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LV Volume Quantification via Spatiotemporal
Analysis of Real-Time 3-D Echocardiography

Elsa D. Angelini, Andrew F. Laine*, Shin Takuma, Jeffrey W. Holmes, and Shunichi Homma

Abstract—This paper presents a method of four-dimensional
(4-D) (3-D + Time) space–frequency analysis for directional
denoising and enhancement of real-time three-dimensional (RT3D)
ultrasound and quantitative measures in diagnostic cardiac ul-
trasound. Expansion of echocardiographic volumes is performed
with complex exponential wavelet-like basis functions called
brushlets. These functions offer good localization in time and
frequency and decompose a signal into distinct patterns of oriented
harmonics, which are invariant to intensity and contrast range.
Deformable-model segmentation is carried out on denoised data
after thresholding of transform coefficients. This process atten-
uates speckle noise while preserving cardiac structure location.
The superiority of 4-D over 3-D analysis for decorrelating additive
white noise and multiplicative speckle noise on a 4-D phantom
volume expanding in time is demonstrated. Quantitative valida-
tion, computed for contours and volumes, is performed onin vitro
balloon phantoms. Clinical applications of this spaciotemporal
analysis tool are reported for six patient cases providing measures
of left ventricular volumes and ejection fraction.

Index Terms—Echocardiography, LV volume, spaciotemporal
analysis, speckle denoising.

I. INTRODUCTION

CARDIAC three-dimensional (3-D) imaging was con-
ceived as a method to circumvent the shortcomings of

two-dimensional (2-D) echoplanar imaging. Volume quantifi-
cation and performance assessment of irregularly shaped 3-D
cardiac chambers or the description of valve morphology using
2-D images is inherently problematic because of the dynamic
nature of the heart. There has been a tremendous effort within
the ultrasound community over the last decade dedicated
to the development of new cardiac 3-D echo technology. In
the first generation of 3-D echo systems (3D FreeScan), a
spatial locator was incorporated on the ultrasound beam for the
reconstruction of a 3-D representation of the heart. A sound or
magnetic signal-emitting device was positioned in afree-hand
ultrasound transducer, allowing the position of any particular
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2-D plane to be registered by an external locator and used for
later reconstruction. Since five to ten planes through the heart
were required at a preset point in each cardiac cycle, this system
was cumbersome to use and only a static 3-D image could
be reconstructed [1], [2]. The second-generation 3-D imaging
system, originally developed by Hewlet-Packard, took the form
of a transducer that rotated around a fixed axis or moved along
a fixed path, obtaining images of the heart at regularly spaced
intervals. The 2-D images were later reconstructed into a 3-D
volume. By obtaining 2-D images at different time points in
the cardiac cycle, these axial slices could be later reconstructed
to show the motion of the heart. However, the acquisition
remained cumbersome and reconstruction was a time-con-
suming, off-line process. Nevertheless, theserotational probes
have yielded accurate results for mass and volume calculations
of cardiac chambers [3], [4] and described well a variety of
cardiac lesions [5]. However, because of inherent difficulties
these systems have not become clinically applicable. In order
to circumvent the problems associated with the previous forms
of 3-D imaging, a third-generation of volumetric imaging
(Volumetrics Medical Imaging, Durham, NC) was developed
[6]–[10] introducing real-time 3-D ultrasound (RT3D). This
modality is fundamentally different from the previous genera-
tions of 3-D systems as a true volume rather than a summation
or interpolation of 2-D planes is acquired. This system uses a
2.5-MHz matrix-array transducer that consists of 2-D phased
arrays and offers steering in both the azimuth and elevation
of the beam, permitting interrogation of a pyramidal volume
through the body. In each of these 2-D arrays, 512 elements
connect to the system, 256 of the 512 elements are used for
transmission, and 256 are used for reception. Because the RT3D
system has parallel processing, the volumetric scanner
consists of a 4096 channel-receive system (256 elements
16 parallel processing). The RT3D transducer can accomplish
a typical cardiac scan at a rate of 20 volumes/s at a depth
setting of 15 cm. Therefore, for a typical heart rate of 60
beats/min, 1 s is required to obtain an entire cardiac cycle with
20 volumes captured from systole to diastole. During a clinical
examination, the data is displayed as two adjustable orthogonal
B-scans, which are perpendicular to the transducer, and two or
three C-scans that are parallel to the face of the transducer [7],
[11]. The transducer acquisition volume and clinical display
interface tool (FreeScan from Echotech 3D Imaging Syatems)
are presented in Fig. 1. All scan angles are steerable so that
various planes within each of the volume sets can be reviewed
on screen while the data is recorded on a computer.

