
maximum appears for the bin that contains the circle.

Fig. 4. All pixels belonging to a digital circle can be bounded by two
concentric circles,c1 andc2, whose radii differ byh. For the digital circle
of this figure, all pixels are spread between two neighboring bins,b1 andb2.

Fig. 5. If an inaccurate estimate of the centre of the circle is provided by the
first step, the radius histogram will give two peaks. In this example, the
estimated centre is pointP, while the true centre is pointO. Obviously,
these peaks will appear at bins with distancer 1 andr 2 from the estimated
centre.
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All these factors complicate the assessment of the
radius histogram. Our approach towards the extraction
of information from the radius histogram is based on the
previously presented arguments.

The filter we propose is given by the following equation

t ¼
1

4
���
2

p
r

"
¹

3r
2(r ¹ 2)

1 1 1
¹ 3r

2(r þ 2)·

#
, (6)

The details of the derivation of the coefficients of this filter
are presented in Appendix A. The divisor of the right hand
side of Eq. (6) is equal to the number of pixels belonging to
a circle of radiusr (see Eq. (4)). We should add that the
proposed filtering technique gives an unbiased estimator of
thenormalized, unoccluded partof the circumference of the
circle. In other words if no circular features exist in the
image and the image is corrupted with uniform noise the
members of the histogram will have zero mean.

The resulting filtered histogram is searched for local
peaks whose values exceed a certain threshold. As a result
of the normalization of the filtered histogram the threshold
does not depend on the radius of the circle. This threshold
represents the percentage of the circumference of the cir-
cle present in the image. For instance, if we want to detect
circles with 70% unoccluded circumference, the threshold
local maxima have to exceed is 0.70. One should also
consider the effects of shape distortion, which would
result in a spreading of the votes. If we want to take this
effect into account we have to set the threshold to a lower
value (say 0.5).

3. Results

In this section we present results from our experiments
with the algorithm with real and synthetic images. Our pur-
pose is to study the variation of the robustness of the bisec-
tion-based HT with increasing noise and how it compares
with gradient-based HTs. As a measure of the robustness we
use the robustness ratioP, defined as

P¼
vpeak

vtotal
, (7)

wherevpeakis the number of votes of the peak cell andvtotal is
the number of pixels of the circumference of the circle.
Obviously, because of the digitization of the image, even
in the ideal case,P is less than 1.

3.1. Length of window

The first thing we would like to study is the dependence
of P with the size of the window that is slid along the
boundary of the object. Fig. 2 shows examples of windows
of different sizes slid along a digital curve. Fig. 6 shows
plots ofP for three circles of radii 20, 30, and 50 pixels. We
notice that as the radius increases so doesP. We also notice

Fig. 6. Comparison of the robustnessP as a function of theSNRfor three
circles of radii: (a)r ¼ 20; (b) r ¼ 30; and (c)r ¼ 50 pixels. As the step
becomes largerP increases.
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that as the size of the window increases so doesP. Theore-
tical analysis that would indicate the optimum window size
is difficult because errors in the coordinates of the two
extreme points of the window are not independent to each
other. Such a study was presented by Amir [15]. The
assumptions, this study relied upon, were independent errors
in the coordinates of the two extreme points of the window
and an a priori knowledge of the radius of the circle. Our
effort is towards the recognition of circles ofvarying
radii. The length of the window should be kept as low
as possible. The reason for that is the need for recognition
of occluded or distorted circles. For these two cases the
larger the window the less points that contribute to the
creation of peaks in the parameter space. For the purpose
of this research we chose a window of length equal to
twenty as a good compromise between robustness to
noise and robustness to missing parts.

