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Abstract

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease 

(COPD), and is traditionally subcategorized into three subtypes: centrilobular emphysema (CLE), 

panlobular emphysema (PLE) and paraseptal emphysema (PSE). Automated classification 

methods based on supervised learning are generally based upon the current definition of 

emphysema subtypes, while unsupervised learning of texture patterns enables the objective 

discovery of possible new radiological emphysema subtypes. In this work, we use a variant of the 

Latent Dirichlet Allocation (LDA) model to discover lung macroscopic patterns (LMPs) in an 

unsupervised way from lung regions that encode emphysematous areas. We evaluate the possible 

utility of the LMPs as potential novel emphysema subtypes via measuring their level of 

reproducibility when varying the learning set and by their ability to predict traditional radiological 

emphysema subtypes. Experimental results show that our algorithm can discover highly 

reproducible LMPs, that predict traditional emphysema subtypes.
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1. INTRODUCTION

In computer vision, topic models are popular tools capable of explaining complex macro-

structures contained in an image via the use of “visual words” (i.e. visual primitives) [1, 2]. 

Topics (e.g., a human face) are defined via the learning of common co-occurence of visual 

words (e.g., two eyes, a nose, and a mouth) in documents (e.g., a set of portrait images). 

Visual topics convey very rich structural information that is able to extract the essence of 

image data content toward image interpretation and detection of more abstract visual 

concepts. Visual topics have been applied to medical image analysis for image-type 
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classification and image retrieval [3]. Discovery of topics may also benefit disease subtypes 

discovery [4], and disease phenotyping.

In the context of radiological emphysema subtypes, which were initially defined at autopsy 

and have poor inter-rater agreement even in expert hands [5], we propose a learning 

framework to discover in a set of training CT scans (analogous to documents) some lung 

macroscopic patterns (LMPs, analogous to topics) of lung texture prototypes (LTPs, 

analogous to visual words) to encode emphysema subtypes. As introduced in [6], topics are 

learned with a probabilistic “mixed-membership” model called the Latent Dirichlet 

Allocation (LDA), which enables multiple topics per document. We assume that each 

subject is a mixture of multiple emphysema subtypes that can be explained by LMPs, and 

each LMP is closely related to a specific set and proportion of LTPs.

2. METHOD

This section is organized as follows: 1) Preprocessing (lung and emphysema segmentation 

and LTP labeling); 2) Unsupervised discovery of LMPs; and 3) Evaluation metrics of LMPs.

2.1. Emphysema Segmentation and LTP labeling

Following our previous works on quantifying emphysema subtypes on CT scans [7, 8] we 

pre-analyze each CT scan and generate two masks: the emphysema mask within the lung via 

HMMF regularized segmentation [7], and a LTP label mask, via assignment of 3D patches 

to the most similar LTP within a set of 100 LTPs generated using texton features [8].

2.2. Unsupervised Lung Macro Pattern (LMP) discovery

We assume that our dataset of M CT scans (documents) is generated from Nlmp LMPs 

(topics) using Nltp LTPs (words). LTP label is the observed variable, while the structure of 

the LMPs and their occurence in a CT scan are the two hidden (unobserved) variables. 

Discovering of the LMP topics is solved as the maximization of the posterior probabilities of 

the hidden variables given the observations. LDA is used as the probabilistic generative 

process of the observed data. Concretely, a LMP i is equipped with a probability distribution 

φ over the LTPs, using a Dirichlet with parameter β: φi ~ Dir(β) and a CT scan j is equipped 

with a probability distribution θ of LMPs, using a Dirichlet with parameter α: θj ~ Dir(α). α 
and β are Dirichlet prior hyperparameters.

The joint distribution of observed LTP and hidden LMP random variables is written as [6]:

(1)

where LTPj,t is the observed value of LTP t in document j. φi, θj and LMPj,t are hidden 

variables to be inferred. The generative LDA process is described as follows:
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1. For a LMP i, a multinomial parameter φi is sampled from Dirichlet prior φi ~ 

Dir(β);

2. For a scan j, a multinomial parameter θj over the Nlmp LMPs is sampled from 

Dirichlet prior θj ~ Dir(α).

3. For a LTP t in scan j, its LMP is sampled from discrete distribution LMPj,t ~ 

Multinomia(θj).

4. The value LTPj,t of LTP t in scan j is sampled from the distribution of LMPj,t, 

LTPj,t~Multinomia(φLMPj,t).

Learning these various distributions (the set of LMPs and their associated LTP probabilities) 

is a Bayesian inference problem. As in [9], we used the Gibbs Sampling approach to 

maximize Eq. 1.