Clinical studies on cardiac function require an accurate
method to extract myocardial boundaries from 3-D echo data
sets. Several approaches for epicardial and endocardial border
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Fig. 1. RT3D acquisition and clinical interface. (a) Volumetric scanning of
the left ventricle with steerable sectors. Two adjustable orthogonal B-scans
perpendicular to the transducer and three adjustable C-scans parallel to the face
of the transducer are displayed. (b) Initial views of RT3D echocardiography
with two parallel C-scans and two orthogonal B-scans obtained from an apical
window.

detection from ultrasound data have been reported during
the past decade with partial success. Recent studies include
methods based on statistical Markov random field models
[12]–[15], fuzzy logic [16], [17], neural networks [18], [19],
morphological filters [18], [20], active contours, and level
sets [21]–[25]. A common motivation for these efforts, which
have focused on the development of new methods of volume
extraction, is that existing segmentation tools are not adapted to
this type of data and do not meet the accuracy requirements of
clinical applications. Existing segmentation methods perform
poorly on RT3D ultrasound data because of the low spatial
resolution of this modality, attenuation artifacts that lead to
ill-defined myocardial borders and the addition of frequency-
dependent speckle noise that corrupts the specificity of gray
level values to characterize the presence of an interface or a
particular tissue type. These characteristics of ultrasonic data,
inherent to the physics of acquisition, impede simple region-
based or boundary-based methods from performing correctly.
Indeed, the underlying physics and mathematical assumptions
supporting these methods are often violated during the acqui-
sition of in vivo RT3D ultrasound data. This motivated our
development of a new framework to recover information within
a nontraditional domain where speckle noise is decorrelated.

The recent development of a RT3D imaging modality that
captures an entire left-ventricular (LV) volume instantaneously
with fixed geometric parameters for an entire data set raises new
issues and challenges for denoising and volume extraction. On
one hand, resolution of RT3D is even lower than in previous 3-D
generations and the level of speckle noise is very high. But, on
the other hand, the amount of information recorded per cardiac
cycle is much greater than with any other ultrasonic modality.
And there exists a strong coherence of surfaces in 3-D space and
time for echos recorded from cardiac tissue. Also, RT3D elimi-
nates the need for slice registration and reconstruction, leaving
segmentation as the only barrier to a rapid, accurate and, there-
fore, clinically applicable automated calculation of LV cavity
volume and quantification of LV function.

Pedagogically, our approach was to construct a denoising and
enhancement method tailored to the nature of RT3D ultrasound
that allows asimplesegmentation tool to extract cardiac vol-
umes in real-time and construct a computer dynamic model of
the beating heart.

Recent publications in the literature on 3-D segmentation
of 4-D freehand (first-generation) and rotational (second-gen-
eration) ultrasound include the work of Salustriet al. [26],
Rohlinget al. [27], Treeceet al. [28], Ofili et al. [29], Nobleet
al. [30]. Stettenet al.developed a medial-node model for rapid
identification and measurement of objects in RT3D ultrasound
data [31].

Our spaciotemporal analysis tool is based on phase informa-
tion rather than intensity. This strategy is best suited for de-
noising and cardiac boundary enhancement as first suggested
by Nobleet al. [32] with directional Gabor filters. In this paper,
we use a new set of basis functions called brushlets, introduced
by Coifman and Meyer in 1997 [33].

Spatiotemporal analysis of 4-D cardiac volumes with brushlet
basis functions provides projected coefficients that are associ-
ated with distinct “brush strokes” of a particular size and orien-
tation in four dimensions (3-D volume Time). Brushlet coef-
ficients may be modified in the transform domain via resetting
of high frequency and nonlinear enhancement of low frequency
coefficients.

