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1. INTRODUCTION

Computer aided diagnosis (CAD) in the medical image domain requires
adaptive knowledge-based models to handle uncertainty, ambiguity, and
noise.

We propose an expert guided coupled dual ellipse model in a coarse to
fine energy minimization framework.

Quantitative evaluations on synthetic and real data sets show the
performance of our framework. Experimental results demonstrate that our
framework performs well with an area under the ROC curve of 0.93.
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2. MATERIALS & METHODOLOGY

2.1 Input Data

Retinal fundus images showing bright Stargardt ring structures. The
bright ring is an abnormal accumulation of lipofuscin surrounding the dark
macular center region and can manifest itself in a variety of disease
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Our approach follows the spirit of multi-stage decomposition when
analyzing a signal. Prior information from the coarse level guides as a
modeling constraint the finer successive detail level when facing data
ambiguities.
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2.2 The Coupled Dual Ellipse Model

We use Euclidean parametric ellipse models to model a closed ring
topology representing the Stargardt ring structure yet constraint in the
space of elliptical shapes.

The model is flexible in a sense that the expert is able to partially provide
model information within the parameter space for minimal expert
Intervention .

2.3 Coarse Level Model Minimization

The expert provides two seed locations placing a prior constraint on the
approximate location of the inner and outer ellipse model. We evolve the
coupled parametric model towards each other by minimizing for the ring
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Coarse level minimization of the ring happens through optimization for
three energy terms.
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The energy functional for the coarse level:

El(fa @ina @out) — Edata + Eshape + CLTGCL(D)

We drop an explicit smoothness constraint due to the implicit
representation of the coupled dual ellipse model. The data term is a
variant of the Mumford —Shah functional minimizing the within class
variance of the intensity distribution. The shape term acts as a deflating
force.
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2.4 Fine Level Model Minimization

To model the fine detail level we transform the coarse level subspace
constraint into an implicit representation suitable for shape matching to
constrain the fine detail model. Optimization happens in the level set
framework proposed by Osher and Sethian [1].
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In the context of the joint minimization problem the prior term is borrowed
iInvisibly from the coarse level model through transformation to a higher
dimensional embedding function.

For the fine level model we minimize an energy functional composed of a
data term and expert guided shape constraint.
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We keep the intensity mean values within the intensity mean of the
subspace constraint and its background mean. The shape terms is
modeled through a shape distance in L, with a normalization factor as
proposed in Cremers et al [2].

3. RESULTS AND DISCUSSION

We evaluate our method on synthetic and 10 real datasets to measure
noise sensitivity and the ROC performance.

We measure the performance of the coarse and fine segmentation step
and obtain the following ROC statistics for the synthetic and the retinal
Stargardt test cases.

TABLE 1
ROC STATISTIC OF COARSE AND FINE SEGMENTATION RESULT ON THE
SYNTHETIC NOISE AND THE REAL DATASET ON PIXEL BY PIXEL BASIS.

ROC Noise Noise Real Real
Statistic Coarse Fine Coarse Fine
Hsensitivity 888 830 819 787
Hspecificity 968 968 919 962
Osensitivity 016 091  .093 076
O speci ficity 011 063 064 7%
Azroc 885 938  .903 930
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When observing the Az value the performance of the coarse and the fine
segmentation results are comparable with a slightly better performance of
the fine segmentation of 2.7%. We observer similar performance on the
synthetic noise dataset. For the real data experiment the coarse results
show slightly higher variations of the mean sensitivity and specificity.

(Top Left) Segmentation results on 4 synthetic images using Gaussian
noise of 25%, 50%, and 100%. The middle row shows fitted coupled dual
ellipse model in red/green. Bottom row shows the final segmentation result.

(Top Right, Bottom Left/Right) Qualitative segmentation results on 12 retinal
Stargardt images comprised of different levels of segmentation complexity.
The red/green contours denote the shape prior computed in Section 2.3.

The yellow/green contours show the final segmentation result.
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5. SUMMARY & CONCLUSIONS

We have presented a coarse to fine minimization framework using a coupled
dual ellipse model to form a subspace constraint that is used as a shape
prior for fine model refinement.

Our experiments show promising results. Future work is devoted towards
extension of our framework to deal with other ring like disease phenotypes.
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