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Abstract— An important goal in clinical cardiology is the 
non-invasive quantification of regional cardiac deformation.  
While many methods have been proposed for the estimation of 
3D left ventricular deformation and strains derived from 4D 
ultrasound, currently there is a lack of in vivo clinical 
validation of these algorithms on humans.  In this paper, we 
describe the experiments used in validating cardiac 
deformation and strain estimates of 4D ultrasound using 
correlation-based optical flow tracking on two different COPD 
patients with normal left ventricular function.  Validation of 
the algorithm was done by 1) validation of cardiac volume 
across multiple scans of the same patient and 2) validation of 
the repeatability of cardiac displacement and strain results 
from multiple scan acquisitions of the same patient. The 
preliminary results are encouraging with our algorithm 
producing consistent cardiac volume and strain results across 
multiple acquisitions.  Furthermore, our  derived 4D cardiac 
strains showed qualitatively correct results.  We also observed 
particularly interesting results in the radial displacements of 
the posterior and lateral walls of our COPD patients.    

I. INTRODUCTION 
An important goal in clinical cardiology is the non-

invasive quantification of regional cardiac deformation.  The 
clinical cardiology community has begun to embrace the use 
of cardiac strain in their analysis for this purpose [1]. To 
properly calculate cardiac strain, the use of an imaging 
modality with high temporal resolution is needed. Real-Time 
Three-Dimensional (or RT3D, 4D) echocardiography is 
becoming increasingly attractive because of its ability to 
acquire full three-dimensional images of the heart over a full 
cardiac cycle within a few seconds. The complex 3D wall 
motion and temporal information contained in these four-
dimensional (3D + time) data sequences has the potential to 
greatly enhance clinical diagnoses of the heart [2]. 

Currently, clinical evaluation of 3D ultrasound is 
performed via interactive inspection of acquired data along 
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selected projection planes.  This process is both cumbersome 
and time consuming.  Furthermore, it ignores a great deal of 
information that exists in the evolution of the entire 3D 
cardiac volume over time. For example, quantitative four-
dimensional analysis of the endocardial surface and 
computation of local fractional shortening has been shown to 
be effective in the diagnosis of regional ischemia [3]. Thus, 
it is highly desirable to have quantitative analysis and 
visualization tools that can help the clinician in the 
evaluation of these datasets [4].  

While many methods have been proposed for the 
estimation of 3D left ventricular deformation and strains [5, 
6], the in vivo validation of these results is an extremely 
important but often neglected aspect of this area. Multiple 
groups have validated the ability of 4D Ultrasound to 
measure phantom and canine cardiac deformations [5, 7-9].  
However, there currently is not any clinical validation of 4D 
ultrasound strain measurements.  In this paper we describe 
the experiments used to validate cardiac deformation and 
strain estimates of RT3D ultrasound using a correlation-
based optical flow tracking method.  We validated the 
algorithm by 1) validation of cardiac volume across multiple 
scans of the same patient and 2) validation of the 
repeatability of cardiac displacement and strain results from 
multiple scan acquisitions of the same patient. 

II. METHODS 

A. Clinical Data Acquisition 
The datasets used in the experiments detailed in this paper 

were acquired using a Siemens ACUSON SC2000™ with a 
4Z1c transducer (Siemens, Mountain View, CA) by two 
cardiologists from two COPD patients.  The 3D-probe was 
placed in the left parasternal / apex region at 2nd to 5th 
intercoastal space as is customary of cardiac ultrasound.  
Each acquisition consisted of one or two cardiac cycles 
gated by ECG leads.  Multiple acquisitions were taken 
during one examination, and a subset of these acquisitions 
were chosen based on image quality and analyzed.  COPD 
patients will be referred to anonymously in this paper as 
AP0490 and AP0574.  Both were determined to have normal 
left ventricular ejection fractions. The focus depth of images 
ranged from 140 to 160 mm.   

B. Data Conversion and Denoising 
The ACUSON SC2000 uses a matrix phased-array 

transducer to acquire an entire three-dimensional volume in 
spherical coordinates along lines tiled in azimuth and 
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elevation angles at incremental depth. Siemens AG provided 
us with a proprietary utility that allows us access to the un-
down-sampled rho-theta information as collected by the 
transducer. A fast tri-cubic interpolation algorithm was 
developed to convert the polar signal into Cartesian data 
(unpublished). The polar signal was down-sampled to 50% 
of sampling frequency due to constraints on speed and 
dataset size (Figure 2.1).  Voxel size is approximately 0.77 
mm x 0.77 mm x 0.77 mm.  Analysis was performed 
showing that this down-sampling does not affect the final 
strain measurement results (unpublished). Since optical flow 
is particularly sensitive to speckle tracking pattern, the 
resulting Cartesian data was then filtered with an edge 
preserving anisotropic diffusion smoothing algorithm [10].    

