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Coherence of Multiscale Features for
Enhancement of Digital Mammograms

Chun-Ming Chang and Andrew Laine

Abstract—Mammograms depict most of the significant changes
in breast disease. The primary radiographic signs of cancer are
related to tumor mass, density, size, borders, and shape, and local
distribution of calcifications. We show that each of these features
can be well described by coherence and orientation measures and
provide visual cues for radiologists to identify possible lesions
more easily without increasing false positives.

In this paper, an artifact-free enhancement algorithm based
on overcomplete multiscale representations is presented. First, an
image was decomposed using a fast wavelet transform algorithm.
At each level of analysis, energy and phase information are
computed via a set of separable steerable filters. Then, a measure
of coherence within each level was obtained by weighting an
energy measure with the ratio of projections of local energy
within a specified window. Each projection was computed onto
the central point of a window with respect to the total energy
within that window. Finally, a nonlinear operation, integrating
coherence and orientation information, was applied to modify
transform coefficients within distinct levels of analysis. These
modified coefficients were then reconstructed, via an inverse
fast wavelet transform, resulting in an improved visualization
of significant mammographic features. The novelty of this al-
gorithm lies in the detection of directional multiscale features
and the removal of aliased perturbations. Compared to existing
multiscale enhancement techniques, images processed with this
method appeared more familiar to radiologists due to localized
enhancement of features.

Index Terms—Coherence measure, multiscale analysis, ori-
ented energy, overcomplete representations, separable steerable
filters, wavelet basis.

I. INTRODUCTION

M AMMOGRAMS can detect tumors that are an eighth of
an inch in diameter, while manual examination usually

fails to detect tumors smaller than a half-inch. Screening
for breast disease via mammography depends on observing
local and distant changes in tissues. Important visual clues
of breast cancer include preliminary signs of masses and
calcification clusters [5], [21]. Unfortunately, at the early
stages of breast cancer, these signs are very subtle and varied
in appearance, making diagnosis difficult, challenging even
for specialists [5], [10]. Radiographic signs of cancer are
related to tumor mass and density, size, shape, smoothness
of borders, and calcification distribution. Extraction of these
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features and enhancement of them can assist radiologists to
locate suspicious areas more reliably [33].

Studies of multiscale representations based on wavelets have
been carried out for mammographic feature analysis [17],
[28], [30]. Laineet al. [17] used two overcomplete multiscale
representations for contrast enhancement. Mammograms were
reconstructed from transform coefficients modified at each
level by nonlinear weighting functions. Qianet al. [28],
[27] introduced tree-structured nonlinear filters for micro-
calcification cluster detection. An image was enhanced by
tree-structured nonlinear filters with fixed parameters and
adaptive order statistic filters. Richardson [30] applied linear
and nonlinear filtering approaches to the analysis of mammo-
grams. Here, a linear multiscale decomposition was obtained
via a wavelet transform; a nonlinear multiscale decomposition
employed a “mean curvature partial differential equation” filter
and “weighted majority-minimum range” filter. In addition, Li
et al. [18] extended a conventional multiresolution wavelet
transform into a multiresolution and multiorientation wavelet
transform. They applied directional wavelet analysis to capture
orientation information within each mammogram.

Freeman and Adelson [6] first proposed the concept of
steerable filters and applied it to several problems in the
area of computer vision. With a set of “basis filters,” one
can adaptively steer a filter along any orientation. Hilbert
transform pairs were constructed to find a local “oriented
energy” measure and dominant orientation.

Later, Kass and Witkin [12] developed an algorithm for
estimating the orientation of texture patterns. An orientation
pattern was decomposed into a flow field, describing the
direction of anisotropy, and a residual pattern was obtained
by describing an image in a coordinate system built from the
flow field. Texture orientation was estimated from Laplacian
of Gaussian filters. More recently, Rao and Schunck [29]
proposed a related algorithm based on the gradient of the
Gaussian. Their algorithm incorporated a more sophisticated
scheme for computing the coherence of the flow field.

