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Coherence of Multiscale Features for
Enhancement of Digital Mammograms

Chun-Ming Chang and Andrew Laine

Abstract—Mammograms depict most of the significant changes features and enhancement of them can assist radiologists to
in breast disease. The primary radiographic signs of cancer are |ocate suspicious areas more reliably [33].

related to tumor mass, density, size, borders, and shape, and local - gy, gjes of multiscale representations based on wavelets have
distribution of calcifications. We show that each of these features

can be well described by coherence and orientation measures and?€€n carried out for mammographic feature analysis [17],
provide visual cues for radiologists to identify possible lesions [28], [30]. Laineet al.[17] used two overcomplete multiscale
more easily without increasing false positives. representations for contrast enhancement. Mammograms were

In this paper, an artifact-free enhancement algorithm based reconstructed from transform coefficients modified at each

on overcomplete multlscale_representatlons is presented. First, an level by nonlinear weighting functions. Qiaet al. [28],
image was decomposed using a fast wavelet transform algorithm. . - . ;
At each level of analysis, energy and phase information are [27] introduced tree-structured nonlinear filters for micro-

computed via a set of separable steerable filters. Then, a measurecalcification cluster detection. An image was enhanced by
of coherence within each level was obtained by weighting an tree-structured nonlinear filters with fixed parameters and
entir_gy meas_L;_redw@hdthe E‘“Oh of prOthcnons of '°Ca|t %nergty adaptive order statistic filters. Richardson [30] applied linear
within a specified window. Each projection was computed onto - L . )
the central point of a window with respect to the total energy and nonlinear flltgrlng appr-oaches to the an-ally5|s of mam.mo
within that window. Finally, a nonlinear operation, integrating ~ 9rams. Here, a linear multiscale decomposition was obtained
coherence and orientation information, was applied to modify Via a wavelet transform; a nonlinear multiscale decomposition
transform coefficients within distinct levels of analysis. These employed a “mean curvature partial differential equation” filter
modified coefficients were then reconstructed, via an inverse and “weighted majority-minimum range” filter. In addition, Li
fast wavelet transform, resulting in an improved visualization et al. [18] extended a conventional multiresolution Wa\}elet
of significant mammographic features. The novelty of this al- : . h ) e ;
gorithm lies in the detection of directional multiscale features transform into a multiresolution and multiorientation wavelet
and the removal of aliased perturbations. Compared to existing transform. They applied directional wavelet analysis to capture
multiscale enhancement techniques, images processed with thisgrientation information within each mammogram.
method appeared more familiar to radiologists due to localized  EFraeman and Adelson [6] first proposed the concept of
enhancement of features. . . . .
steerable filters and applied it to several problems in the
Index Terms—Coherence measure, multiscale analysis, ori- grea of computer vision. With a set of “basis filters,” one
ented energy, overcomplete representations, separable steerable,y agaptively steer a filter along any orientation. Hilbert
filters, wavelet basis. . : ..
transform pairs were constructed to find a local “oriented
energy” measure and dominant orientation.
I. INTRODUCTION Later, Kass and Witkin [12] developed an algorithm for

AMMOGRAMS can detect tumors that are an eighth ogstimating the orientation of texture patterns. An orientation
M an inch in diameter, while manual examination usualljattern was decomposed into a flow field, describing the
fails to detect tumors smaller than a half-inch. Screenirffiréction of anisotropy, and a residual pattern was obtained
for breast disease via mammography depends on 0bser\)p,ygdescribing an image in a coordinate system built from the
local and distant changes in tissues. Important visual cluaw field. Texture orientation was estimated from Laplacian
of breast cancer include preliminary signs of masses affi Gaussian filters. More recently, Rao and Schunck [29]
calcification clusters [5], [21]. Unfortunately, at the earlproposed a related algorithm based on the gradient of the
stages of breast cancer, these signs are very subtle and va@@gssian. Their algorithm incorporated a more sophisticated
in appearance, making diagnosis difficult, challenging evégheme for computing the coherence of the flow field.
for specialists [5], [10]. Radiographic signs of cancer are In this paper, an enhancement algorithm based on overcom-
related to tumor mass and density, size, shape, smoothridl§te multiscale wavelet analysis is described. These redundant

of borders, and calcification distribution. Extraction of thesépresentations provide the property of shift invariance which
is shown to be advantageous for applications of feature ex-
traction and contrast enhancement. Features were extracted
Manuscript received April 8, 1998; revised November 3, 1998. _by sepa_rable steerable filters. A coheren_t Image ar_]d phase
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of these modified coefficients. The novelty and advanta@ne popular discretization is to choogg= 2,09 = 1
of this algorithm compared to existing techniques lies in its

detection of directional features and the lack of perturbations Yo () = 27/ Dep(27™ e — n) 9)
(artifacts) in reconstructed images. The latter is of great
importance for applications in medical imaging. which are calleddyadic wavelets

