
Discriminative Localization in CNNs for Weakly-Supervised 
Segmentation of Pulmonary Nodules

Xinyang Feng1, Jie Yang1, Andrew F. Laine1, and Elsa D. Angelini1,2

1Department of Biomedical Engineering, Columbia University, New York, NY, USA

2ITMAT Data Science Group, NIHR Imperial BRC, Imperial College, London, UK

Abstract

Automated detection and segmentation of pulmonary nodules on lung computed tomography (CT) 

scans can facilitate early lung cancer diagnosis. Existing supervised approaches for automated 

nodule segmentation on CT scans require voxel-based annotations for training, which are labor- 

and time-consuming to obtain. In this work, we propose a weakly-supervised method that 

generates accurate voxel-level nodule segmentation trained with image-level labels only. By 

adapting a convolutional neural network (CNN) trained for image classification, our proposed 

method learns discriminative regions from the activation maps of convolution units at different 

scales, and identifies the true nodule location with a novel candidate-screening framework. 

Experimental results on the public LIDC-IDRI dataset demonstrate that, our weakly-supervised 

nodule segmentation framework achieves competitive performance compared to a fully-supervised 

CNN-based segmentation method.

1 Introduction

Lung cancer is a major cause of cancer-related deaths worldwide. Pulmonary nodules refer 

to a range of lung abnormalities that are visible on lung computed tomography (CT) scans as 

roughly round opacities, and have been regarded as crucial indicators of primary lung 

cancers [1]. The detection and segmentation of pulmonary nodules in lung CT scans can 

facilitate early lung cancer diagnosis, timely surgical intervention and thus increase survival 

rate [2].

Automated detection systems that locate and segment nodules of various sizes can assist 

radiologists in cancer malignancy diagnosis. Existing supervised approaches for automated 

nodule segmentation require voxel-level annotations for training, which are labor-intensive 

and time-consuming to obtain. Alternatively, image-level labels, such as a binary label 

indicating the presence of nodules, can be obtained more efficiently. Recent work [3,4] 

studied nodule segmentation using weakly labeled data without dense voxel-level 

annotations. Their methods, however, still rely on user inputs for additional information such 

as exact nodule location and estimated nodule size during the segmentation.
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Convolutional neural networks (CNNs) have been widely used for supervised image 

classification and segmentation tasks. It was very recently discovered in a study [5] on 

natural images that CNNs trained on semantic labels for image classification task (“what”), 

have remarkable capability in identifying the discriminative regions (“where”) when 

combined with a global average pooling (GAP) operation. This method utilizes the up-

sampled weighted activation maps from the last convolutional layer in a CNN. It 

demonstrated the localization capability of CNNs for detecting relatively large-sized targets 

within image, which is not the general scenario in medical imaging domain where 

pathological changes are more various in size and rather subtle to capture. However, this 

work sheds light on weakly-supervised disease detection.

In this work, we exploit CNN for accurate and fully-automated segmentation of nodules in a 

weakly-supervised manner with binary slice-level labels only. Specifically, we adapt a 

classic image classification CNN model to detect slices with nodule, and simultaneously 

learn the discriminative regions from the activation maps of convolution units at different 

scales for coarse segmentation. We then introduce a candidate-screening framework utilizing 

the same network to generate accurate localization and segmentation. Experimental results 

on the public LIDC-IDRI dataset [6,7] demonstrate that, despite the largely reduced amount 

of annotations required for training, our weakly-supervised nodule segmentation framework 

achieves competitive performance compared to a CNN-based fully-supervised segmentation 

method.

2 Method

The framework is overviewed in Fig. 1. There are two stages: training stage and 

segmentation stage. In the first stage, we train a CNN model to classify CT slices as with or 

without nodule. The CNN is composed of a fully convolutional component, a convolutional 

layer + global average pooling layer (Conv + GAP) structure, and a final fully-connected 

(FC) layer. Besides providing a binary classification, the CNN generates a nodule activation 

map (NAM) showing potential nodule localizations, using a weighted average of the 

activation maps with the weights learnt in the FC layer. In the second stage, coarse 

segmentation of nodule candidates is generated within a spatial scope defined by the NAM. 

For fine segmentation, each nodule candidate is masked out from the image alternately. By 

feeding the masked image into the same network, a residual NAM (called R-NAM) is 

generated and used to select the true nodule. Shallower layers in the CNN can be 

concatenated into the classification task through skip architecture and Conv + GAP 

structure, extending the one-GAP CNN model to multi-GAP CNN that is able to generate 

NAMs with higher resolution.

2.1 Nodule Activation Map

In a classification-oriented CNN, while the shallower layers represent general appearance 

information, the deep layers encode discriminative information that is specific to the 

classification task. Benefiting from the convolutional structure, spatial information can be 

retained in the activations of convolutional units. Activation maps of deep convolutional 

layers, therefore, enable discriminative spatial localization of the class of interest. In our 
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case, we locate nodules with a specially generated weighted activation map called nodule 

activation map.