In this paper, an enhancement algorithm based on overcom-
plete multiscale wavelet analysis is described. These redundant
representations provide the property of shift invariance which
is shown to be advantageous for applications of feature ex-
traction and contrast enhancement. Features were extracted
by separable steerable filters. A coherent image and phase
information were then generated. A nonlinear function, in-
tegrating coherence and phase information, was then applied
to transform coefficients at each level of analysis. Finally, an
enhanced image was obtained via an inverse wavelet transform
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of these modified coefficients. The novelty and advantage
of this algorithm compared to existing techniques lies in its
detection of directional features and the lack of perturbations
(artifacts) in reconstructed images. The latter is of great
importance for applications in medical imaging.

II. BACKGROUND

In this section, we briefly describe the mathematical back-
ground and fundamental ideas used in subsequent sections.

A. Wavelet Transforms

Wavelet transforms have become acknowledged as a useful
tool for many applications in signal and image processing. A
function is said to be a wavelet if and only if its Fourier
transform satisfies theadmissibility condition

(1)

This condition implies that

(2)

which means that will have at least some oscillations.
Wavelets constitute a family of functions derived from a

single function (other wavelet) by dilations and translations

(3)

where . A central idea in wavelet analysis is
to represent any function as a superposition of wavelets.
The continuous wavelet transform is defined as

(4)

where denotes the complex conjugate of. A function can
be reconstructed from its wavelet transform by means of the
“ resolution of identity” formula

(5)

In the application of digital mammography, one needs to
express as a discrete superposition. If we discretize the
translation and dilation parameters of the wavelet in (3), we
see that

(6)

where with and
. On this discrete grid, the wavelet transform is simply

(7)

An original signal can be approximated as linear combinations
of a wavelet basis

(8)

One popular discretization is to choose

(9)

which are calleddyadic wavelets.

B. Steerable Filters

A function is called “steerable” if it can be expressed
as a linear combination of rotated versions of itself. The
fundamental idea of steerable filters is to apply distinct “basis
filters” that correspond to a fixed set of orientations and
interpolate between each discrete response. Thus, one must
first decide the number of “basis filters” and corresponding
interpolation functions. Let be the angle of someth basis
filter and denote an interpolation function. As defined in
[6], a steering constraint may be formulated by

(10)

where is the number of basis functions required to steer
some function .

Hereafter, it will be more convenient to work in polar
coordinates where and . Let

be any function that can be expressed as a Fourier series
in polar angle

(11)

where and is the discrete length of the coeffi-
cients.

The theorems below were posed by [6] and are included for
clarity and completeness of description.

Theorem 1: Steering condition (10) holds for a function
expanded in the form of (11) if and only if the interpolations

are solutions of

...
...

...
. . .

...
...

(12)
Thus, may be expressed as

(13)

where can be any set of functions.
Theorem 2: Let where is

an arbitrary windowing function, and is an th order
polynomial in and whose coefficients may depend on
Linear combinations of basis functions are sufficient
to synthesize rotated to any angle. If

contains only even (or odd) order terms, then
basis functions are sufficient.
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(a) (b)

(c) (d)

Fig. 1. Energy functions of four signal models. (a) Ideal step edge. (b) Smoothed step edge. (c) Roof edge. (d) Line (spike edge).

C. Local Energy

Relying on physiological evidence, a local energy operator
was first proposed by Morrone and Owens [22]. Rather than
considering differential properties, they studied the properties
of the Fourier expansion of an intensity function. They demon-
strated that maxima of an energy function were coincident
with the points of maximum phase congruency. A local energy
model has an advantage in that it simultaneously detects both
edges and lines. Some one-dimensional (1-D) examples are
shown in Fig. 1. The top rows show the original signals and
the bottom rows show the norms of local energy functions. We
observe that the local maxima of each energy function occurs
at the central position of each feature in the signal model.

Let and be the outputs of constituent filter
and its quadrature pair respectively. An oriented

energy function can be expressed by the squared outputs of a
quadrature pair of filters steered to an anglethat is,

(14)

where denotes an image.

Since convolution is a linear operation, from (10), (14) can
be reformulated as

(15)

where and are the numbers of functions required to steer
functions , and denote interpolation
functions, and

are the outputs of each basis filter and its quadrature pair,
respectively, which are known constants. Equation (15) is a
function of both and that are sinusoidal functions
of [6], [3] and therefore a function of.