In 1996, McInerney and Terzopoulos published an extensive
survey of the use of deformable models in medical image anal-
ysis [34]. More recently, several papers on cardiac echocar-
diography with deformable models have been published. Cha-
lanaet al. [22] used active contours to detect both epicardium
and endocardium borders on echoplanar ultrasound images, Pa-
pademetriset al. [35] used integrated deformable models to
segmentin vitro ultrasound of dog hearts acquired with a rota-
tional-probe; Montagnatet al.[36] used 3-D deformable models
with constrained deformations on cylindrical echocardiograms.
In this study, segmentation was performed on denoised volumes,
after enhancement and denoising in the transform domain. A
2-D deformable model performed segmentation of the endocar-
dial borders and LV volumes were then reconstructed for quan-
titative measures. This segmentation was tested and validated on
phantom and clinical RT3D data sets. Quantitative measures of
the extracted volumes are reported for both validation studies.

The remainder of this paper is organized as follows. Sec-
tion II describes the methodology for multidimensional space–
frequency analysis with brushlet functions, nonlinear denoising-
enhancement schemes and a deformable-model segmentation
algorithm. Section III first presents results on denoising perfor-
mance of the brushlet analysis and then describes quantitative
segmentation results obtained from phantom and clinical RT3D
ultrasound data sets. Section IV discusses the quality of anal-
ysis and segmentation. Section V concludes with an emphasis
on future work for validation and possible enhancements of this
research.

II. M ETHODS

A. Multidimensional Space–Frequency Analysis

Speckle noise corrupts ultrasonic data by introducing sharp
changes in an image intensity profile, while attenuation alters
the intensity of equally significant cardiac structures. These
properties introduce inhomegenity in the spatial domain and
suggest that measures based on phase information rather than
intensity profiles are more suited for analysis of cardiac vol-
umes. Brushlet functions are a new family of steerable wavelet
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packets based on the expansion of the Fourier transform (FT) of
a signal onto windowed complex exponential functions. These
functions, first introduced by Coifman and Meyer [33] for
compression of highly texturized images, are well localized in
both time and frequency. However, we point out that the goals
of compression are completely opposite to this application. We
modified this original expansion to provide an overcomplete
(redundant) representation. Such intentional redundancy has
been shown beneficial for denoising applications [37]–[41].

1) Definition of Brushlet Basis Functions in One Dimen-
sion: An initial goal of the construction is the desire to build
an orthonormal basis of transient functions with good time–
frequency localization. For this purpose, windowed complex
exponential functions for Lapped orthogonal transforms have
been used for many years in the context of sine-cosine transforms
[42], [43] and Gabor functions. Following the Balian–Low
theorem there is no differentiable and compactly supported
window such that: and ,
forms an orthonormal basis of . In order to overcome this
limitation while working with complex exponentials, Meyer and
Coifman introduced a division of the real axis into subintervals

, along with a new set of analysis basis functions

(1)

The two window funtions and are defined from the ramp
function

if
if

(2)

and

(3)

The function is defined as

(4)

The function is defined on as

if

if

if

(5)

where and .
The complex-valued exponential is defined as

(6)

The windowing functions defined on
and defined on are displayed in Fig. 2. The param-
eter controls the degree of localization of the brushlet func-
tion and its inverse FT in time and frequency. As illustrated in
Fig. 3, the smaller the value of, the better the localization in fre-
quency (smaller second peak) but localization in time becomes
less (spread of the central peak). This tradeoff in time–frequency
resolution is analoguous to the Heisenberg uncertainty principle

Fig. 2. Windowing functionsb defined on[�l =2 � "; l =2 + "] andv
defined on[�"; "].

Fig. 3. Brushlet synthesis functionW for l = 32,j = 4, and (a)" = 16,
(b) " = 8.

that constrains wavelet packet resolution and all other methods
of time–frequency analysis.

