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ABSTRACT 

Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical 
image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or 
semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test 
set given a small portion of label information. In this paper we propose a novel algorithm for interactive segmentation 
using transductive learning and inference in conditional mixture naïve Bayes models (T-CMNB) with spatial 
regularization constraints. T-CMNB is an extension of the transductive naïve Bayes algorithm [1, 20] to the semi-
nonparametric case. The multimodal mixture assumption on each covariate feature dimension and spatial regularization 
constraints allow us to explain more complex distributions required for spatial classification in multimodal imagery. To 
simplify the estimation we reduce the parameter space by assuming naïve conditional independence between the feature 
space and the class label. The naïve conditional independence assumption allows efficient inference of marginal and 
conditional distributions for large scale learning and inference [19]. We evaluate the proposed algorithm on multimodal 
MRI brain imagery using ROC statistics and provide preliminary results. The algorithm shows promising segmentation 
performance with a sensitivity and specificity of 90.37% and 99.74% respectively and compares competitively to 
alternative interactive segmentation schemes. 
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1. INTRODUCTION 
In the medical domain the labeling process of image data requires expert knowledge and often tedious editing effort to 
obtain accurate label information for the object of interest. In the realm of computer aided diagnosis interactive 
segmentation schemes are well received by physicians, where the combination of human and machine intelligence can 
provide improved segmentation efficacy at minimal expert intervention [31]. Transductive learning (TL) or semi-
supervised learning (SSL) is a suitable framework for learning-based interactive segmentation tools that require minimal 
expert intervention. To cope with the scarce label problem transduction offers a workaround by leveraging the labels 
provided for a small portion of the data to label the remaining test set. Such information enables efficient quantification 
of multimodal image data that can be used for exploring potential relationships to other indicative factors to assess the 
patient’s disease progress [32]. 
      The inductive learning formulation considers a function  that maps instances from the entire input space 

 to output labels . In inductive function learning we seek to form a hypothesis  that can recover  
given a training set of example pairs . However, obtaining label information  is an expensive and 
time intensive process whereas the input space  is abundant. In high dimensional data domains such as multimodal 
medical imagery the sample complexity of the training set at learning stage may be incomplete for reliable generalization 
performance [2]. An alternative learning formulation is transductive learning and inference [3] motivated by Vapnik in 
the 90's [4]. In transductive inference the learning machine is given a labeled training set and an unlabeled test set1 with 
the goal to find a hypothesis  that can classify or predict unknown class labels only for the given test set. 
Consequently the transductive learning machine can explore the labeled training and unlabeled test set to learn a simpler 

. The usefulness of the unlabeled test set in transduction has also been advocated in the context of co-training [5, 6] 

                                                 
1 The test set is often called working or shadow set in the literature. 
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and semi-supervised learning (SSL) [7-9]. The problem of learning from labeled and unlabeled data has attracted 
considerable attention in recent years including discriminative transduction [10], manifold regularization [11] and graph 
based techniques [12, 13] given their effectiveness on quickly labeling a given set of input data. 
      In this paper we propose a novel transductive learning machine for spatial classification casted as an interactive 
segmentation problem. We present a conditional mixture naïve Bayes model (T-CMNB) with spatial regularization 
constraints in a transductive learning and inference setting. We make use of unconditional and conditional Gaussian 
mixture models on each covariate feature dimension to learn and infer the relationships in  using naïve Bayesian 
transduction. The naïve conditional independence assumption allows efficient inference of marginal and conditional 
distributions [19] for large-scale learning and inference. The transductive generative formalism allows us to provide i) 
predictive confidence of the classification and ii) performance guarantees of the inference. In a probabilistic formulation 
and using the framework of graphical models we consider a bounded probability measure  describing the joint 
distribution of the given input and output label space . The generative graphical model framework [14-18] 
provides a unifying framework for capturing complex dependencies between random variables and allows the design of 
large-scale multivariate statistical models to account for uncertainty and missing data. The objective is to minimize the 
conditional expected error rate of a classification rule through the conditional  with hypothesis  given the 
observed training sample and the test. The posterior provides the basis for building  to recover  with 
predictive information. Since the goal is to obtain label information only for the test set we allow the posterior 
distribution to depend on the test set with spatial regularization constraints to exploit the smoothness- and cluster 
assumption between  and . Our approach has the following advantages: i) the classification result supports a 
reject option and confidence bounds for risk-sensitive applications, ii) is has the ability to handle class imbalance 
through scaled likelihoods, and iii) the conditional independence assumptions allow separate model learning and model 
combination and sample complexity reduction. 
      We evaluate our algorithm on multimodal medical imagery using ROC statistics and report preliminary results. The 
algorithm shows promising segmentation performance with a sensitivity and specificity of 90.37% and 99.74% 
respectively and compares competitively to alternative interactive segmentation schemes. On average approximately 250 
labels are required denoting a percentage ratio of 0.013 % labeled to unlabeled data for a multimodal volume. The rest of 
the paper is organized as follows. Section 2 outlines and formalizes related work in the field of generative graphical 
models most closely related to our proposed algorithm. In section 3 we present our T-CMNB algorithm a generalization 
of the transductive naïve Bayes model with additional regularization constraints for spatial classification. Experimental 
results on real world data sets are given in section 4 with concluding remarks and future work in section 5. 
 