Equation (15) contains squares of sinusoidal functions. Fol-
lowing [6], this expression can be simplified to a Fourier series
in angular form via substitutions obtained by the trigonometric
identity (recall, for example, and
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(a)

(b)

Fig. 2. An example of oriented energy map construction. (a) A test function.
(b) Orientation and magnitude map of a test function.

)

The lower frequency terms of this identity were used to
approximate the dominant directions and their associated
magnitudes

(16)

(17)

where the function calculates the arc tangent of
and the signs of both arguments and are used

to determine the quadrant of the associated result.
Fig. 2 shows the oriented energy map of a two-dimensional

(2-D) Gaussian function

Fig. 3. Corrected oriented energy map.

A test function is shown in Fig. 2(a). Using a second
derivative of a Gaussian function and its Hilbert transform
to measure oriented energy, we plotted the direction and
magnitude of each position on a map where the arrow indicates
direction and length denotes magnitude, as shown in Fig. 2(b).
Edges were detected at inflection points of the surface. The
magnitudes of the energy function are maxima, therefore the
lengths are longer than other points of the function.

Note that Fig. 2(b) does not show the correct phase in the
upper half of the map. All arrows are pointing outward instead
of inward. There is a 180phase shift since the oriented energy
is obtained from the squared outputs of quadrature pairs. We
applied a simple algorithm to correct this phase shift. First,
we divide the space into eight directions and approximate the
phase at each point to exactly one of these discrete orientations.
Next, the neighbors of each point along each approximated
direction are examined. If the intensities along a direction are
increasing, the phase is not changed; otherwise, we correct
the phase by a 180shift. A sample corrected oriented energy
map is shown in Fig. 3.

D. Measure of Coherence

Texture plays an important role in many machine vision
and image processing tasks including surface inspection, object
classification, surface orientation, and shape determination [2].
Texture patterns may be characterized by extracting mea-
surements that quantify both the “nature” and directions of
patterns. Most breast carcinomas have the appearance of
stellate lesions consisting of a central mass surrounded by
radiating spicules [5]. The spicules may radiate outward in any
direction and vary in length. These features provide important
clues for the early detection of such lesions.

Much attention has been given to the notion of decomposing
an intensity image into intrinsic images to extract meaningful
information [1], [20]. Such intrinsic properties represent basic
components of some image formation process and therefore
can reveal features “hidden” inside an image. The information
provided is not obvious from the intensity image alone.
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Fig. 4. Block diagram of the proposed algorithm.

Rao and Schunck [29] defined an orientation field of a tex-
ture image to consist of two “images”—anangle image and a
coherenceimage. The angle image denotes the dominant local
orientation at each point while the coherence image represents
the degree of anisotropy at each point. The application of
angle and coherence images asintrinsic images was strongly
advocated. In this paper, we investigated the efficiency of
these two representations to capture and enhance features of
importance to mammography screening.

III. M ETHODOLOGY

Our algorithm consists of four steps [3], [4]: 1) construction
of an overcomplete multiscale representation; 2) analysis via
separable steerable filters; 3) computing coherence measures;
and 4) application of nonlinear operators, as shown in Fig. 4.
Next, we describe each step in the sections below.

1) Overcomplete Multiscale Representations:Through
multiscale analysis, one can extract features at distinct scales
and “mine” subtle information often hidden in an original
mammogram [17]. One major drawback of wavelet transforms
is their lack of translation invariance [32], making the content
of wavelet subbands unstable under the translations of an
input signal. In our algorithm, a digitized mammogram was
decomposed using a fast wavelet transform algorithm (FWT)
[19]. In order to obtain wavelet coefficients at each level
without downsampling, an undecimated “algorithmeà trous”
(algorithm with holes) [9], [31] was implemented. In the
spatial domain, these redundant representations correspond
to signals without aliasing.