Let us call a given one-dimensional (1-D) signal, and its FT
. We can project on a brushlet basis

(7)

with the brushlet analysis functions and the brushlet
coefficients. By doing so, the FT of the signal is divided into
subintervals. Each interval, indexed by, and of size is pro-
jected onto , with . By applying
an inverse FT, we can then compute a decomposition of

(8)

on the orthonormal basis , inverse FT of . The basis
functions are expressed as

(9)

We observe here the wavelet-like structure of the syn-
thesis functions with scaling factor and translation factor.
The major difference between the brushlet basis and wavelet
packets is the arbitrary tiling of the time–frequency plane and
the perfect localization of a single frequency in one coefficient.

The projection of on the analysis functions can be im-
plemented efficiently by a folding technique and fast Fourier
transform (FFT). The folding technique, described by Wick-
erhauser [44], consists of folding the overlapping parts of the
window function and the bump function across the end
points of the interval, back inside itself.
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Fig. 4. Pairs of (a) analysis and (b) synthesis brushlet functions associated with
intervals of different length but centered at the same frequency. (a.1–b.1):l =

64," = 32, andj = 16; (a.2–b.2):l = 32," = 16, andj = 8.

If we call a folding smooth periodic restriction op-
erator and its adjoint unfolding operator, we have the
following properties for the projection of a signalon the func-
tions

(10)

This shows how folding and unfolding operators can be com-
puted efficiently to project a signal on the complex expone-
tial functions with an FFT instead of computing the inner
product of the original signal with the brushlet basis functions.
The reconstruction can be simply computed in the same manner
by an inverse FFT and an unfolding operation.

Brushlet functions constitute an orthogonal basis of a domain
divided into sub intervals. There are as many basis functions as
there are subintervals defining brushstrokes associated with the
center frequency of each interval. The resolution of each brush-
stroke is inversely proportional to the size of the interval. This
property is illustrated in Fig. 4, where two examples of pairs
of analysis and synthesis brushlet functions associated with two
intervals of different length but centered at the same frequency
are plotted.

In order to control the oscillations of the brushlet synthesis
function , it is desirable to have a positive FT of the win-
dowing function . This condition is not compatible with the
original construction of the functions. Meyer and Coifman
then introduced two biorthogonal windowed Fourier bases: syn-
thesis function and dual analysis functions . In order
to have , the FT of , positive, they relaxed conditions on the
ramp function defined in (2)–(3) and defined a new ramp func-
tion with the following properties:

if (11)

and

(12)

It is important to point out that since the second derivative of
is: , the constraint

implies that . This verifies that
and, thus, the bell functionis not flat around zero.

This condition further imposes that . In our implemen-

tation, we followed the sugestion of Coifman and Meyer and
defined

(13)

with the characteristic function defined on the in-
terval . In this case, is compactly supported on

and we write

(14)

The synthesis functions are defined as stated in (9) with
the cubic spline window function and associated bump func-
tion . The dual analysis functions are defined in (1) by
replacing and by and defined with the new ramp func-
tion

(15)

2) Brushlet Basis Functions in-D: We can extend brushlet
analysis to -D via separable tensor products. For a-D signal
the following steps are involved in the analysis (expansion).

a) Computation of the -dimensional ( —D) FFT of the
signal.

b) Tiling of the Fourier domain with arbitrary subvolume
sizes along each dimension.

c) Folding along each dimension,
d) -D FFT on each subvolume to project a folded signal on

complex exponential terms of the brushlet functions.
Synthesis (reconstruction) of the signal includes:

a) -D inverse FFT on each subvolume;
b) unfolding along each dimension;
c) reassemble the subvolumes according to the original tiling

of the Fourier domain;
d) -D inverse FFT of the signal.
3) Tiling of Fourier Domain in Multiscale Analysis:The

brushlet basis offers the possibility to decompose and represent
-D signals in terms of texture patterns with different orienta-

