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Abstract?

We introduce a novel method of feature extraction for texture segmentation that relies on
multi-channel wavelet frames and two-dimensional envelope detection. We described and compared
two algorithms for envelope detection: (1) the Hilbert transform and (2) zero-crossings
representation. Our study includes the selection of symmetric Quadrature Mirror Filters (QMF)
for analysis and an ISODATA clustering algorithm. The reliability of our methods are

demonstrated experimentally by quantitative evaluation on both natural and synthetic textures.
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1. INTRODUCTION

In the field of computer vision, the problem of texture segmentation has been investigated by
many researchers through a diversity of approaches. In general, such methods consist of two
distinct phases: feature extraction and clustering. Features for texture representation are of
crucial importance for accomplishing segmentation[1]. Previous approaches for representing
texture features can be divided into two categories [2] [3]: statistical approaches and
spatial/spatial-frequency approaches.

In this paper, we describe a multi-channel approach, closely tied to wavelet multiresolution
analysis. The existence of a multi-channel filtering model is evident from studies of the human
visual system. Recent psychovisual experiments suggest the presence of a “biological spectrum
analyzer” within the human visual system [4]. An early paper by Bovik [5] used complex Gabor
filters, where texture features were computed by envelope and phase information extracted from
two quadratic components of distinct output channels. In a related paper, A.K.Jain [9] chose real
Gabor filters for analysis. Each filtered channel (output) was subjected to a nonlinear
transformation, ¥(¢) = tanh(at). An average absolute derivation was then computed in terms of
overlapping windows.

Recent developments in wavelet theory provide an alternative approach through multi-channel
filter banks that have several advantages over Gabor filters: (1) Wavelet filters cover ezactly the
frequency domain (complete representation), (2) Signal adaptive decomposition is made possible
by the tree structure of multi-channel filters. (3) Fast algorithms are readily available to facilitate
computation.

Several recent studies have reported the success of applying wavelet theory to texture
analysis[11]. Laine et al [10] used wavelet packet signatures for texture classification and achieved
perfect classification for 550 samples obtained from 25 distinct natural textures. In addition,
M.Unser [12] has reported promising results using wavelets for both classification and
segmentation of textures. In this paper, we introduce a feature extraction scheme that relies on

wavelet multi-channel analysis and a novel envelope detection algorithm.



The remainder of this paper is organized as follows. Section 2 briefly reviews the framework of
discrete wavelet transforms and the discrete wavelet packet transform, including corresponding
variations of wavelet frames. Section 3 considers criteria for filter selection. Section 4 describes
our multi-channel feature extraction scheme. Next, section 5 describes the ISODATA clustering
algorithm used in our texture segmentation experiments. Section 6 presents our experimental

results. Finally, Section 7 provides a brief summary and conclusion.
2. MULTI-CHANNEL WAVELET ANALYSIS

The general structure and computational framework of the discrete wavelet transform (DWT)
are similar to subband coding systems. The main difference lies in filter design, where wavelet
filters are required to be regular [13]. In this study, we considered two methods of multiscale

analysis:

¢ Discrete wavelet transform (DWT) [13][14] [17], which corresponds to an

octave-band filter bank.

¢ Discrete wavelet packet transform (DWPT) [15][16], which corresponds to a general

tree-structured filter bank.

In general, the DWPT imposes a more rigorous constraint on a wavelet, that is, the wavelet
should be orthonormal. However, the DWPT allows more flexibility by providing an adaptive
basis. For a discussion on their continuous counterparts, please see references [13] [12] [16].

Unfortunately both decompositions are not translation invariant (a desirable property for
accomplishing texture analysis [12]). A possible solution is to use an overcomplete wavelet
decomposition called a discrete wavelet frame (DWF') [12]. In this case, a DWF or DWPF scheme
is similar to its DWT and DWPT except that no down sampling occurs between levels. Figure 1
shows a general DWPF as a binary tree for a three level decomposition.