Fig. 5 shows the differences between traditional wavelet
representations and overcomplete multiscale representations.
Here, we demonstrate two levels of a decomposition. An
original image is shown on the left-hand side of Fig. 5(a).
A sample region (4 4) is denoted by dots in Fig. 5(a).
After decomposition, corresponding wavelet representations
are shown on the right-hand side of Fig. 5(a) (the upper left
corner shows the approximated image). Distinct pixels, at each
level of analysis, corresponding to the sample region are also
shown. Because of downsampling at each level, there are four

pixels corresponding to the original sample region (16 pixels)
at level one; while at level two, there is only a single pixel.
Thus, if we change a value of one pixel at level two, there will
be 16 pixels affected in the original image matrix. Fig. 5(b)
shows an overcomplete multiscale representation where the
approximated image is shown on the right-hand side of the
level 2 decomposition. At each level, there is exactly one pixel
corresponding to each pixel in the original image.

Let denote an original image and be obtained
by inserting zeros between every pair of coefficients
representing and stand for carrying out
convolution operations with filter along the and direc-
tions, respectively. Then, the decomposition and reconstruction
equations for level are computed as follows.

Decomposition:

(18)

Reconstruction:

(19)

where “ ” indicates discrete circular convolution, and
and are filters whose Fourier transforms
and respectively) satisfy [19]

(20)

Following [19], we choose to approximate the deriva-
tive of a smoothing function, which is equivalent to a high-pass
filter; is a smoothing function, which is equivalent to
a low-pass filter. The block diagrams for decomposition and
reconstruction operations at levelare shown in Fig. 6(a) and
(b), respectively.

2) Analysis via Separable Steerable Filters:A filter is
called “steerable” if the filter at an arbitrary orientation can
be expressed as a linear combination of a set of basis filters,
generated from rotations of a single kernel [6]. Steerable filters
[6], [14], [13], which can be adaptively adjusted to arbitrary
orientation, were used to detect stellate patterns of spicules and
locate feature orientations more precisely. As pointed out in
[26], the separability property of discrete filters can speed up
computation considerably when convolved with a large image
matrix. In our algorithm, we used three basis functions as
steerable filters. The– separable steerable approximations of
filter kernels were generated by a singular value decomposition
(SVD) algorithm [6], [26]. Using a set of separable steerable
filters, the magnitude and associated dominant directions

of local energy were determined by the basis functions
and their Hilbert transforms [6], [11], [22], [24]. Fig. 7
illustrates the procedure of steerable filter processing.

We applied separable steerable filters to an original image
and a low-pass filtered image at each level

to distill salient multiscale features. The three basis functions
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(a)

(b)

Fig. 5. Illustrations of distinct wavelet representations: (a) Traditional wavelet representations. (b) Overcomplete multiscale representations. (Note that the
first character denotes an operation along thex axis, and the second, they axis. L: low-pass filtering. H: high-pass filtering.� remains unchanged.)

(a)

(b)

Fig. 6. Block diagram of fast wavelet transform at leveli. (a) Decomposi-
tion, (b) Reconstruction.

which were applied in our implementation algorithm were
discretized and are shown in Fig. 9. The Hilbert transform
of the basis function was thereafter obtained by [7].

To illustrate how dominant directions of local energy relate
to image features, a sample mammogram which was extracted
from Fig. 17(a), as shown in Fig. 8. Fig. 8(a) presents a region
of interest (ROI) image matrix of 3232. The corresponding
gradient is displayed in Fig. 8(b). After applying steerable
filters and an energy function to locate features, the resulting
magnitude and orientation map is shown in Fig. 8(c). Compar-

Fig. 7. Diagram of steerable filter processing.

ing Fig. 8(b) and (c), note that the map obtained from steerable
filters detected the boundary more precisely and with less
variation.

3) Coherence Measures:A coherence map is an image
showing a local measure of the degree of anisotropy of flow
[12], [29]. If orientations of a texture pattern at any point

are coherent, then magnitude and phase information
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(a)

(b)

(c)

(d)

Fig. 8. A mammogram sample ROI showing computed features derived from
steerable filters and an energy function. (a) An extracted sample image. (b)
The gradient map. (c) Local energy. (d) Coherence map.

are important and should be emphasized. Conversely, if the
orientations are not coherent, the magnitude and phase infor-

(a)

(b)

(c)

Fig. 9. Two-dimensional impulse responses of three steerable basis func-
tions. (a)–(c) Input tok1(�); k2(�); andk3(�); respectively, as shown in
Fig. 7.

mation can be neglected or attenuated. Kass and Witkin [12]
suggested a simple way for measuring strength of coherence
by finding the ratio

(21)

where denotes a local weighting function with unit
integral, denotes the squared gradient vector at
and denotes the absolute value of.