3.2. Synthetic images

3.2.1. Image formation
The purpose of using synthetic images is to compare the

bisection-based HT with gradient-based HT in terms of
robustness and to extract conclusions about the accuracy
of the technique as a function of the Signal to Noise Ratio
(SNR). Our effort was to replicate the image acquisition
model presented by Lyvers and Mitchell [10]. According
to this model the grey level value of a pixel is given by
the following equation

I (k, l) ¼

∫(kþ 0:5)Dx

(k¹ 0:5)Dx

∫(l þ 0:5)Dy

(l ¹ 0:5)Dy
f (x,y)dxdy, (8)

wheref(x,y) denotes the continuous image andI(k,l) denotes
the digital image. An image containing a circle, modelled
with this scheme, is presented in Fig. 7(a). One can easily
notice the smoothness of the edges of the circle. The image
shown in this figure is corrupted with Gaussian noise of
standard deviation 1. The background value is equal to
120 and the foreground 140. TheSNRis calculated by the
following equation [10]:

SNR¼ 20log10
c
j

(9)

wherec is the contrast andj is the standard deviation of the
noise.

3.2.2. Examples
Fig. 7(b) shows the resulting image after edge detection

and thresholding of the image of Fig. 7(a). The edge detec-
tion method of choice was the one proposed by Canny [16].
In Fig. 7(c) we present the resulting voting space in a mesh
format. The coordinates of the identified peak were
(128,128) and they exactly coincided with the coordinates
of the original circle. In Fig. 7(d) we show the radius histo-
gram and in Fig. 7(e) we show the filtered histogram.
Finally, in Fig. 7(f), we superimpose the detected circle
on the original image.

The same process was followed for an image of a lowSNR
and the results are presented in Fig. 8. We note here that:

1. the number of votes of the centre is smaller in the low
SNRcase than in the highSNR,and

2. the spreading of the votes in the radius histogram is
higher in the low SNR (more bins share the same
votes).To counter these two problems, one has to set
the vote threshold of the 2D HT to lower values and to
use a larger window during the histogram filtering stage.
A final note is that the fact that the value of the filtered
histogram is greater than one is attributed to the votes
caused by noisy pixels.

3.2.3. Comparison of bisection-based with gradient-based
HT

Robustness to noise and accuracy in the determination of
the centre of the circle are the two main issues one should be
concerned when he is using the bisection-based 2D Hough
Transform for centre detection. We use the robustness ratioP,
defined by Eq. (7), and the distance of the detected centre and
the true centre as measures of the performance of the algo-
rithms. We performed experiments for a wide range of SNRs
(2 to 26) for various radii. Experiments were repeated for 20
times and mean values are plotted in the figures that follow.

In Fig. 9 we present plots of the robustnessP, as defined
by Eq. (7) as a function of theSNRfor circle of radii 20, 30,
and 50 pixels. Comparing theP of the gradient-based HT
[17, p. 212] and the bisection-based HT, we can conclude
that the former is advantageous for highSNRs, while the
latter is far more robust for lowSNRs.

It was also found that the accuracy in the determination of
the centre for lowSNRwith the bisection-based method did
not decrease considerably while the gradient-based method
gave large errors (see Fig. 10).

3.3. Real images

3.3.1. Ball
In Fig. 11(a) a 256 by 256 image containing a soccer ball

is shown. Fig. 11(b) shows the edge detected image. Fig.
11(c) shows a plot of the histogram and Fig. 11(d) shows a
plot of the filtered histogram. A local maximum was found
for r ¼ 21. Fig. 11(e) shows the results of filtering with a
Laplacian filter, proposed by Kierkegaard [18]. The pro-
blems of this filter are apparent. While it correctly identifies
a peak for the true circle it enhances the accidental peak that
appears forr ¼ 75. Finally, in Fig. 11(f) the detected circle
is superimposed on the original image. The relatively low
value of the local peak of the filtered histogram,hmax¼ 0.38,
is attributed to the increased spreading of the digital object
(soccer ball). A more robust version of the filter of Eq. (6)
given by the following equation

t ¼
1

4
���
2

p
r

"
¹

5r
2(r ¹ 3)

1 1 1 1 1
¹ 5r

2(r þ 3)