Il. BACKGROUND B. Steerable Filters

In this section, we briefly describe the mathematical back- A function f(x, %) is called “steerable” if it can be expressed
ground and fundamental ideas used in subsequent sectionas a linear combination of rotated versions of itself. The
fundamental idea of steerable filters is to apply distinct “basis
A. Wavelet Transforms filters” that correspond to a fixed set of orientations and
datgrpolate between each discrete response. Thus, one must

tool for many applications in signal and image processing. St decide the number of “basis filters” and corresponding
function(z) is said to be a wavelet if and only if its Fouriernterpolation functions. Lef; be the angle of soméh basis

transformz/l(g) satisfies theadmissibility condition filter and%;(6) denote an interpolation function. As defined in
[6], a steering constraint may be formulated by

Wavelet transforms have become acknowledged as a us

+oo 1.7 2
s condition Trofies. M Flay) = k(O (@.y) (10)
is condition implies that i=1
/+o<> P(z) dz =0 ) where L is lthe number of basis functions required to steer
—o0 some functionf(z,y).

which means tha#(z) will have at least some oscillations. Hereatter, it will be more convenient to work in polar

i . — 2 2 — N
Wavelets constitute a family of functions derived from oordinates where = /z*+y* and ¢ = arg(s,y). Let

single functiom) (other wavelétby dilations and translationsin t;eolgrya;l;rl‘ggon that can be expressed as a Fourier series

1 z—0b
Yap(z) = —= ¢ 3) N
Va a ino
t - Frnd)= > an(r)e (12)
wherea € RT.b € R. A central idea in wavelet analysis is n=—N
to represent any functiofi(¢) as a superposition of wavelets.
The continuous wavelet transform is defined as wherej = /-1 and N is the discrete length of the coeffi-

1 +oo o —D\ cients. _
Wela,b) = (f,ap) = — / f(a:)z/;<aj ) dz (4) The theorems below were posed by [6] and are included for
Va Joo clarity and completeness of description.
where denotes the complex conjugate+pf A function can Theorem 1: Steering cond|t|_on (10) holds for_a funct|qﬁ
be reconstructed from its wavelet transform by means of tg&Panded in the form of (11) if and only if the interpolations
“resolution of identity formula k;(#) are solutions of

1 oo ptoo dadb 1 1 1 1 k1(9)
f: O_w /_Oo /_Oo <faz/}a,b>z/}a,b CL2 . (5) 6]’0 6j01 6]’02 CjeL ]CQ(Q)

In the application of digital mammography, one needs to

expressf as a discrete superposition. If we discretize the \¢/™* N0 NN kr(0)
translation and dilation parameters of the wavelet in (3), we ) (12)
see that Thus, f9(r, $) may be expressed as

Pmn(T) = aa(m/Q) P(ag ™ — nbo) (6) L
wherea = af*, b = nbpay’, with m,n € Z, andag > 1,by # im1

0. On this discrete grid, the wavelet transform is simply
where g;(r, ¢) can be any set of functions.

“+oo
Wi(m,n) = aa(m/2) / Fle)plag™z — nby) dz. (7) Theorem 2:Let f(x,y) = W(r)Py(x,y), whereW(r) is
—00 an arbitrary windowing function, anBly (z, y) is an/Nth order
An original signal can be approximated as linear combinatioR€!ynomial ina andy, whose coefficients may depend on
of a wavelet basis Linear combinations oV + 1 basis functions are sufficient
to synthesizef (z,y) = W(r) Py (x, y) rotated to any angle. If
F@) = We(m,n)tm (). (8)  Py(z,y) contains only even (or odd) order terms, th¥n 1

mmn basis functions are sufficient.
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Fig. 1. Energy functions of four signal models. (a) Ideal step edge. (b) Smoothed step edge. (c) Roof edge. (d) Line (spike edge).

Since convolution is a linear operation, from (10), (14) can
g reformulated as

C. Local Energy

Relying on physiological evidence, a local energy operatB
was first proposed by Morrone and Owens [22]. Rather than
considering differential properties, they studied the properties
of the Fourier expansion of an intensity function. They demon-
strated that maxima of an energy function were coincident

with the points of maximum phase congruency. A local energy i i
model has an advantage in that it simultaneously detects biffereL:1 and.L, are the numbers of functions required to steer

edges and lines. Some one-dimensional (1-D) examples @ctionsG(6), GH(6), ki(6), and kT (6) denote interpolation

shown in Fig. 1. The top rows show the original signals afgnctions, and
the bottom rows show the norms of local energy functions. We

observe that the local maxima of each energy function occurs

at the central position of each feature in the signal model.