An alternative measure of coherence was proposed by Rao
and Schunck [29] and was obtained by weighting energy
with a normalized projection of the energy within a specified
window onto the central point of each window.
The coherence measure was expressed as

(22)
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Fig. 10. An example showing the effectiveness of a coherence measure.

where and denote energy and phase of
point at level respectively. This coherence measure
incorporates the gradient magnitude and hence places more
weight on regions that have higher visual contrast.

Let us examine more closely how a coherence measure
works. Suppose we choose a region somewhere in an image,
as shown in Fig. 10. Pixel is on a vertical edge line because
its magnitude is maximum along the direction of its phase,
i.e., there is an edge along the vertical direction of pixel.
The coherence at pixel is measured within window 1 which
surrounds pixel . Since the pixels inside window 1 have the
same phase as pixel the coherence of pixel is equal to the
magnitude at this pixel. While the pixels, surrounding pixel
inside window 2 point to distinct directions, the projections
of these pixels on pixel will be “stable.” The coherence
at pixel is thus reduced. This pixel can be considered a
“disturbance.”

Experimentally, this method outperformed previous mea-
sures applied to similar data [29]. In our algorithm, we
implemented this approach and measured each coherence map.
In order to capture multiscale features, we changed the window
size at each distinct level of analysis. At the finest level, a
5 5 window was used, while for the coarser levels larger
windows (e.g., 7 7 or 9 9) were used. For simplificity of
implementation, an odd window size was selected at each
level. Fig. 11 shows an example of a 55 window used to
carry out this operation. The actual measure of coherence
was obtained from (22).

Fig. 8(d) shows the coherence map computed from
Fig. 8(c). Note that this map retained the magnitudes of
edge pixels (the pixels which are local maxima in each
corresponding orientation) while attenuating surrounding
pixels. The net result is that edges become sharper. For those
pixels of which surrounding pixels had “disturbances,” their

Fig. 11. Illustration of measuring the coherence of an image.

Fig. 12. Overview of processing for Steps 1–3.

magnitudes were attenuated and were not considered features.
The combination of coherence and orientation structure was
able to extract the more salient features of spiculated lesions.
For an overview, a schematic diagram of processing Steps
1–3 is shown in Fig. 12.

4) Nonlinear Operators:We have now computed all the
information needed to complete the algorithm. A nonlinear
operation is next applied within each level to precisely modify
transform coefficients. This final operation integrates both
coherence map and phase information, as described below.

a) Modification from coherence maps:Let de-
note the coherence measure of point at some level .
First, we find the local maxima of the coherence map within
each level. These maxima correspond to features in an image
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and their propagations at distinct levels of analysis. Therefore,
they are likely candidate locations to “boost” or amplify. We
call these maps feature maps. Next, the maxima or square
roots of these maxima are mapped onto a 256-value intensity
scale, depending on the threshold value of the scale at
the first level, that is,

if

otherwise

where and are the maximum and minimum of
respectively. is a selected threshold value. We compute

the square root of the maxima because the difference between
the maximal values may be large (especially for the first two
levels of analysis). This operation prevents most values from
mapping onto a small scale.

We then construct a histogram of square roots of local
maxima and accumulate the number of mappings, from 1
up to some scale . is defined as the “threshold
scale” such that the accumulated number of local maxima
from the histogram is over 99% of the total local maxima.
The corresponding value of that scale is then chosen as the
threshold value for that level of analysis.