For each case above, filters Hj(w) and Gi(w) at level [ were generated as described in [13] :

Hi(w) = Ho(2'w) (1)

Gi(w) = Go(2'w). (2)
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Figure 1: Tree structure for wavelet packet frames and associated indexes.
Let S!(w) be the Fourier transform of the input signal at channel k for level /, then
SE (@) = Gilw)SL(w) (3)
Sybi(w) = Hi(w)Sk(w). (4)

From the filter bank point of view, this is equivalent to a filter bank with channel filters

{F}(w)|0 < k <2 — 1}, where F}(w) is defined recursively by the formula

Fy(w) = Go(w), Fy(w) = Ho(w), (5)
B (w) = Gra(w)Fi(w) = Go(2Mw) Fy(w), (6)
Fyffi(w) = Hip(w) Fi(w) = Ho(2H W) Fi(w). (7)

For images, we simply use a tensor product extension for which the channel filters are written
as
l l l
Fiyj(wa,wy) = Fi(wr) Fj(wy). (8)

Such 2-D filters naturally exhibit orientation selectivity. We classified each node in the

decomposition tree into four possible categories taking into account orientation:

e The root node is omni-directional.

o The node at level [ that was last filtered by G(w;)H (wy) corresponds to vertical-oriention.

(High-pass filter G is applied row-wise and low-pass filter H; column-wise.)

o The node at level [ that was last filtered by H;(w;)Gi(wy) corresponds to
horizontal-oriention. (Low-pass filter H; is applied row-wise and high-pass filter ()

column-wise. )



o The node at level [ that was last filtered by G(w; )G (w,) corresponds to diagonal-oriention.

(High-pass filter G is applied row-wise and high-pass filter G; column-wise)

o The node at level [ that was last filtered by Hj(w;)H;(w,) has the same orientation as its

parent. (Low-pass filter H; is applied row-wise and low-pass filter H; column-wise)

Recent results on texture classification have shown that different filters can have considerable
impact on system performance [10, 12]. In the next section, we provide some justification and

discuss considerations regarding filter selection.
3. FILTER SELECTION

Symmetry, frequency characteritics, and boundary accuracy are important factors in the
design of filters for feature extraction. Below we discuss these constraints in terms of system

performance.

e Symmetry. For accomplishing texture segmentation, accuracy in texture boundary
detection is crucially important for reliable performance. In this application, filters with
symmetry or antisymmetry are clearly favored. Such filters have a linear phase response,
where the delay (shift) caused by such phase factors is predictable. Alternatively, filters
with non-linear phase may introduce complicated distortions. Moreover, symmetric or
anti-symmetric filters are also advantageous in alleviating boundary effects through simple

methods of mirror extension.

¢ Frequency characteritics. One of the desirable frequency characteritic of a filter bank is
that every band should exhibit a single pass-band with flat in-band frequency response.
Many Quadrature Mirror Filters (QMF') possess this property. For multi-channel
decompositions using a QMF, all filters are generated from a prototype filter that satisfies

the property:
| Ho(w)[* + [Ho(w + 7)* = 1 (9)
Ho(O) = 1, Ho(ﬂ') = 0.

Unfortunately, a compactly supported QMF cannot be symmetric or anti-symmetric [17].

Therefore, in this investigation, we selected Lemarié-Battle wavelets, which are symmetric



and quadrature mirror filters (QMF'). In our application, the high-pass filter Gip(w) was

obtained by frequency shifting of Ho(w) by

go(n) = (=1)"ho(n), or, (10)

Go(w) = Ho(w+ 7).

In this way, both low-pass and high-pass filters had zero-phase, and thus no space (time)
shifting existed after processing (analysis). This construction corresponds to a
non-orthogonal wavelet transform, and only retains perfect decomposition-reconstruction
properties for a frame-based representation (without downsampling between levels). In this
application, however, the loss of orthogonality was not significant, since the transform

coefficients were not used directly as features.

Time-Frequency localization. The segmentation problem can be seen as a
time-frequency localization problem. Therefore, the characteritics of a filter will affect
system performance[5]. The effectness of a discrete filter in terms of time-frequency
localization can be characterized by the uncertainty factor. The uncertainty factor U for a

discrete filter can be defined as follows [6]:

U = oa’ (11)
1
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For the discrete case, Liu et al[6] proved that U > 0.25.