Let IG(#) and IGH (#) be the outputs of constituent filter
G(6) and its quadrature paf#’’ (6), respectively. An oriented are the outputs of each basis filter and its quadrature pair,
energy function can be expressed by the squared outputs @éspectively, which are known constants. Equation (15) is a
quadrature pair of filters steered to an an@lehat is, function of bothk;(6) andkf(e) that are sinusoidal functions
of 8 [6], [3] and therefore a function of.

Equation (15) contains squares of sinusoidal functions. Fol-
lowing [6], this expression can be simplified to a Fourier series
in angular form via substitutions obtained by the trigonometric
identity (recall, for examplesin® 6 = (1 — cos(26))/2) and

2

2 Ly
E(9) = PN ACN (15)
j=1

Ly
Z ki(0)g:
=1

gi =Gix1
g]H:G]H*I

E6) =[IG(O))* + UG ()]
=[G(8) x I)? + [GH () x I]? (14)

where I denotes an image.
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Fig. 2. An example of oriented energy map construction. (a) A test functio.

(b) Orientation and magnitude map of a test function.

cos? 8 = (1 + cos(260))/2))

E(6) = ag + a1 cos(20) + a2 sin(26)
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Fig. 3. Corrected oriented energy map.

A test function is shown in Fig. 2(a). Using a second
derivative of a Gaussian function and its Hilbert transform
to measure oriented energy, we plotted the direction and
magnitude of each position on a map where the arrow indicates
direction and length denotes magnitude, as shown in Fig. 2(b).
Edges were detected at inflection points of the surface. The
magnitudes of the energy function are maxima, therefore the
lengths are longer than other points of the function.

Note that Fig. 2(b) does not show the correct phase in the
upper half of the map. All arrows are pointing outward instead
of inward. There is a 180phase shift since the oriented energy
is obtained from the squared outputs of quadrature pairs. We
applied a simple algorithm to correct this phase shift. First,
we divide the space into eight directions and approximate the
phase at each point to exactly one of these discrete orientations.
Next, the neighbors of each point along each approximated
direction are examined. If the intensities along a direction are
fhcreasing, the phase is not changed; otherwise, we correct
the phase by a 18Gshift. A sample corrected oriented energy
map is shown in Fig. 3.

D. Measure of Coherence

Texture plays an important role in many machine vision
and image processing tasks including surface inspection, object

The lower frequency terms of this identity were used tolassification, surface orientation, and shape determination [2].
approximate the dominant directions and their associated Texture patterns may be characterized by extracting mea-

magnitudesi/
A = arctan[aq, a2]/2,

M =\/a? + d3

surements that quantify both the “nature” and directions of
patterns. Most breast carcinomas have the appearance of
stellate lesions consisting of a central mass surrounded by
radiating spicules [5]. The spicules may radiate outward in any
direction and vary in length. These features provide important

where thearctan[ay , a2] function calculates the arc tangent of!ues for the early detection of such lesions.

(a1/a2) and the signs of both argumenis and a, are used
to determine the quadrant of the associated result.

Much attention has been given to the notion of decomposing
an intensity image into intrinsic images to extract meaningful

Fig. 2 shows the oriented energy map of a two-dimensiorjgformation [1], [20]. Such intrinsic properties represent basic

(2-D) Gaussian function

fla,y) = @,

components of some image formation process and therefore
can reveal features “hidden” inside an image. The information
provided is not obvious from the intensity image alone.
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pixels corresponding to the original sample region (16 pixels)
at level one; while at level two, there is only a single pixel.
Thus, if we change a value of one pixel at level two, there will

Qvercomplete multiscale L Inverse wavelet

B epresentitions e > Oupu be 16 pixels affected in the o_riginal image mat_rix. Fig. 5(b)
+ shows an overcomplete multiscale representation where the
approximated image is shown on the right-hand side of the
level 2 decomposition. At each level, there is exactly one pixel
corresponding to each pixel in the original image.
Let S° denote an original image an®‘h be obtained
by inserting2’ — 1 zeros between every pair of coefficients
representingh. (D°h), and (D'h), stand for carrying out
* convolution operations with filteD*h along ther andy direc-
tions, respectively. Then, the decomposition and reconstruction
equations for levef are computed as follows.
Decomposition:

Separable steerable
filter analysis

Coherence
measures

i Nonlinear
operators

Fig. 4. Block diagram of the proposed algorithm.