2. RELATED WORK 
Consider a dataset , where  denote the labeled training set and  

 the unlabeled test set  with  unknown. The usual case is .  The covariate data has a 
feature dimension of  and  is a multinomial and represents the categorical mutually exclusive 
class label dimension. For the case of binary classification,  is a Bernoulli random variable with parameter , 

. For the multi-label or n-way classification case the class label takes multinomial form 
 with components  and . This data setting reminds of a transductive (TL) or semi-

supervised learning (SSL) formulation. Without going into the discussion of their difference and motivation [7] we 
briefly outline related work in generative SSL [8, 9, 20] or –transduction [21, 22]. 
 

2.1 The Naïve Bayes Model 
 
Here we review the naïve Bayes model [24-26] for learning and inference in discrete and continuous data domains. Let 

 denote the joint distribution of the input samples and the class labels. The naïve conditional 
independence assumption allows us to factorize the joint distribution as a product of class prior and independent 
conditional probability distributions . In graphical model notation the naïve Bayes model has for 
each  node the parent node , where  indexes the covariate feature dimension and  the number of samples. For the 
discrete case we assume each  to be sampled from a multinomial probability model  with 
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. The class-conditional probability for each  for the continuous case takes the form of a Gaussian 
 with  and . 

 
2.1.1 Discrete Multinomial Case 

 
Let  be the feature vector and each  a multinomial random variable with 
components . The subscript  denotes the feature dimension. The joint distribution factorizes into a prior and 

likelihood term  with . The class-conditional density 
 takes the form: 

 
 (1) 

 
with  being the probability that the th feature takes on its th value for the th class 
label. Taking the log-likelihood over  we obtain the following objective function subject to non-
negative constraints, which is solvable by forming the Lagrangian and maximizing over : 

 

 

(2) 

 
2.1.2 Continuous Gaussian Case 

 
In the case of continuous inputs we represent the marginal distribution  for each  as a Gaussian. The class 
conditional densities for  are: 
 

 (3) 

 
with  and . The joint probability with conditional independent 
covariates and Gaussian class-conditional likelihood factorizes into:  
 

 

(4) 

 
Similar to section 2.1.1 the maximum log-likelihood over the input data  writes as follows and can be computed as in 
the discrete multinomial case: 
 

. 

(5) 
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2.2 Transductive Multinomial Naïve Bayes (TMNB) 
 
The transductive naïve Bayes classifier [1] was introduced for the application of text classification. The classifier uses 
both the training documents  and the distribution of the test documents  to learn a classification rule. The model is 
similar to the one outlined in section 2.1.1 with the extension to perform transductive inference. TMNB motivates itself 
from the fact that the training and test samples are drawn i.i.d. according to . The algorithm classifies the test 
documents using a multinomial naïve Bayes model initially learned from the labeled training documents (Step-I) and 
then sequentially relearned on the classified unlabeled test documents (Step-II) to perform transduction. We summarize 
their model as follows: 
 
  

 

(6) 

 
This two-step iterative scheme is exploited to estimate the prior and the class-conditional probability of the naïve Bayes 
model taking into account the unlabeled test distribution. Here  denotes the ML estimates obtained from the labeled 
training set. They propagate into Step-II indicating that they have been relearned from the maximum a posteriori (MAP) 
classification on the unlabeled test set. As reviewed in section 2.1.1 the TMNB model assumes a multinomial probability 
model on the data when computing the class-conditional likelihood making it non-applicable to multimodal continuous 
data domains such as in multimodal medical imagery. 
      As opposed to the TMNB model [1] we allow  to be continuous and non-uniformly distributed with a multimodal 
cluster and smoothness assumption. In real world applications often times the single Gaussian assumption in section 
2.1.2 is to limited to fully explain the complexity of . In non-negative data domains the uniform Gaussian assumption 
may produce incorrect model behavior due to variance symmetry or insufficient descriptive power. Previously outlined 
multinomial probability models in section 2.1.1 often used in text classification [27] or their multinomial mixture 
counterpart [20] assume discrete finite unordered data domains with a fixed set of values. Exponential family models 
such as Gaussian or multinomial class-conditional mixture models may be restrictive dependent on the modeling 
problem and application domain. 
 