2.2.1. Localized LDA model—We perform LMP learning on local regions of interests 

rather than the whole lung. Each scan is quantized into a M* × Nltp-dimensional vector, 

where M* is the number of (local) document-level regions of interest (DROI) per scan. We 

chose overlapping DROIs of size between 1.5 and 4 times the patch size used for LTP 

labeling (PROI = 25×25×25 mm), and extracted an average of 50 DROIs per scan to achieve 

a balance between lung volume coverage and computational complexity of LDA. To infer 

emphysema-like topics, we only use the DROIs which have at least 1% of overlap with the 

HMMF emphysema mask for generating the LMPs.

2.2.2. Setting the number of LMPs—A common problem with LDA-based topic 

discovery models is that they do not guarantee global optimality, which can lead to 

instability and lack of reproducibility. To tackle this problem, we follow [10] which 

improved LDA for “community detection in networks” using the Infomap [11] graph 

partition to initialize the number of topics. Infomap is able to find stable clusters given a 

similarity graph using information compression technique. In contrast to standard 

unsupervised clustering algorithms, Infomap does not require the user to guess the number 

of clusters.

After extracting training ROIs at a given DROI size, we use Infomap to set Nlmp as follows: 

For each LTP, we generate the histogram of their frequency of occurrence over all the 

DROIs. We calculate the histogram intersections [12] as the measure of similarity of each 

pair of LTPs that co-appear in at least one DROI. To enforce sparsity in the similarity graph, 

we threshold similarity values below a threshold T. We then used Infomap to infer Nlmp 

based on this similarity graph. This sets the number of topics to discover and best guess of 

word composition of each topic. We then refine the estimation of the topics solving the LDA 

using Gibbs Sampling [9] to get the final LMPs. The hyper-parameters α and β were 

empirically set to 0.5 and 0.01. The threshold T is tested from 0 to 1 with 0.1 increments and 

we retain the maximal obtained value Nlmp to initialize Gibbs Sampling.

2.3. Evaluation metrics of LMPs

We evaluate the discovered LMPs based on their reproducibility over training sets and 

association with traditional radiological subtypes.
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Given two sets of LMPs (topics) C and C′ learned on two distinct training sets, we propose 

the following metric to measure their reproducibility R:

(2)

where sim(Ck, C′πk) measures the similarity between LMPs Ck and  and π denotes the 

permutation of indices leading to optimal matching of compared LMPs, using the Hungarian 

method [13]. We define two metrics for the similarity measurement, simA for measuring 

common LTP components in LMPs Ck and , and simB for measuring overlap of LMP 

labeling on a common test set, as follows:

(3)

where 1 is a column vector with all 1s (Ck1 = sum(Ck)).

(4)

where I is the 0–1 loss function, and LCk denotes LMP label masks using the LMPs Ck.

Noting MROI the ROIs used to label CT scans with LMPs, their size should not exceed the 

size of DROI and not be smaller than the size of PROI. We tested MROI of size between 1 

and 3 times the PROI size. For each MROI, we get a normalized histogram of LTPs, and 

calculate its similarity with the LMPs composition using Euclidean distance. Each MROI is 

assigned to the LMP with the highest similarity.

The association of LMPs with traditional emphysema subtypes is measured as the intraclass 

correlation (ICC) of the percentage of emphysema subtypes (CLE, PLE, PSE) and non-

emphysema (NE) between the visually assessed ground-truth reported in [5] and the 

predicted values from LMPs using a constrained multivariate regression [8].

3. EXPERIMENTS

Quality of generated topics was measured via: (1) measure of reproducibility of LMPs 

learned in two distinct training sets. (2) visual inspection of LMP samples; (3) Ability of 

LMPs to predict the traditional radiological emphysema subtypes. We performed two sets of 

experiments which are now described.

3.1. Synthetic Data

We first tested our algorithm on synthetic data generated as follows:
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1. Generate a set of M =300 documents with N = 1000 words per document. There 

are Nltp=100 vocabularies.

2. Choose θi ~Dir(α), where i ∈{1, …, M} and Dir(α) is a Dirichlet distribution 

with α= 0.1;

3. Choose φk~Dir(β), where k∈{1, …,Nlmp} and β=0.01;

4. Use φ to generate a set of K = 3, 5, 10 topics made of vocabularies.

5. Use θi to generate a set of M = 300 documents with N words per document. 

Generation of the synthetic data is performed as follows: For each word position 

i, j, where j ∈ {1, …, N}, and i ∈ {1, …, M}:

a. Choose a topic zi,j ~ Multinomial(θi);

b. Choose a word wi,j ~ Multinomial(φzi,j).