S+t =55 (D'h), * (D'R),
Wai—i—l =5« (Dig)w

Rao and Schunck [29] defined an orientation field of a tex- W;H =55 (D'g)y- (18)
ture image to consist of two “images”—amgleimage and a
coherenceémage. The angle image denotes the dominant local
orientation at each point while the coherence image represents
the degree of anisotropy at each point. The application of
angle and coherence imagesiaginsic images was strongly
advocated. In this paper, we investigated the efficiency @here % indicates discrete circular convolution, aihdg, k,
these two representations to capture and enhance featuregrefi are filters whose Fourier transforr (w), G(w), K (w),
importance to mammography screening. and L(w), respectively) satisfy [19]

Reconstruction:

St =Wt s (Dk),  (D'l), + With« (D),
* (D'k), + ST % (D'R), * (D'R), (19)

I1l. M ETHODOLOGY

Gw)K(w) + [Hw)P =1
2

Our algorithm consists of four steps [3], [4]: 1) construction Lw) = w
of an overcomplete multiscale representation; 2) analysis via
separable steerable filters; 3) computing coherence measurefpllowing [19], we choos&(w) to approximate the deriva-
and 4) application of nonlinear operators, as shown in Fig. thve of a smoothing function, which is equivalent to a high-pass
Next, we describe each step in the sections below. filter; H(w) is a smoothing function, which is equivalent to

1) Overcomplete Multiscale Representatiorghrough a low-pass filter. The block diagrams for decomposition and
multiscale analysis, one can extract features at distinct scalesonstruction operations at leviehre shown in Fig. 6(a) and
and “mine” subtle information often hidden in an originalb), respectively.
mammogram [17]. One major drawback of wavelet transforms2) Analysis via Separable Steerable Filters: filter is
is their lack of translation invariance [32], making the conteralled “steerable” if the filter at an arbitrary orientation can
of wavelet subbands unstable under the translations of lam expressed as a linear combination of a set of basis filters,
input signal. In our algorithm, a digitized mammogram wagenerated from rotations of a single kernel [6]. Steerable filters
decomposed using a fast wavelet transform algorithm (FWTB], [14], [13], which can be adaptively adjusted to arbitrary
[19]. In order to obtain wavelet coefficients at each levalrientation, were used to detect stellate patterns of spicules and
without downsampling, an undecimatedlgorithmea trous’ locate feature orientations more precisely. As pointed out in
(algorithm with holes) [9], [31] was implemented. In thg26], the separability property of discrete filters can speed up
spatial domain, these redundant representations correspoachputation considerably when convolved with a large image
to signals without aliasing. matrix. In our algorithm, we used three basis functions as

Fig. 5 shows the differences between traditional wavelsteerable filters. The—y separable steerable approximations of
representations and overcomplete multiscale representatiditier kernels were generated by a singular value decomposition
Here, we demonstrate two levels of a decomposition. ABVD) algorithm [6], [26]. Using a set of separable steerable
original image is shown on the left-hand side of Fig. 5(afilters, the magnitudéi/*) and associated dominant directions
A sample region (%4) is denoted by dots in Fig. 5(a).(A%) of local energy were determined by the basis functions
After decomposition, corresponding wavelet representatioasd their Hilbert transforms [6], [11], [22], [24]. Fig. 7
are shown on the right-hand side of Fig. 5(a) (the upper lafustrates the procedure of steerable filter processing.
corner shows the approximated image). Distinct pixels, at eachVe applied separable steerable filters to an original image
level of analysis, corresponding to the sample region are al§® and a low-pass filtered image at each les&li =1, ---n,
shown. Because of downsampling at each level, there are foaidistill salient multiscale features. The three basis functions

(20)
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Fig. 5. lllustrations of distinct wavelet representations: (a) Traditional wavelet representations. (b) Overcomplete multiscale repes@iéatidhat the
first character denotes an operation alongthexis, and the second, theaxis. L: low-pass filtering. H: high-pass filterind. remains unchanged.)
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which were applied in our implementation algorithm were
discretized and are shown in Fig. 9. The Hilbert transformg. 7. Diagram of steerable filter processing.
of the basis function was thereafter obtained by [7].

To illustrate how dominant directions of local energy relati®g Fig. 8(b) and (c), note that the map obtained from steerable
to image features, a sample mammogram which was extractéi¢rs detected the boundary more precisely and with less
from Fig. 17(a), as shown in Fig. 8. Fig. 8(a) presents a regigariation.
of interest (ROI) image matrix of 3232. The corresponding 3) Coherence MeasuresA coherence map is an image
gradient is displayed in Fig. 8(b). After applying steerablghowing a local measure of the degree of anisotropy of flow
filters and an energy function to locate features, the resultifit], [29]. If orientations of a texture pattern at any point
magnitude and orientation map is shown in Fig. 8(c). Compate;,y;) are coherent, then magnitude and phase information
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Fig. 8. A mammogram sample ROl showing computed features derived from
steerable filters and an energy function. (a) An extracted sample image. (b)

(d)

The gradient map. (c) Local energy. (d) Coherence map.

are important and should be emphasized. Conversely, if the
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Fig. 9. Two-dimensional impulse responses of three steerable basis func-
tions. (a)—(c) Input tok1(6), k2(#), andks(6), respectively, as shown in
Fig. 7.

mation can be neglected or attenuated. Kass and Witkin [12]
suggested a simple way for measuring strength of coherence
by finding the ratio