3. TRANSDUCTIVE CONDITIONAL MIXTURE NAÏVE BAYES (T-CMNB) 
We propose a novel transductive learning machine for spatial multimodal generative classification casted as an 
interactive segmentation problem with minimal expert intervention. In particular we present a conditional mixture naïve 
Bayes model (T-CMNB) with spatial regularization constraints in a transductive learning and inference setting. 
Compared to [1] and [20] our model assumes for the class-conditional likelihood a semi non-parametric Gaussian 
mixture model on each covariate feature dimension allowing us to represent and describe more complex distributions. To 
simplify the estimation we reduce the parameter space by assuming naïve conditional independence between the feature 
space and the class label. The naïve conditional independence assumption allows efficient inference of marginal and 
conditional distributions [19] suitable for large scale learning and inference. The posterior is formed by learning class-
conditional mixture models  and priors  for each class in each covariate feature dimension exploiting labeled 
and unlabeled data. Another extension is that we allow the posterior distribution to depend on the unlabeled test set  
with spatial regularization constraints to exploit the smoothness- and cluster assumption between  and . As 
mentioned earlier, transductive learning and inference assume and exploit a cluster assumption, where each cluster 
reflects different distributions of different species or classes. 
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3.1 Conditional Multi Latent Variable Model 
 
Our modeling problem consists of two latent variables one for  and the other for approximating the marginal . 
To account for multimodal densities for each  we can consider a sub probability model  for each component 

. One can build an unconditional mixture density on  with 
 

 

(7) 

  
where  are the mixture components obtained by marginalizing and conditioning over a  latent or hidden variable 

. The non-negativity constraints  are the mixing proportions and  denotes the parameter space. In 
generative graphical models the latent variable forms the parent over the data leading us to the problem of density 
estimation. Rather than estimating an unknown density in our case we are interested in inferring class labels with 
observed latent variables using a conditional mixture model on the data. Using Bayes rule one can achieve this task by 
inverting the mixture density model to perform probabilistic inference. Conditioning on  the conditional of the latent 
variable Y is . The knowledge of  and  enables us to obtain the 
probability of the model given the data. From this probability we can classify and predict the class distribution to 
perform segmentation. The following section outlines how transduction directly fits the problem of interactive 
segmentation using minimal expert intervention. In high dimensional multimodal data domains equation (7) forms into a 
multivariate mixture density problem of the form .  
 

3.2 Transductive Learning and Inference 
 
Given  we learn the class-conditional and unconditional mixture densities of each class by 
maximizing the log-likelihood of  and . To learn the marginal  for a given class label we assume  to 
be distributed as a Gaussian mixture  for each . To approximate both latent variables 
we build the following log-likelihood model on the labeled training and unlabeled test set. 
 

. 
(8) 

 
As in section 2.2,  denotes the ML estimates obtained from the labeled training set. They propagate into Step-II 
indicating that they have been relearned from the maximum a posteriori (MAP) classification on the unlabeled test set. 
The maximum likelihood estimate of parameter  for  with  i.i.d. observations has no closed 
form solution. The second term of above log-likelihood in equation (8) is a marginal probability and requires a non-
linear optimization scheme. Alternatively equation (8) can be optimized by an iterative method to obtain the maximum 
likelihood solution. One can choose from belief propagation [29] and other approximate inference algorithms in 
probabilistic graphical models. We choose the EM algorithm [28] for the sake of simplicity and conceptual clarity. To 
simplify the estimation we reduce the parameter space by assuming naïve conditional independence between the feature 
space and the class label. Maximizing the objective function computes with the following iterative update equations: 
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The last term of equation (9) calculates the posterior probability (E-step) whereas the preceding steps in (9) are the (M-
step) equations. A proof that the update equations in (9) indeed maximize the log-likelihood can be found in [28]. The 
ML estimate of the first term of equation (8) is much simpler. Maximizing the log-likelihood with respect to  the 
solution to the constraint optimization problem for the labeled training data is: 

 

 

(10) 

 
Analog to equation (8) the ML estimate for  on the unlabeled test set updates accordingly with changed summation 
indices. From (9) and (8) the maximum a posteriori classification on the unlabeled test set can be obtained in a straigt 
forward manner. 
 