Figure 2 shows the uncertainty factor U for the Lemarié-Battle filters with odd order. This
result showed that uncertainty factor U for the Lemarié-Battle filters is approximately

linear, increasing with order. The minimum (U = 0.393) occurrs at order 1.
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Figure 2: Uncertainty factor of odd-ordered Lemarié filters from 1 to 51.

Table 1: Truncated L1 filter of length 21.

=

[0] | 5.781633152e-01
[1] | 2.809314643e-01
[2] | -4.886177424e-02
[3] | -3.673090668¢-02
[4] | 1.200034220e-02
[5] | 7.064417346e-03
[6] | -2-745880792¢-03
[7] | -1.557014508¢-03
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Note: h[—n] = h[n]

In consideration of this, we selected an order 1 Lemarié filter. The frequency response for such

B 2 (@ 2 + cosw
H(w) = cos (2) V14 2cos?w (17)

B _ 2w 2 — cosw
G(w)=H(w+ 7)=sin (2)”71{—2(:0524# (18)

Figure 3 shows the filter banks constructed from the order 1 Lemarié filter for both DWF and

a filter can be written explicitly as:

DWPF analysis. In practice, this filter was truncated to finite length. In our study, we used an

FIR filter ho(n) of length 21. The filter coefficients are shown in Table 1.



(a) (b)
Figure 3: Filter banks constructed using a Lemarié filter of order 1, (a) DWF (b) DWPF.

4. FEATURE EXTRACTION

Feature extraction plays a crucial role in accomplishing reliable segmentation. A ’good’
representation (feature) should be consistent among pixels within a class, while as disparate as
possible between classes for reliable classification. This means that it should reflect some global
view while retaining some discrimination capability at the pixel level. Therefore, the problem in
general, is one of spatial-frequency analysis, and a natural application for multiscale wavelet
analysis.

In addition, a feature extraction scheme should be able to accommodate a large variety of
diverse inputs. This will exclude any fixed windowing schemes, since such methods are limited in
adaptability. Next, we present an efficient representation by extending the concepts of a channel
envelope to construct a feature set for reliable texture segmentation.

In an earlier study, Bovik [5] used envelopes obtained from channel outputs for texture
analysis and segmentation in the setting of Gabor multi-channel filtering. The 2-D complex
Gabor filters used by Bovik approximated a pair of conjugate filters. In addition, the approach of
squaring followed by iterative low-pass filtering used by Unser [12] can also be interpreted as
envelope detection. However, the method of iterative low-pass filtering is not adaptive, and can
blur boundaries.

We investigated the following envelope-based feature extraction schemes using real

wavelet-based multi-channel methods of analysis. For sake of clearity, we first present each



algorithm for the 1-D case.

1. Envelope detection by Hilbert transform. For a narrowband bandpass signal, its
envelope can be computed by a corresponding analytical signal. For a signal x(¢), the
analytic signal is defined by:

2(t) = w(t) + ju(t) (19)

where Z(t) is the Hilbert transform of x(¢):

fuy:l/m‘“mdn (20)

TJol—1

The envelope of the original signal z(¢) is then simply the modulus of the analytic
signal Z(t):
Enola(t)] = 13(0)] (21)

The frequency characteristic of the Hilbert transform is then expressed by:

J , otherwise.

m@:{fj’“>:0 (22)
Therefore, the Fourier transform of the analytical signal #(¢) is:

<mm={2XW)’“>:° (23)

0 , otherwise.

Although the frequency characteristics corresponding to a noncausal system cannot be
exactly realized in practice, for a DWT implemented by an FFT, the analytic signal can be
approximately computed by setting the FF'T values of the filter within the negative
frequency range to zero. Since our implementations used convolution, it was necessary to

design an approximate FIR Hilbert transformer.