WL RIGR)
XU-P) = GG G R

where W(j, k) denotes a local weighting function with unit
integral, J(j, k) denotes the squared gradient vecto(jat:),
and |x| denotes the absolute value gf

An alternative measure of coherence was proposed by Rao
and Schunck [29] and was obtained by weighting energy
with a normalized projection of the energy within a specified
window (W) onto the central pointj, k) of each window.
The coherence measuf€*) was expressed as

C'(j, k) = M"(j, k)

Z |M¥(m,n) cos(A*(j, k) — A'(m,n))]
(mmow

(21)

Z Mi(m,n)

(m,n)ew

orientations are not coherent, the magnitude and phase infor- (22)
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where M*(j,k) and A'(j,k) denote energy and phase of step 1 b -
point (j, k) at level, respectively. This coherence measure
incorporates the gradient magnitude and hence places more
weight on regions that have higher visual contrast.
Let us examine more closely how a coherence measure
works. Suppose we choose a region somewhere in an image,
as shown in Fig. 10. Pixel is on a vertical edge line because 1
its magnitude is maximum along the direction of its phase, Steerable Steerable Steerable
i.e., there is an edge along the vertical direction of pixel Filiers 'y Filters Filters
The coherence at pixel is measured within window 1 which frerey MO M! ‘M
+ +

¥

surrounds pixeld. Since the pixels inside window 1 have thestep 2
same phase as pixdl, the coherence of pixed is equal to the ‘
magnitude at this pixel. While the pixels, surrounding pikel Phase A’ Al A
inside window 2 point to distinct directions, the projections ‘ 1
of these pixels on pixeB will be “stable.” The coherence C"“m"“l Cohcrch Coherence
at pixel B is thus reduced. This pixel can be considered Qep3  Conorence T o . P L
“disturbance.” Map C j C C
Experimentally, this method outperformed previous mea- _ _
sures applied to similar data [29]. In our algorithm, wg'9: 12 Overview of processing for Steps 1-3.
implemented this approach and measured each coherence map.
In order to capture multiscale features, we changed the windavagnitudes were attenuated and were not considered features.
size at each distinct level of analysis. At the finest level, Bhe combination of coherence and orientation structure was
5x5 window was used, while for the coarser levels largable to extract the more salient features of spiculated lesions.
windows (e.g., k7 or 9x9) were used. For simplificity of For an overview, a schematic diagram of processing Steps
implementation, an odd window size was selected at eath3 is shown in Fig. 12.
level. Fig. 11 shows an example of a5 window used to  4) Nonlinear Operators:We have now computed all the
carry out this operation. The actual measure of coheréfice information needed to complete the algorithm. A nonlinear
was obtained from (22). operation is next applied within each level to precisely modify
Fig. 8(d) shows the coherence map computed frotransform coefficients. This final operation integrates both
Fig. 8(c). Note that this map retained the magnitudes obherence map and phase information, as described below.
edge pixels (the pixels which are local maxima in each a) Modification from coherence mapset Ci(j, k) de-
corresponding orientation) while attenuating surroundingpte the coherence measure of pajnitk) at some levek.
pixels. The net result is that edges become sharper. For the#st, we find the local maxima of the coherence map within

pixels of which surrounding pixels had “disturbances,” thegach level. These maxima correspond to features in an image

—+
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Level i

and their propagations at distinct levels of analysis. Therefore,
they are likely candidate locations to “boost” or amplify. We
call these map&C'}) feature mapsNext, the maxima or square

i-1 i
roots of these maxima are mapped onto a 256-value intensity C A
scale, depending on the threshold value of the s¢sje at
the first level, that is,
CiCi Ix1)
255 LS if S} < Sy T
fomax ~ 7 f,min Wx
\/ C)ZC - \/ C()Zc,min i
255 , otherwise ¥ 1 {
V= [T e
,max ,Imnin 1 i
whereC% . andC% |, are the maximum and minimum of

Ci, respectively Sy is a selected threshold value. We computgd- 13- A schematic diagram of nonlinear operator at lavel

the square root of the maxima because the difference between

the maximal values may be large (especially for the first twand 3= /2 (with respect to the vertical axis). Transform coef-

levels of analysis). This operation prevents most values frdinients within each level were modified by phase information

mapping onto a small scale. by
We then construct a histogram of square roots of local ; . . i

maxima and accumulate thegnumber gf mappings, from 1 mod(J> k) = |sin(A'(5, k). (25)

up to some scalgS;). S; is defined as the “threshold Modifications from the coherence map and phase at level

scale” such that the accumulated number of local maxima. 1 were combined to adjust each wavelet coefficient within

from the histogram is over 99% of the total local maximaevel i. The resultant modification formula is therefore
The corresponding value of that scale is then chosen as the 4 1 el it 4
: . AW (26)

threshold vaIue(C}J) for that level of analysis. mod = mod " “Imod
Modifications of coherence maps were obtained by a NOfjhere 7% was a constant at each level, adjusted as follows.