#
, (10)
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Fig. 7. Figure illustrating the various stages of the presented algorithm for a highSNRsynthetic image (SNR¼ 26). (a) Original image with a circle at its centre.
The radius of the circle was 20 pixels; (b) edge detected image; (c) plotting of the voting space in a mesh format. The peak indicates the possible existence of a
circle. The coordinates of the peak provide an estimation of the coordinates of the centre of the circle; (d) histogram of the feature pixels as a function of their
distance from the identified centre (peak in the voting space); (e) filtered histogram. The identified peak was atr ¼ 20; (f) detected circle superimposed on the
original image.
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Fig. 8. Figure illustrating the various stages of the presented algorithm for a lowSNRsynthetic image (SNR¼ 2). (a) Original image with a circle at its centre.
The radius of the circle was 20 pixels; (b) edge detected image; (c) plotting of the voting space in a mesh format. The peak indicates the possible existence of a
circle. The coordinates of the peak provide an estimation of the coordinates of the centre of the circle; (d) histogram of the feature pixels as a function of their
distance from the identified centre (peak in the voting space); (e) filtered histogram. The identified peak was atr ¼ 20; (f) detected circle superimposed on the
original image.
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gavehmax ¼ 0.89. What was said for the filter of Eq. (6)
holds also for the filter of Eq. (10) with the only exception
that, because the votes of five, instead of three, bins are
added it is more robust to shape distortions (spreading of
the circle).

Fig. 12(a) shows a radiographic image of an RMI 156
(Gamex Inc., Middleton, WI) mammographic accredited
phantom. Three types of mammographic features are
visible within this phantom image, simulating different
sized circular malignant masses as well as small micro-
calcifications and fibres of varying contrast. Small circum-
scribed lesions are one of the more important signs of
breast cancer which may be detected by mammography
in asymptomatic women. The detection of lesions in digi-
tal mammograms, is one of the main areas digital mam-
mography has focused on [19,20]. Mammographic
phantoms like the one shown in Fig. 12(a) are used to
measure the performance of mammographic systems and
a mammography unit needs to be able to visualize at least
four fibres, three groups of microcalcification specks and
three masses to pass the American College of Radiology
accreditation program in the United States. The size of the
image is 512 by 512 pixels. Fig. 12(b) shows the results of
edge detection. Eighteen circle centres were detected,
when the voting space was searched for local maxima
that had more than 30 votes. After radius histogramming,
histogram filtering with the filter of Eq. (6) four circles
were detected. These four circles are superimposed on the
original image in Fig. 12(c).

4. Conclusions

We presented a two-step HT for the detection and loca-
lization of circles in digital images. The first uses a bisec-
tion-based 2D HT. Experiments with synthetic data suggest
that the bisection-based HT is more robust to noise than the
gradient-based HT while being more accurate. Davies was
the first to use this property for the localization of centres of
circles [21]. His implementation is very efficient in terms of
computation but since it only uses vertical and horizontal
chords it lacks robustness.

The second step uses radius histogramming to detect the
circle and extract its radius. Enhancement of local maxima
with the use of a Laplacian filter as suggested by Kierke-
gaard [18], has the significant shortcoming that it does not
normalize for the increasing number of pixels belonging to a
bin as we go away from the centre of the circle (see Eq. (5)
and (4)). Further, there is no intuitive method for the selec-
tion of the threshold of the filtered histogram. Our filtering
scheme, considers votes caused by noisy pixels, shape dis-
tortions and normalizes to account for the dependence of the
number of pixels on the radius of the circle.

Sample results were provided and showed that the
method is capable of detecting circle in various environ-
ments and of varying sizes and shape distortions.