2. Envelope estimation by zero crossings. Clearly, zero-crossing-based representations are
adaptive. In this method, the maximum value between two adjacent zero-crossings was
found, and assigned to points within the interval. Figure 4 shows an example using the L1
filter described earlier for a three-level DWF decomposition overlayed with detected

envelopes.
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Figure 4: Envelope estimation via zero crossings using an L1 filter.
(solid line: envelope; dotted line: channel output).
Row 1: input signal; Row 2-4: wavelet coefficients for levels 1 through 3;
Row 5: DC coefficients, level 3.

We now extend the above algorithms for the analysis of two-dimensional image signals. In the
2-D frequency domain, a two-dimensional analytic signal can be obtained by setting an

appropriate half plane to zero based on its orientation. That is, for a 2-D signal f(z,y), the

Fourier transform of an analytic signal f(x, y) is either

~ B 2F(wy,wy) , wyp >=0
Flomwy) = { 0 , otherwise
or,
~ B 2F(wy,wy) , wy >=0
Flomwy) = { 0 , otherwise. (24)

For the 2-D filters used in our study, the equivalent complex quadrature filters exhibited the
frequency response shown in Figure 5. Note that diagonal components can have an alternate
arrangement by zeroing out the left half plane. This seperable property allowed us to compute the
envelope of a 2-D signal using the 1-D algorithms described earlier in a straight forward way,

described below:
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(a) (b) (c)
Figure 5: Frequency response of equivalent complex quadrature filters (level 1) for (a) vertical, (b)
horizontal, (c¢) diagonal components, respectively. The diagonal shadowed areas identify the zeroed
half planes.
Envelope_2D(W,Orientation)

{Wisa N x N array }
begin

case Orientation of
Horizontal: apply Envelope_1D column-wise;
Vertical : apply Envelope_1D row-wise;
Diagonal : apply Envelope_1D column-wise;
end case;

end Envelope_2D;

Note that no operation was applied to the omni-directional component due to its low
frequency content. Figure 6 shows sample envelopes extracted by applying the two methods. The
1-D Hilbert transformer was an FIR (63 tag) filter designed using MONARCH [21] DSP software
for a convolution based implementation of the DWPF'.

At the end of the feature extraction process, we constructed feature vectors for every pixel

(point) according to the following definition:

Vi = AW ogkeqi11) ), for DWPE (25)

k.5

where ‘W,f;}l‘ denotes the envelope value of pixel (7,7) for the kth component at level L — 1 in a

DWPF tree.
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Figure 6: Envelope representations for horizontal components at level 2. (a) Original 256 x 256,
8-bit texture image. (b) Envelope coefficients obtained from zero-crossings based algorithm. (c)
Envelope coefficients obtained from the Hilbert transform based algorithm.

5. CLUSTERING ALGORITHM

Traditionally, segmentation algorithms accept as input a set of features and output a
consistent labeling for each pixel. Fundamentally, this can be considered a multi-dimensional data
clustering problem. As pointed out by Haralick [22], at present no general algorithms exist for
this problem. Clustering algorithms that have been previously used for texture segmentation can
be divided into two categories: supervised segmentation and unsupervised segmentation.

For practical applications, unsupervised segmentation is often desirable and easy to validate.
It is particularly useful in those cases where testing samples are difficult to prepare (making
supervised segmentation infeasible). Since our present focus emphasized feature extraction
(representation), we used a general ISODATA clustering algorithm [8] (unsupervised). An

overview of the algorithm is presented below:

11



Algorithm ISODATA (z,NC)
x: N X M array of structure containing vector and label fields.
NC': number of classes.
begin
begin (Initialization )
Scan the representation matrix = in raster order. Randomly pick a label from set
{0,..., NC — 1} and assign the label to each pixel.
Compute the class center {6k |0§k§N0—1} by calculating the mean vector for each
class k.
end
repeat
Rescan the representation matrix z, and assign pixel (7, j) to the class k if the
Euclidean distance between the pixel and the class center Cy is closest.
Update the class centers {6k} by recomputing their mean vectors.

until no change in labeling occurs.

end ISODATA;

This algorithm differs from a K-means algorithm in one important aspect: ISODATA updates
class centers after a complete scan of an input feature set while K-means updates in every
reassignment. In our experiments, ISODATA outperformed K-means for almost all cases.