linear function expressed by

Since the coefficients at finer levels of analysis may be
contaminated by noise, the corresponding coherence maps may

%, if C*(4,k) < C}}t(j, k) be corrupted. In addition, since the coherence map at the
Chroald, k) = e anld: F) coarsest level is smooth, the adjustment at this level is more
C}t(j, k) . stable. In our study, we set tl#&’ (J = coarsest level) as
—~-———__ otherwise
Clznean(jv k) J
‘ (23) f,max.
where C? .. (4,k) is the mean value of the figure map at o

eachith level. For an image with a black background, th
background pixels are not counted in computing the me
value. The square root values were computed so that large
local maxima would not be over-emphasized and diminish
important, more subtle local maxima. )
b) Modification from phase:Phase information is impor- Where< = 0,---,J — 1. _ _ ‘

tant to distinctly characterize oriented texture. Therefore, we” Schematic diagram of this nonlinear operator at level
did not neglect its contribution in the modification of multi/S Shown in Fig. 13. Finally, the modified coefficients were
scale coefficients. We applied a sinusoidal weighting to pha%%ed to reconstruct via an inverse fast wavelet transform.

information. The detailed subbands of wavelet coefficients opiS resulted in an enhanced visualization of mammographic

tained in Step 1, as shown in Fig. 1, include two components&@tures, as shown in the next section.

component along the direction and a component along the
direction. Ther component was obtained by high-pass filtering IV.  EXPERIMENTAL RESULTS AND DISCUSSION
along thex direction, hence detecting mostly vertical features In this section, we present sample results of processed
within the mammogram. We emphasized the points whoggages. First, we show a 1-D example which does not take ad-
dominant orientations were near 0 amdwith respect to the vantage of oriented information. We perform an overcomplete
vertical axis). Thus, the modification from phase informatiowavelet transform to the signal and decompose it into five
was computed by levels of representation. The enhanced signal and the original
i Gok) = | cos(Ai (G, B)))- tsri"(;lgrr:;'jl_l_are pl_otted_ adjacent_in Fi_g. 14 for comparison. The
ition regions in the original signal are clearly enhanced.
They component was obtained by high-pass filtering along theOur algorithm was designed with the goal of enhancing
y direction, detecting mostly horizontal features. We emphetammograms via oriented information. In order to capture
sized the points whose dominant orientations were me@r distinct directions of subtle features, steerable filters were used.

;E)r'][her levels were computed by

e
T — {J TJ
Che

(24)
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Fig. 14. Enhanced signal profile (solid line) overlaid with the original signal (dashed—dotted line).

(@ (b)

Fig. 15. The ability of detecting objects oriented along distinct directions at various scales: (a) Original test image (mathematical phaBtamanq@d
image after processing.

Fig. 15 shows the capability of steerable filters for detectiraye of matrix size 512512. For each case, both global and
and enhancing objects of distinct direction and scale. TIROI's are shown along with a corresponding enhanced ROI.
phantom image contained 24 diamond-shaped objects oriented) Microcalcifications: Fig. 16 shows a sample mammo-
along four directions (@ 30°, 60°, and 90) and six scales, gram with microcalcification clusters. The original mammo-
as shown in Fig. 15(a). After applying our algorithm to thigram is shown in Fig. 16(a). Fig. 16(b) shows an original
image, the borders of these objects at each scale were cleatlgpicious area out of the mammogram. After enhancement,
enhanced. The phantom objects in the last two rows of thiisters of calcifications clearly appear in the center of the
image, are very close to the size of microcalcifications. Thisiage.
demonstrates the ability of the algorithm to detect typical 2) Stellate Lesions/ A mammogram with a stellate lesion
microcalcification clusters in digital mammograms, withous shown in Fig. 17(a). Fig. 17(b) presents an original digital
artifacts. radiograph with a partially obscured irregular mass in the
Three examples of malignant lesions with distinct radigzenter of the image matrix. After applying our algorithm,
graphic signs of cancer were processed. The images shawa enhanced image makes obvious spiculated lesions around
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@) (b) (©)

Fig. 16. Mammogram with calcifications. (a) Original mammogram. (b) ROI image. (c) Enhanced ROI image.