4. EXPERIMENTS 
We apply our algorithm to the task of interactive brain tumor (edema) concept segmentation and evaluate our method 
with quantitative comparison to expert grading. We performed experimental evaluation on a real world multimodal MR 
medical brain dataset  with  and . The dataset has a resolution of 
256x256x30 per modality and anisotropic voxel dimensions of 0.4mm x 0.4mm x 5mm. Columbia University Medical 
Hospital provided the dataset after de-identification of patient information. Intensity normalization to the range [0 255] 
and multimodal registration were applied to bring the multimodal data sources into a common coordinate frame (see Fig. 
3). To perform registration we used the software platform MedINRIA [30]. Landmark-based and affine registration was 
used to align the multimodal data sources. Accurate registration is a key prerequisite especially in high anisotropic 
medical imagery and to achieve accurate multimodal feature extraction. We start with the most simplistic configuration 
of multimodal features by looking at FLAIR and DWI voxel intensities. We assume a bag-of-voxel representation of our 
multimodal features analogous to the bag-of-words representation often used in NLP. The expert provides approximate 
class label information on the FLAIR volume using an interactive labeling environment (see Fig. 1). The interaction step 
continues until the desired segmentation performance is achieved. On average approximately 250 labels are required 
denoting a percentage ratio of 0.013 % labeled to unlabeled data for a multimodal volume. The performance of our 
segmentation technique is evaluated with expert grading using voxel-by-voxel based ROC statistics. We further compare 
our T-CMNB algorithm with the 3D interactive watershed algorithm (see Fig. 2). 
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4.1 Performance Results 
 
Table 1: ROC Comparison between single modality 3D interactive watershed algorithm (IWT) on FLAIR data (left) and our 
algorithm (T-CMNB) on FLAIR and DWI (right). 
  

 Brain Tumor Concept (=edema) Segmentation 

# 3D IWT (TP) 3D IWT (FP) T-CMNB (TP) T-CMNB (FP) 
1 59.55% 0.02% 89.72% 0.08% 
2 52.25% 0.01%  92.49% 0.07% 
3 62.92% 0.02% 91.07% 0.61% 
4 65.46% 0.02% 96.55% 0.33% 
5 73.95% 0.03% 93.23% 0.47% 
6 57.02% 0.01% 79.31% 0.03% 
7 70.32% 0.02% 90.09% 0.15% 
8 79.37% 0.02% 92.73% 0.11% 
9 77.09% 0.03% 97.11% 0.15% 
10 71.31% 0.03% 95.69% 0.13% 

Average 66.93% 0.02% 91.80% 0.21% 
 
The algorithm shows promising segmentation performance with a sensitivity and specificity of 90.37% and 99.74%. The 
technique is computationally efficient and takes about 1-3 seconds on 256x256x30x2 multimodal datasets using a dual 
core 2.4GHz machine showing that the algorithm is applicable to be used within an interactive environment.  
 

4.2 Qualitative Performance Results 
 
Figure 1 shows the input labels on a single slice with the corresponding predicted labels for edema. In figure 2 we show 
a comparison of a 3D anisotropic marker-based watershed method and our approach. Both methods show high 
specificity and similar accuracy performance yet by using multimodal information we achieved a higher sensitivity rate 
in contrast to single modality information. The middle and bottom row show a comparison of the single Gaussian case 
(middle) and the Gaussian mixture case (bottom). 
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Figure 1: Example images of our segmentation technique. (Top Left) Expert drawn labels on single slice only.  (Bottom Left) No 
labels provided for other slices in the volume. (Center) The classification result overlaid in yellow. (Right) The classification outline 
overlaid in yellow on the FLAIR image data. 
 

 
 

Figure 2: A qualitative comparison example of 3D interactive watershed method and our T-CMNB algorithm on the FLAIR modality. 
(Top) 3D interactive watershed. (Middle) Transductive naïve Bayes – Single Gaussian Case.  (Bottom) T-CMNB – Gaussian Mixture 
Case. Note that the single Gaussian case is not able to explain the distribution whereas the Gaussian mixture case shows good 
segmentation performance delineating all edema regions in the volume. 
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Figure 3: Example images of multimodal data sources aligned to a common coordinate frame. The segmentation result is overlaid in 
yellow on all nine image modalities. The DWI and FLAIR modality are shown in the 3rd and 4th window from top left to right bottom 
ordering. 

5. CONCLUSION 
In this paper we have presented a novel algorithm for spatial multimodal interactive segmentation based on a Bayesian 
generative transductive conditional mixture model. By introducing a majority weighted smoothness prior and exploiting 
unlabeled data we can achieve good classification performance for the task of interactive brain tumor (edema) concept 
segmentation in anisotropic multimodal medical imagery. By using a Bayesian transductive learning scheme we can link 
the expert knowledge with the probabilistic model to adapt to changing model assumptions over time. This is especially 
desirable in unpredictable tumor growth. Future work is devoted to quantitative evaluation on more test cases and 
experimental evaluation to other concepts of interest. 
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