Fig. 9. Plots of the mean value of the maximum value of the filtered
histogramhmax, for 20 experiments, as a function of theSNR.Continuous
lines denote results using the bisection-based HT, while dashed lines denote
results of the gradient-based HT, for circles of radii: (a)r ¼ 20; (b)r ¼ 30;
and (c)r ¼ 50. While for highSNR(i.e. SNR. 20) the gradient-based HT
works better, for lowSNRdrop the bisection-based HT gives better results.
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Appendix A Derivations

In this Appendix we will derive the filter shown in Eq.
(6). We will rely on the assumption that we are dealing with
an image corrupted with uniform noise and that we are
looking for a perfect digital circle. As we noticed (see Eq.
(3)) earlier forDr ¼ h the maximum number of bins a circle
spreads its votes is equal to 2. Therefore, if we pass the
radius histogram with the filter

t ¼ [11]

we will get an estimate of the pixels the circle contains. We
would like the filter to be symmetric around the central bin
therefore we choose

t ¼ [111]:

The resulting array contains the number of pixels of the
circle plus votes caused by noise, other objects etc. We
need to enhance our scheme with a module that estimates
the votes due to noise and subtracts them. For this purpose
we will use two more bins (the outer ones). Therefore our
filter is

t ¼ [a111b]: (11)

To get values fora andb we will require for our filter to
give an unbiased estimator with minimum uncertainty (stan-
dard deviation). We assume that noise is spatially uniform.
To have an unbiased estimator means that if the image is
corrupted with noise and no circular object is present the
resulting (processed) histogram will have mean value equal
to zero.

It is easy to see that therth bin of the histogram represents
a ring [14] whose radius is equal tor. Kulpa provided
experimental evidence that a good approximation to the
number of pixels belonging to such a ring is 2pr. This
estimation is based on empirical evidence [14] and until
now no theoretical justification to it was found. We verified,
through simulations, that this formula holds with adequate
accuracy for radii in the range [h,512h]. It is easy to show,
that the number of votes therth bin takes caused by noise
follows a binomial distribution with mean value:

m ¼ p(2pr) (12)

and standard deviation:

j ¼
���������������������������
p(1¹ p)(2pr)

p
, (13)

wherep is the probability that a pixel is noisy.
From Eq. (12) and the constraint we imposed that our

estimator should be unbiased we get

mF ¼ a(r ¹ 2h) þ (r ¹ h) þ (r) þ (r þ h) þ b(r þ 2h) ¼ 0:

(14)

The second equation that we will use comes from the
requirement of minimization of the standard deviation of
the resulting filtered histogram. The standard deviation of

Fig. 10. Plots of the error in the determination of the centre of the circle with
the use of the bisection-based method (continuous lines) and the gradient-
based method (dashed lines) for circles of radii: (a)r ¼ 20; (b)r ¼ 30; and
(c) r ¼ 50. For most of the cases the error of the gradient-based method is
larger than the error of the bisection-based method. As it is obvious from
the three plots, the error of the bisection-based method for a wide range of
noise levels remained smaller than a pixel.
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Fig. 11. Figure illustrating the steps of the algorithm on real data. (a) Image containing a circular soccer ball; (b) results of Canny edge detection;(c) plot of the
radius histogram; (d) plot of the filtered radius histogram; (e) plot of the filtered radius histogram with the use of the Laplacian filter as proposed by Kierkegaard
[18]; (f) detected circle superimposed on the original image.
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the filtered space is given by the following formula:

jF ¼

2p

�������������������������������������������������������������������������������������������������������
a2(r ¹ 2h)2 þ (r ¹ h)2 þ (r)2 þ (r þ h)2 þ b2(r þ 2h)2

q
:

If we make the following substitutions:

X1¼ a(r ¹ 2h)

X2¼ r ¹ h

X3¼ r

X4¼ r þ h

X5¼ b(r þ 2h)

to the Eq. (14) and (15) we get

X1þ X2þ X3þ X4þ X5¼ 0, (16)

and

jF ¼ 2p
�����������������������������������������������������������
X12 þ X22 þ X32 þ X42 þ X52

p
(17)

If we solve Eq. (16) forX1, and substitute into Eq. (17), and
differentiate Eq. (17) with respect tob we get:

]jF

]b
¼ (2X5þ 2(X2þ X3þ X4þ X5))f ¼ 0, (18)

where f is a factor that cannot become zero (a constant
divided by a function ofX5).

From Eq. (14) and (18) we geta andb. The resulting filter
is given in the main part of the paper (Eq. (6)).
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