(@) (b) (©)

Fig. 17. Mammogram with a stellate lesion. (a) Original mammogram. (b) ROI image. (c) Enhanced ROI image.

the mass. The mass itself was also enhanced, as showmigraphic imaging, such as masses, microcalcifications, and
Fig. 17(c). These clear spiculated patterns suggest to radidpicular lesions, as shown in Fig. 19. Each phantom was
gists that this mass is more likely malignant than benign. blended into a nhormal mammogram to form an experimental
3) Masses:A mammogram including a mass tumor isdatabase. Note that the locations of these mathematical models
shown in Fig. 18. The craniocaudal view of the left breastre distinct within each image. We constructed 20 cases in
shown in Fig. 18(b) contains an irregular spiculated mass @ur testing database. The test images were of matrix size
retroglandular fat. The enhanced ROI shown in Fig. 18(4024x1024.
better delineates the margins of the mass in this surround. Many techniques of contrast manipulation and modification
4) Quantitative PerformanceTo validate our enhancementhave been developed within the field of digital image process-
techniques, three mathematical models of phantoms wéng. However, the measurement and evaluation of contrast and
constructed. The models included features of interest in maoontrast changes in arbitrary images are not uniquely defined
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(@) (b) ©

Fig. 18. Mammogram with a mass. (a) Original mammogram. (b) ROl image. (c) Enhanced ROI image.

(€Y (b)

Fig. 19. (a) Mathematical phantoms of mammographic features. (b) A blended sample image.

in the literature [8], [25]. In this paper, we adopt a definitiommprovement, previously defined by a contrast improvement

introduced by Morrowet al. [23] index (ClI) [17], [16]
- BO — B Cprocessed
" Bo+ B Cll = W

1
where B is the mean gray-level value of a particular object in

an image (foreground) anH, is the mean gray-level value ofwhere CP*°***! and C'#™*! are the contrast values for

a surrounding region (background). a region of interest in the processed and original images,
Based on this definition, we applied the proposed algorithraspectively.

to each blended image and computed distinct contrast valuese compared our results with those of four existing con-

Three mathematical models of phantoms were constructedtraist enhancement techniques: contrast stretching (CS), un-

size 40<40. Pixel features were considered either foregrourstharp masking (UM), histogram equalization (HE), and tree-

or background. We used a quantitative measure of contrasuctured filters (TSF's) [28], [27]. Fig. 20 shows some
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Fig. 20. Sample results of five different methods.

processed results of the ROI's from a sample using fifeatures, the mean values of the masses were consequently
different methods. Results of the comparison are summariZegs improved.

in Tables I-lIl. From these results, we observe that the values

of Cll depend on the image itself, the types of features, and the V. CONCLUSION

surrounding context of the features. The methods of CS and

. o - An enhancement algorithm relying on multiscale wavelet
_UM conS|sFentIy showeq "tﬂ? |mpr9vement over th.e Or'gma:!malysis and extracted oriented information at each scale
image, while HE exhibited inconsistent results. Finally,

S th8f analysis was investigated. The evolution of wavelet co-
TSF method showed no quantitative improvement. Our alggfficients across scales characterized well the local shape

rithm consistently outperformed each of these methods. N@girregular structures. Using oriented information to detect
that masses have larger regions than microcalcifications #Bétures of an image appears to be a promising approach
spicular lesions. However, since our method emphasized edge enhancing complex structures and subtle tissues of the
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TABLE |
CONTRAST IMPROVEMENT INDEX FOR MASSES
OBTAINED BY CS, UM, HE, TSF,anD CF METHODS

Case| CS [ UM | HE | TSF | CF
1 [1.2321 ] 1.1538 [ 0.3934 [ 0.9990 | 3.4121
2| 1.2720 | 1.1627 | 0.5430 | 0.9996 | 3.5911
3| 1.2453 | 1.1370 | 1.1606 | 0.9993 | 4.1997
4| 1.2218 | 1.1109 | 0.6830 | 0.9989 | 3.5410
5 | 1.2313 | 1.1125 | 0.2755 | 1.0004 | 3.7025
6 || 1.2590 | 1.2214 | 2.3413 | 0.9978 | 4.2358
7| 1.2458 | 1.2080 | 3.0524 | 0.9995 | 4.9465
8 | 1.2374 | 1.0895 | 0.9045 | 0.9991 | 4.2415
9 | 1.3271 | 1.1393 | 1.7784 | 0.9994 | 6.1136
10| 1.2236 | 1.1569 | 0.8641 | 0.9989 | 3.9763
11| 1.2622 | 1.0887 | 1.2967 | 0.9993 | 3.6320
12| 1.2485 | 1.1150 | 3.7718 | 0.9998 | 5.9985
13 || 1.2543 | 1.1119 | 1.1636 | 0.9992 | 3.1344
14| 1.2742 | 11809 | 2.5198 | 0.9984 | 4.7512
15 | 1.2332 | 1.1084 | 2.0114 | 0.9994 | 3.8008
16 | 1.2316 | 1.1533 | 0.9142 | 0.9988 | 4.1431
17 ] 1.2071 | 1.1520 | 0.1207 | 0.9994 | 3.0553
18 |1 1.2233 | 1.1074 | 2.4443 | 0.9999 | 3.9690
19 || 1.2275 | 1.1273 | 2.0329 | 0.9999 | 3.1121
20 || 1.2614 | 1.1678 | 1.9330 | 0.9990 | 3.8542
TABLE I