One-GAP CNN—For a given image I, we represent the activation of unit k at spatial 

location (x, y) in the last convolutional layer as ak (x, y). The activation of each unit k is 

summarized through a spatially global average pooling operation as Ak = Σ(x, y) ak (x, y).. 

The feature vector constituted of Ak is followed by a FC layer, which generates the nodule 

classification score (i.e. input to the softmax function for nodule class) as:

(1)

where the weights wk,nodule learnt in the FC layer essentially measure the importance of unit 

k in the classification task. As spatial information is retained in the activation maps through 

ak (x, y), a weighted average of the activation maps results in a robust nodule activation map:

(2)

The nodule classification score can be directly linked with the NAM by:

(3)

By simply up-sampling the NAM to the size of the input image I, we can identify the 

discriminative image region that is most relevant to nodule.

Multi-GAP CNN—Although activation maps of the last convolutional layer carry most 

discriminative information, they are usually greatly down-sampled from the original image 

resolution due to pooling operations. We hereby introduce a multi-GAP CNN model that 

takes advantage of shallower layers with higher spatial resolution. Similar to the idea of the 

skip architecture proposed in fully-convolutional network (FCN) [8], shallower layers can be 

directed to the final classification task skipping the following layers. We also add a Conv + 

GAP structure following the shallow layers. The concatenation of feature vectors generated 

by each GAP layer is fed into the final FC layer. The NAM generated from the multi-GAP 

CNN model (multi-GAP NAM) is a weighted activation map involving activations at 

multiple scales.

2.2 Segmentation

Coarse Segmentation—For slices classified as “nodule slice”, nodule candidates are 

screened within a spatial scope C defined by the most prominent blob in the NAM processed 

via watershed. They are then coarsely segmented using an iterated conditional mode (ICM) 

based multi-phase segmentation method [9], with the phase number equal to four as 

determined by global intensity distribution.
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Fine Segmentation—The NAM indicates a potential but not exact nodule location. To 

identify the true nodule from the coarse segmentation results, i.e. which nodule candidate 

triggered the activation, we generate residual NAMs (R-NAMs) by masking each nodule 

candidate Rj alternately and feeding the masked image I\Rj into the same network. 

Significant change of activations within C indicates the exclusion of a true nodule. Formally, 

we generate the fine segmentation by selecting the nodule candidate Rk following:

(4)

where NAMI is the original NAM, and NAMI\Rj is the R-NAM generated by masking 

nodule candidate Rj. Our current implementation targets the segmentation of one nodule per 

NAM. Incidence of slices with two nodules is ~1% within slices with nodules. No slices 

contain more than two nodules in our dataset.

Multi-GAP Segmentation—For the multi-GAP CNN model, we observed a slight drop in 

classification accuracy compared with the one-GAP CNN model (see Sect. 3.2), which is 

expected since features from shallower layers are more general and less discriminative. In 

light of this, we further propose a multi-GAP segmentation method by training both a one-

GAP CNN model and a multi-GAP CNN model to combine the discriminative capability of 

the one-GAP system and finer localization of the multi-GAP system.

Specifically, segmentation is performed on slices classified as “nodule slice” by the one-

GAP CNN model for its higher classification accuracy. To define the screening scope for 

coarse segmentation, we first use the one-GAP NAM to generate a baseline scope C1. If 

there is a prominent blob Cmulti within C1 in the multi-GAP NAM, we define the final scope 

C as Cmulti to eliminate redundant nodule candidates with more localized spatial constraints. 

When the multi-GAP NAM fails to identify any discriminative regions within C1, the final 

screening scope C remains C1. The R-NAM of the masked image is generated by the one-

GAP CNN model and compared with one-GAP NAM within C1. Figure 2 illustrates 1-/2-/3-

GAP NAMs, the corresponding screening scopes C and coarse segmentation results on a 

sample slice. While multi-GAP NAM enables finer localization, one-GAP NAM has better 

discriminative power.

3 Experimental Results

3.1 Data and Experimental Setup

Data used in this study contains 1,010 thoracic CT scans from the public LIDC-IDRI 

database. Details about this database, such as acquisition protocols and quality evaluations, 

can be found in [6]. Lungs were segmented and each axial slice was cropped to 384 × 384 

pixels centering on the lung mask. Nodules were delineated by up to four experts. Voxel-

level annotations are used to generate slice-level labels, and are used as ground truth for 

segmentation evaluation. Nodules with diameter <3 mm are excluded [10]. Given the high 

false positive rate of nodule detection, we select slices with nodule if there were overlapped 

annotations by at least two experts, and select slices without nodule if no expert reported a 
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nodule in the slice. Annotations from different experts were merged using the STAPLE 

algorithm [11]. A total of Nslice = 8, 345 slices with nodule are selected, and an equal 

number of slices without nodule are randomly extracted. The total number of voxels 

belonging to nodule is Nvoxel = 1, 658, 981. Segmentation evaluation is focused on slices 

with one nodule. Rare cases of slices with two nodules are discussed in the end of Sect. 3.2. 