We measured the similarity of the composition of the topics discovered by the LDA 

algorithm (using the known number of topics and random initialization) and the ground truth 

synthetic topics using the similarity metric R (using simA). The results for RK where K is 

the number of topics to discover, are: R3 = 1, R5 = 1, R10 = 0.99.

3.2. MESA COPD Study

We used N=203 out of 317 CT scans from the MESA COPD Study [5] by excluding the 

scans without emphysema. MESA COPD Study were acquired at full inspiration with either 

a Siemens 64-slice scanner or a GE 64-slice scanner, and reconstructed using B35/Standard 

kernels with axial resolutions within the range [0.58, 0.88]mm, and 0.625mm slice 

thickness. All CT scans were visually labeled by expert radiologists in [5] into global extents 

of each of the three traditional radiological emphysema subtypes over the lung volume.

We split the study into three parts with 68, 68, 67 CT scans each, using the first two subsets 

as independent training sets and the third as a test set. We trained on the first two sets to 

generate two sets of LMPs and obtained Nlmp= [10, 8, 6, 6, 6, 6, 7] and Nlmp=[9, 7, 6, 6, 6, 
6, 6] LMPs in each training run, using DROI sizes of [1.5,2,2.5,3,3.5,4,∞] times the LTP 

labeling patch ROI (PROI) size and where the ∞ means that the full lung volume field was 

used. Reproducibility of the learned LMPs is illustrated in Fig. 1. From the results using 

simA, we can see that highest reproducibility is achieved for the learned LMPs with DROI 

size (62.5 × 62.5 × 62.5)mm and (75 × 75 × 75)mm. In general, the LMPs learned on the full 

scan were not as good as those learned on DROIs. This verifies that spatial information is 

helpful for learning LMPs. From the results using simB, reproducibility follows a similar 

trend as with simA in terms of DROI size effect: the highest reproducibility is achieved with 

DROI size (62.5 × 62.5 × 62.5)mm and (75 × 75 × 75)mm. On the other hand, the size of 

MROI has no significant effect on the reproducibility of LMP labeling.

For visual illustration, we show in Fig. 2 some randomly selected MROIs (size = 75×75×75 

mm) for each of the six LMPs learned from the first training set with DROI size=75×75×75 

mm. These illustrations show that the MROIs are generally homogeneous within a LMP, and 

visually distinct between LMPs.
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Finally, we used the six generated LMPs, from the first training set with DROI size=75 × 75 

× 75 mm, to predict the traditional radiological emphysema subtypes using a constrained 

multivariate regression [8]. We conducted three-fold cross-validations on the whole cohort to 

evaluate the ICC against visual labeling by radiologists, and the results are reported in Table 

1. The 6-dimensional LMPs predicted traditional radiological subtypes better than the 

radiologist interrater reproducibility for CLE, PLE and NE. For PSE, however, the ICC of 

LMPs was not satisfactory. To investigate this issue, we augmented the LMPs by visually 

picking up the two LTPs within the disease LTPs (most occuring in disease subjects) that 

looked the most like PSE. Adding these 2 PSE-like LTPs to the LMPs corresponds to 

forcing the topic discovery process to consider these two LTPs as being topics on their own. 

The resultant ICC for PSE increased to 64%.

4. DISCUSSION & CONCLUSION

In this paper, we have shown that topic discovery via Infomap and LDA can generate up to 

six highly reproducible emphysema-specific lung macroscopic patterns (LMPs) from a 

series of 100 pre-learned lung texture prototypes (LTPs), which are associated to traditional 

radiological emphysema subtypes. The PSE emphysema subtype was not properly 

discovered by the algorithm but easily added to the LMPs via picking up two visually-

compatible LTPs. In future work, we will investigate how to add constraints on the LDA 

topic discovery process to preserve rare but important LTPs, such as PSE. In the longer term, 

we will also explore whether LMPs can be used to guide the discovery of novel clinical 

emphysema subtypes.
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Fig. 1. 
Reproducibility of LMPs with different DORIs sizes, and the reproducibility of labeling 

MROIs with different DROIs sizes in the validation set (N=67).
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Fig. 2. 
Examples of LMPs from 1 to 6. In the legend, ‘white’ is the background, ‘black’ is the area 

not covered by emphysema mask, and the other 6 colors are the 6 LMPs. Each MROI has 

the size of (75 × 75 × 75)mm.
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Table 1

ICC of predicted of visual radiological subtypes. Three-fold cross validation on MESA COPD Study with 203 

subjects.

Method CLE PLE PSE NE

LMPs 0.85 0.65 0.23 0.89

Augmented LMPs 0.86 0.65 0.64 0.89

LTPs 0.92 0.72 0.69 0.95

Inter-rater 0.74 0.59 0.67 0.76
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