CONTRAST IMPROVEMENT INDEX FOR MICROCALCIFICATIONS
OBTAINED BY CS, UM, HE, TSF,AnD CF METHODS

Case | C5 J UM | HE [ TSF | CF
1 [ 1.2510 [ 2.0225 | 3.0738 [ 0.9850 | 8.0812
2| 1.2855 | 1.9996 | 1.5135 | 0.9957 | 8.8415
3| L2811 | 1.9945 | 2.1976 | 0.9929 | 9.0358
4| 1.2204 | 1.9953 | 0.6681 | 0.9953 | 6.1101
5| 1.2322 | 1.9159 | 0.3781 | 0.9966 | 6.5205
6 || 1.2703 | 1.9731 | 1.3389 | 0.9940 | 7.8385
7, 1.2335 | 1.9508 | 0.6793 | 0.9926 | 6.5333
8 || 1.2394 | 2.0097 | 1.1124 | 0.9957 | 7.773]
9 || 1.2636 | 1.7277 | 1.7397 | 0.9916 | 6.5394
10| 1.2280 | 2.1050 | 0.8854 | 0.9901 | 5.8531
11| 1.3195 | 1.7763 | 1.5760 | 0.9947 | 6.1981
12 || 1.2354 | 1.9701 | 2.0045 | 0.9966 | 6.8729
13 ]| 1.2938 | 2.1740 | 3.4047 | 0.9852 | 6.1026
14 || 1.2401 | 1.9956 | 0.1757 | 0.9845 | 7.3612
15 | 1.2840 | 2.1781 | 1.0409 | 0.9979 | 5.8868
16 | 1.2452 | 1.9345 | 2.1372 | 0.9894 | 6.6954
17 | 1.2438 | 1.9107 | 0.9802 | 0.9904 | 6.1960
18 | 1.2246 | 1.9772 | 2.3434 | 0.9920 | 6.5619
19 1 1.2299 | 1.9302 | 2.1773 | 0.9907 | 6.3651
20 || 1.2308 | 1.9159 | 1.0755 | 0.9970 | 5.9010

TABLE 1l
CONTRAST IMPROVEMENT INDEX FOR SPICULAR LESIONS
OBTAINED BY CS, UM, HE, TSF,anD CF METHODS
Case] CS | UM [ HE [ TSF | CF
1 [[1.2576 ] 1.5373 [ 3.5718 [ 0.9981 | 6.4958
2 1.3016 | 1.6564 | 1.5741 | 0.9983 | 8.9896
3 1.2709 | 1.6748 | 1.5917 | 0.9968 | 9.0420
4 1.2647 | 2.1918 | 2.6259 | 0.9934 | 14.8793
5 1.2397 ) 1.5258 | 1.0526 | 0.9970 | 6.4616
6 1.2508 | 1.5366 | 1.5741 | 0.9959 | 6.4331
7 1.2432 | 1.5318 | 2.1020 | 0.9990 | 6.4341
8 1.2837 | 1.7600 | 1.1114 | 0.9956 | 11.1680
9 1.3500 | 1.6194 | 1.0969 | 0.9963 | 10.5974
10 1.2203 | 1.6627 | 0.6285 | 0.9978 | 7.1692
11 1.2498 | 1.6466 | 1.7991 | 0.9969 | 7.1298
12 1.2654 | 1.6334 | 2.1535 | 0.9970 | 8.9059
13 1.2835 | 1.6544 | 1.0977 | 0.9972 | 5.4763
14 1.2495 | 1.6130 | 0.6353 | 0.9971 | 7.8101
15 1.2860 | 1.7091 | 1.0337 | 0.9934 | 5.3742
16 1.2332 | 1.6502 | 1.1970 | 0.9975 | 7.2288
17 1.3066 | 1.4405 | 1.6293 | 0.9999 | 6.3881
18 1.2135 | 1.5815 | 0.8470 | 0.9989 | 6.2905
19 1.2527 | 1.5995 | 3.1518 | 0.9984 | 7.1808
20 1.2478 | 1.6107 | 3.3187 | 0.9976 | 6.1226

a more reliable basis for contrast enhancement. Phase infor-
mation provided an adjustment for the correction of wavelet
coefficients. These modifications resulted in an enhancement
more familiar to clinical radiologists. Artifact-free enhanced
images, as shown here, can be a powerful tool for visualizing
subtle features of importance to mammography.
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breast. Steerable filters which can be rotated at arbitrarny]
orientations reliably found visual cues within each spatial-

frequency sub-band of an image. Coherence measure and
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mammograms.

We examined existing and previous multiscale enhanceméht
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image by detecting edges. Unfortunately, traditional edge dé?!
tection algorithms cannot distinguish between authentic edges
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