Training, validation and test sets are generated by distributing the full set of subjects in a 

ratio of 4:1:1 through stratified sampling so that they have non-overlapping subjects and 

similar distribution of nodule occurrence.

3.2 Segmentation Performance

We compare our framework with a fully-supervised CNN-based method (see below). True 

positive rate (TPR) of nodule detection, false positive rate (FPR) of “nodule” detected on 

slices without nodule, false positive rate (FPRnodule) of “nodule” detected on slices with 
nodule, Dice overlap of nodule segmentation over all slices with nodule (Dice), Dice over 

truly detected nodules (TP Dice) and absolute difference of segmented areas over truly 

detected nodules (TP DOA) are reported in Table 1. Furthermore, TP Dice and TP DOA 

versus nodule size are reported in Fig. 3.

Weakly-Supervised Segmentation Based on NAM—Our network is based on 

VGG16Net architecture [12], implemented in TensorFlow. The last pooling layer pool5 

and the FC layers fc6, fc7, fc8 are removed [5]. The weights of remaining VGG16Net 

layers are initialized based on the model pre-trained on ImageNet. The Conv + GAP 

structure is added after conv5_3 layer for 1-GAP CNN, added after conv5_3 and 

conv4_3 layers for 2-GAP CNN, and added after conv5_3, conv4_3, and conv3_3 

layers for 3-GAP CNN. The learning rate of the newly added layers is 10 times the learning 

rate of the remaining VGG16Net layers. We trained using stochastic gradient descent with 

momentum. The initial learning rate (10−2 for 1-GAP, 2 × 10−3 for 2-GAP, 10−3 for 3-GAP), 

learning decay (0.99), batch size (30) were set by grid search based on classification 

accuracy on the validation set. The best accuracy values are 88.4% for 1-GAP CNN, 86.6% 

for 2-GAP model, and 84.4% for 3-GAP model on the test set.

Comparison with Fully-Supervised Segmentation—An adapted model based on U-

net architecture [13] is used as a fully-supervised CNN-based model for comparison. The 

cost function is the negative mean Dice coefficient across mini-batch. The algorithm was 

optimized with Adam method. The initial learning rate (2 × 10−4), learning decay (0.999), 

and batch size (20) were determined with grid search based on average Dice on the 

validation set.

Two-Nodule Detection—For slices with two nodules, our framework can detect nodules 

by segmenting the top two activation blobs in the NAM. We tested the detection on a total of 

108 slices with two nodules. The 2-GAP model achieves the best detection performance, 

where both nodules are correctly detected in 50 slices, and one of the two nodules is 

correctly detected in another 42 slices. With adequate training data, our framework can 

extend to multi-class classification to automatically determine the number of nodules to 

segment in the slice.
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4 Discussions and Conclusions

In this work we have proposed an original design for lung nodule segmentation, extending a 

classification-trained CNN model with GAP operations, to learn discriminative regions at 

different resolution scales utilizing only weakly labeled training data (present or not of a 

lung nodule). Coarse-to-fine segmentation extracts nodule candidates using an ICM 

deformable model, and determines the true nodule exploiting a novel candidate-screening 

framework. Compared with voxel-based labels, the number of labeling required for our 

method is reduced by Nvoxel/Nslice ~ 100 times. Detection performance of our weakly-

supervised framework compares very favorably with a fully-supervised CNN model (higher 

TPR and much lower FPR). Our average segmentation accuracy on detected nodules is also 

very high and gets very close to the benchmark method for larger nodules. Fully-supervised 

CNN achieves, on average, more accurate segmentation when correctly detecting the nodule, 

which is expected since voxel-level annotation utilized during training provides more power 

to deal with various intensity patterns, especially at edges. On the other hand, standard 

deviations are smaller with the proposed method, hence indicates fewer large mistakes.

NAM can act as an efficient screening framework that can be incorporated with patch-level 

labels for false positive reduction [10], or with a small amount of voxel-level labels to learn 

fine segmentation contour. Future work will also extend NAM to 3D CNN to take advantage 

of the 3D contextual information.

A machine learning model requiring only weakly-labeled data is key for a sustainable 

development of CAD systems, as expert time is scarce and expensive and as scanners 

continue to evolve significantly. Our work used transfer learning from a CNN trained on 

natural images; with more annotated data, it will be possible to train a fully dedicated 

network that is likely to be more effective.
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Fig. 1. 
(A) Training: a CNN model is trained to classify CT slices and generate nodule activation 

maps (NAMs); (B) Segmentation: for test slices classified as “nodule slice”, nodule 

candidates are screened using a spatial scope defined by the NAM for coarse segmentation. 

Residual NAMs (R-NAMs) are generated from images with masked nodule candidates for 

fine segmentation.
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Fig. 2. 
Illustration of 1-/2-/3-GAP NAMs, the screening scopes C and coarse segmentation results 

on a sample slice.
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Fig. 3. 
TP Dice and TP DOA (mean and standard deviation) versus nodule size.
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