Modifications of coherence maps were obtained by a non-
linear function expressed by

if

otherwise

(23)
where is the mean value of the figure map at
each th level. For an image with a black background, the
background pixels are not counted in computing the mean
value. The square root values were computed so that large
local maxima would not be over-emphasized and diminish
important, more subtle local maxima.

b) Modification from phase:Phase information is impor-
tant to distinctly characterize oriented texture. Therefore, we
did not neglect its contribution in the modification of multi-
scale coefficients. We applied a sinusoidal weighting to phase
information. The detailed subbands of wavelet coefficients ob-
tained in Step 1, as shown in Fig. 1, include two components: a
component along the direction and a component along the
direction. The component was obtained by high-pass filtering
along the direction, hence detecting mostly vertical features
within the mammogram. We emphasized the points whose
dominant orientations were near 0 and(with respect to the
vertical axis). Thus, the modification from phase information
was computed by

(24)

The component was obtained by high-pass filtering along the
direction, detecting mostly horizontal features. We empha-

sized the points whose dominant orientations were near

Fig. 13. A schematic diagram of nonlinear operator at leveli.

and (with respect to the vertical axis). Transform coef-
ficients within each level were modified by phase information
by

(25)

Modifications from the coherence map and phase at level
were combined to adjust each wavelet coefficient within

level . The resultant modification formula is therefore

(26)

where was a constant at each level, adjusted as follows.
Since the coefficients at finer levels of analysis may be
contaminated by noise, the corresponding coherence maps may
be corrupted. In addition, since the coherence map at the
coarsest level is smooth, the adjustment at this level is more
stable. In our study, we set the ( coarsest level) as

Other levels were computed by

where .
A schematic diagram of this nonlinear operator at level

is shown in Fig. 13. Finally, the modified coefficients were
used to reconstruct via an inverse fast wavelet transform.
This resulted in an enhanced visualization of mammographic
features, as shown in the next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present sample results of processed
images. First, we show a 1-D example which does not take ad-
vantage of oriented information. We perform an overcomplete
wavelet transform to the signal and decompose it into five
levels of representation. The enhanced signal and the original
signal are plotted adjacent in Fig. 14 for comparison. The
transition regions in the original signal are clearly enhanced.

Our algorithm was designed with the goal of enhancing
mammograms via oriented information. In order to capture
distinct directions of subtle features, steerable filters were used.
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Fig. 14. Enhanced signal profile (solid line) overlaid with the original signal (dashed–dotted line).

(a) (b)

Fig. 15. The ability of detecting objects oriented along distinct directions at various scales: (a) Original test image (mathematical phantom). (b)Enhanced
image after processing.

Fig. 15 shows the capability of steerable filters for detecting
and enhancing objects of distinct direction and scale. The
phantom image contained 24 diamond-shaped objects oriented
along four directions (0, 30 , 60 , and 90) and six scales,
as shown in Fig. 15(a). After applying our algorithm to this
image, the borders of these objects at each scale were clearly
enhanced. The phantom objects in the last two rows of the
image, are very close to the size of microcalcifications. This
demonstrates the ability of the algorithm to detect typical
microcalcification clusters in digital mammograms, without
artifacts.

Three examples of malignant lesions with distinct radio-
graphic signs of cancer were processed. The images shown

are of matrix size 512512. For each case, both global and
ROI’s are shown along with a corresponding enhanced ROI.

1) Microcalcifications: Fig. 16 shows a sample mammo-
gram with microcalcification clusters. The original mammo-
gram is shown in Fig. 16(a). Fig. 16(b) shows an original
suspicious area out of the mammogram. After enhancement,
clusters of calcifications clearly appear in the center of the
image.

2) Stellate Lesions:A mammogram with a stellate lesion
is shown in Fig. 17(a). Fig. 17(b) presents an original digital
radiograph with a partially obscured irregular mass in the
center of the image matrix. After applying our algorithm,
the enhanced image makes obvious spiculated lesions around
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(a) (b) (c)

Fig. 16. Mammogram with calcifications. (a) Original mammogram. (b) ROI image. (c) Enhanced ROI image.

(a) (b) (c)

Fig. 17. Mammogram with a stellate lesion. (a) Original mammogram. (b) ROI image. (c) Enhanced ROI image.

the mass. The mass itself was also enhanced, as shown in
Fig. 17(c). These clear spiculated patterns suggest to radiolo-
gists that this mass is more likely malignant than benign.

3) Masses:A mammogram including a mass tumor is
shown in Fig. 18. The craniocaudal view of the left breast
shown in Fig. 18(b) contains an irregular spiculated mass in
retroglandular fat. The enhanced ROI shown in Fig. 18(c)
better delineates the margins of the mass in this surround.