This simple algorithm labeled each pixel independently and did no take into account the high
correlation between neighboring pixels. Clearly, a more sophisticated algorithm should
incorporate some neighborhood constraint into the segmentation process, such as relaxation
labeling. For simplicity, we used median filtering in our preliminary experiments to simulate the
benefit of a local constraint. In particular, we applied a 9 x 9 median filter as a post processing

step to each initial segmentation.
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(a) (b)

Figure 7: Multi-channel segmentation result No.1: (a) Test image T1 (256 x 256, 8-bit) consists of
D68, wood grain and D17, herringborn weave. (b) Final segmentation.

(a) (b)

Figure 8: Multi-channel segmentation result No.2: (a) Test image T2 (256 x 256, 8-bit) consists of
D24, pressed calf leather and D29, beach sand. (b) Final segmentation.

6. EXPERIMENTAL RESULTS FOR TEXTURE SEGMENTATION

To test our segmentation algorithm, we carried out experiments using two distinct families of

texture samples:

e Natural textures. Here we used textures obtained from the Brodatz album [24]. Each
testing sample was histogram equalized so that a segmentation result based only on first
order statistics was not possible. Experimental results showing accurate boundary

seperation are displayed in Figures 7, 8.

¢ Synthetic textures. We also tested the performance of our algorithm on several synthetic
images of texture. Figure 9 shows a segmentation result on a Gaussian low-pass texture

image [1], and Figure 10 shows a segmentation result on a filtered impulse noise (FIN)

13



(a) (b)

Figure 9: Multi-channel segmentation result No.4: (a) Test image T4 (256 x 256, 8-bit): Gaussian
LP, left: isotropic F, = 0,5, = 60; right: non-isotropic F. = 0,5, = 60,6y = 0, Bp = 0.175. (b)
Final segmentation.

(a) (b)
Figure 10: Multi-channel segmentation result No.5: (a) Test image T5 (256 x 256, 8-bit): Filtered
impulse noise, left: non-isotropic 7' = 0.15, 5, = 1.0, .5, = 1.5; right: non-isotropic T' = 0.15, 5, =
2.0,5, = 1.0. (b) Final segmentation.

texture image [1]. Figure 11 shows a remarkable segmentation result on a texture image

containing illusatory contours.

The accuracy of our segmentation results are summarized in Table 2. Note that the average
absolute boundary errors remained less than 3 pixels. This performance is consistent with the
difficulty of segmentation perceived by a human observer. Note that boundary errors were

dependent on boundary shape in that complex boundaries yielded more variance.
7. CONCLUSIONS

We have described a feature extraction method for texture segmentation that relied upon
multiscale wavelet frames representations. Qur approach was adaptive in that no windowing was

required. Two approaches for accomplishing one-dimensional envelope detection were presented

14



(a) (b) ()

Figure 11: Multi-channel segmentation result No.6: (a) Test image T6 (256 X 256, 8-bit). (b) Final
segmentation. (c) Detected boundary overlayed with the original image.

Table 2: Boundary accuracy for multi-channel segmentation.

‘ Test image ‘ Maximum ABE ‘ Average ABE ‘ to ‘

T1 4.0 1.5 1.0
T2 9.0 2.7 2.1
T4 14.0 2.6 2.1
T5 12.0 2.7 2.3

ABE: Absolute Boundary Error (in pixels).

15



and formulated for two-dimensional analysis. Performance for reliable texture segmentation was
then evaluated. We observed that the algorithm based on zero-crossing detection outperformed
the Hilbert transform algorithm. Filters were selected based on optimum criteria. Our results
exhibited highly reliable and accurate performance for several distinct texture types including
macro-texture and micro-textures.

Future research shall focus on exploiting the multiresolution nature of this representation to
increase the accuracy of class boundaries, and finding an adaptive and robust criterion to prune

the decomposition tree by selecting specific channels.
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