 

 
(a)                                      (b)                                    (c)  

Fig.2.1 - Three cardiac views in (a) coronal plane, (b) sagittal plane, and 
(c) axial plane of the volumetric ultrasound data set at 50% sampling 

frequency. 
 

C. Semi-automatic Segmentation of Myocardium 
Manual tracing of LV epicardium and endocardium 

borders were performed by trained experts slice by slice in 
the short-axis plane to generate a binary mask of the 
myocardium. Typically 120-150 short axis planes have to be 
manually segmented in order to initialize the algorithm.  It is 
important to note that that since every point in the 
myocardium will be individually tracked by the optical flow 
algorithm described in the next section, the exact border of 
the epicardium or the endocardium are not necessary for the 
algorithm to generate consistent results.   
 

D. Correlation-Based Optical Flow Tracking 
In optical flow, motion of an object is characterized by 

tracking the flow of pixels with similar intensity. Our 
correlation-based optical flow strain estimation framework 
has been successfully applied in the past for endocardium, 
epicardium and myocardium tracking when compared to 
manual tracing by expert cardiologists and sonomicrometry 
[5, 7, 8]. In canine studies performed by several groups, the 
ultrasound datasets were obtained by placing the ultrasound 
probe directly at the apex of the heart [8, 9], a luxury that we 
do not have when collecting data from clinical patients.  In 
this study, we validated the tracking of the endocardium and 
myocardium in cardiac datasets acquired from COPD 
patients with normal cardiac ejection fractions. The optical 
flow tracking of the myocardium allows for the computation 
of the myocardial motion field. The motion field then allows 
the calculation of several dynamic cardiac metrics of clinical 
relevance including displacements and strains for the whole 
cardiac cycle. A flowchart of the computational framework 
is shown in Figure 2.2 below. 

 

 
 

Figure 2.2. Flowchart from data acquisition to strain computation. 
 

III. RESULTS 
Three different cardiac cycles were analyzed from COPD 

patient AP0490 with LV volume calculated. The three 
volumes as computed from 3 different scan acquisitions 
yield very close agreements which is shown in Figure 3.1.  
Indeed, the volumes generated were all within normal 
bounds of left ventricular function [5].  Scan acquisition 2 
(red curve) showed an increase in volume during systole 
which is yet unexplained.  Further processing is currently in 
progress to determine the cause of this aberration.      

Examples of radial displacement temporal profiles over 
two cardiac cycles of patient AP0574 are shown in Figure 
3.2.  The solid lines represent the average of results 
generated from the analysis of 5 different acquisitions.  The 
dashed lines represent the first quartile and third quartile of 
the 5 acquisitions.  
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Figure 3.1 – Results of 3 cardiac volumes as computed from 3 different 
acquisitions during one examination of a COPD patient (AP0490). 
 
 

Looking at Figure 3.2, we were able to observe that the 
posterior wall and lateral walls both have much smaller 
displacements than the other regions at the base of the heart, 
and a similar but less visible pattern could be seen in the mid 
section of the heart as well. We observed a much smaller 
decrease in relative displacement from the other patient that 
was processed thus far.  We are currently working to analyze 
more patients to see if this phenomenon is indeed consistent 
across the entire COPD population. A recent clinical study 
has suggested that left ventricular function is almost 
certainly affected by COPD, even when left ventricular eject 
fraction is within normal tolerances [11]. This result is the 
first potential direct measurements of this effect. 

 
 

 
(a)

 
(b) 

 
Figure 3.2 – Mean, first quartile, and third quartile temporal profiles of 
radial displacement of one patient over the course of two cardiac cycles.  (a) 
The radial displacement of the base of the heart averaged over 6 sections 
expressed in cm (b) The radial displacement of the mid region of the heart 
averaged over 6 sections expressed in cm.   
 

IV. DISCUSSION & CONCLUSION 
In this paper, we validated our 4D cardiac strain 

estimation method on two clinical patients. We were able to 
show our estimation method produces both qualitatively 
correct results and generate consistent results between 
multiple acquisitions, both important characteristics of any 
estimation method that is to be used in a clinical setting. 
Furthermore, we were able to detect potentially clinically 
significant results from the posterior and lateral walls of the 
heart of COPD patients. Further studies are needed to verify 
whether this phenomenon can be consistently detected by 
4D ultrasound in many COPD patients.   

While 4D cardiac strain estimation using 4D ultrasound is 
a fairly new modality, the estimation of cardiac strain from 
4D MRI data has been used in development for more than 2 
decades [12, 13]. For quantitative validation of our strain 
estimations derived from 4D ultrasound data, we are 
currently further validating our results with estimations 
produced by MRI tagging of the same patients. Preliminary 
evaluations of the results (unpublished) produced by MRI 
show good qualitative agreement with 4D ultrasound results. 
Displacement trends can be seen to follow in similar time 
courses.   
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