4) Quantitative Performance:To validate our enhancement
techniques, three mathematical models of phantoms were
constructed. The models included features of interest in mam-

mographic imaging, such as masses, microcalcifications, and
spicular lesions, as shown in Fig. 19. Each phantom was
blended into a normal mammogram to form an experimental
database. Note that the locations of these mathematical models
are distinct within each image. We constructed 20 cases in
our testing database. The test images were of matrix size
1024 1024.

Many techniques of contrast manipulation and modification
have been developed within the field of digital image process-
ing. However, the measurement and evaluation of contrast and
contrast changes in arbitrary images are not uniquely defined



CHANG AND LAINE: COHERENCE FOR ENHANCEMENT OF DIGITAL MAMMOGRAMS 43

(a) (b) (c)

Fig. 18. Mammogram with a mass. (a) Original mammogram. (b) ROI image. (c) Enhanced ROI image.

(a) (b)

Fig. 19. (a) Mathematical phantoms of mammographic features. (b) A blended sample image.

in the literature [8], [25]. In this paper, we adopt a definition
introduced by Morrowet al. [23]

where is the mean gray-level value of a particular object in
an image (foreground) and is the mean gray-level value of
a surrounding region (background).

Based on this definition, we applied the proposed algorithm
to each blended image and computed distinct contrast values.
Three mathematical models of phantoms were constructed of
size 40 40. Pixel features were considered either foreground
or background. We used a quantitative measure of contrast

improvement, previously defined by a contrast improvement
index (CII) [17], [16]

where and are the contrast values for
a region of interest in the processed and original images,
respectively.

We compared our results with those of four existing con-
trast enhancement techniques: contrast stretching (CS), un-
sharp masking (UM), histogram equalization (HE), and tree-
structured filters (TSF’s) [28], [27]. Fig. 20 shows some
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Fig. 20. Sample results of five different methods.

processed results of the ROI’s from a sample using five
different methods. Results of the comparison are summarized
in Tables I–III. From these results, we observe that the values
of CII depend on the image itself, the types of features, and the
surrounding context of the features. The methods of CS and
UM consistently showed little improvement over the original
image, while HE exhibited inconsistent results. Finally, the
TSF method showed no quantitative improvement. Our algo-
rithm consistently outperformed each of these methods. Note
that masses have larger regions than microcalcifications and
spicular lesions. However, since our method emphasized edge

features, the mean values of the masses were consequently
less improved.

V. CONCLUSION

An enhancement algorithm relying on multiscale wavelet
analysis and extracted oriented information at each scale
of analysis was investigated. The evolution of wavelet co-
efficients across scales characterized well the local shape
of irregular structures. Using oriented information to detect
features of an image appears to be a promising approach
for enhancing complex structures and subtle tissues of the
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TABLE I
CONTRAST IMPROVEMENT INDEX FOR MASSES

OBTAINED BY CS, UM, HE, TSF,AND CF METHODS

TABLE II
CONTRAST IMPROVEMENT INDEX FOR MICROCALCIFICATIONS

OBTAINED BY CS, UM, HE, TSF,AND CF METHODS

breast. Steerable filters which can be rotated at arbitrary
orientations reliably found visual cues within each spatial-
frequency sub-band of an image. Coherence measure and
dominant orientation clearly improved discrimination of fea-
tures from complex surrounding tissue and structure in dense
mammograms.

We examined existing and previous multiscale enhancement
approaches [15], [17], [30] which attempted to enhance an
image by detecting edges. Unfortunately, traditional edge de-
tection algorithms cannot distinguish between authentic edges
and phantom edges. In contrast, the CF algorithm described
here relied upon oriented energy functions to identify edges
more precisely. Coherence measures removed noise and gave

TABLE III
CONTRAST IMPROVEMENT INDEX FOR SPICULAR LESIONS

OBTAINED BY CS, UM, HE, TSF,AND CF METHODS

a more reliable basis for contrast enhancement. Phase infor-
mation provided an adjustment for the correction of wavelet
coefficients. These modifications resulted in an enhancement
more familiar to clinical radiologists. Artifact-free enhanced
images, as shown here, can be a powerful tool for visualizing
subtle features of importance to mammography.
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