tions and resolutions. The original work of Meyer and Coifman
focused on image compression and showed that brushlets are a
powerful tool for efficiently representing richly textured images
[45], [46]. In this paper, we exploit this oriented-frequency
representation to accomplish 4-D volume denoising prior to
segmentation. The tiling of the Fourier domain determines the
center frequencies of the decomposition and the resolution of
the analysis. In other words, the tiling of the Fourier domain
determines entirely the structure of the transform domain and
can be viewed as a hyper-dimension of the analysis. The choice
of the tiling determines at which frequencies the original signal
is analyzed and at which resolution it is expanded. This addi-
tional dimension in the analysis process is illustrated in Fig. 5.
In this figure, we illustrate in 3-D tiling in the FT domain with
arbitrary sampling along each direction and the corresponding
structure of brushlet coefficients in the transform domain. This
flexibility in partitioning the transform domain is extremely
powerful as it allows us to accommodate and precisely match
the sampling rates of each dimension obtained during acqui-
sition (sample spacing in and time). By comparison,
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Fig. 5. Tiling of 3-D Fourier domain with arbitrary sampling along each
direction and corresponding structure of brushlet coefficients in 3-D transform
domain.

less optimal approaches, usually based on some interpolation
scheme are required to accommodate the nonisotropic sampling
rates needed in each dimension of ultrasound acquisition.

4) An Overcomplete Framework:A problem of particular
interest for us is the manipulation of an overcomplete decom-
position on brushlet basis. Overcomplete multiscale represen-
tations are well suited for image analysis and enhancement,
because they avoid aliasing effects introduced by critical sam-
pling [47] and yield a translation-invariant representation. This
property is crucial for feature analysis such as edge (surface or
volume) enhancement. Indeed, without this translation-invariant
property, manipulation of the coefficients for feature extraction
in the transform domain or thresholding for selective reconstruc-
tion could not be accurately carried out. In our case, the aliasing
effects arise from the selection of overlapping subintervals of
the Fourier plane expanded into a local Fourier basis. To avoid
this and at the same time increase the number of coefficients for
the same subinterval size along each dimension, we project onto
an extended Fourier basis. The overcomplete projection is effi-
ciently implemented by padding the folded signals with zeros
along each dimension and computing its FT. Since padding a
signal will increase the resolution of the FT, overcomplete pro-
jections increase the number of coefficients for the same interval
and, therefore, increase resolution in the transform (coefficient)
plane. For an overcomplete projection, each subinterval of the
Fourier domain is projected onto a brushstroke of dimension
equal to the original number of elements. The orientation and
size of the original brushstroke are preserved, as the phase of
the brushstroke is not modified. However, the number of points
defining each brushstroke in-D is increased to match the orig-
inal size of the volumetric data. Inside a subvolume of the FT,
the coefficients are stored in the same manner as the data points
in the original signal. Therefore, in the overcomplete case, there
is a perfect homomorphism between the location of data points
in the original set and the position of the coefficients in each
projected subvolume. This bijection ( mapping) introduces
redundancy in the transform domain, which results in a dramatic
improvement in feature representation in each dimension, as ob-
served in Fig. 6.

We point out that extension of brushlet analysis in four di-
mensions and overcompleteness of the expansion are two in-
novations from the initial 2-D decimated implementation. The
computational cost added is not prohibitive since the-D FT

Fig. 6. Decimated and overcomplete brushlet analysis with (4� 4) tiling of
the Fourier plane. (a) Original slice of clinical RT3D ultrasound data. (b) The 16
coefficient planes for a decimated brushlet analysis. Each coefficient quadrant
is of dimension 16� 16, four times smaller than the original data. (c) The
16 coefficient planes for an overcomplete brushlet analysis. Each coefficient
quadrant is of dimension 64� 64, the same size as the original data.

can be efficiently implemented with fast algorithms similar to
the 2-D FFT.

B. Nonlinear Modification of Brushlet Coefficients in the
Transform Domain

In order to extract features of interest and eliminate speckle
noise components, we applied nonlinear thresholding on coef-
ficients in the transform domain, in a similar fashion as pre-
vious works in cardiac denoising [48]–[50]. Recall that over-
completeness of the analysis guarantees that no distortion is
introduced and a direct correspondence of feature location in
both the spatial and transform domains exists. Because of the
high frequency nature of the speckle noise and the absence of
correlation in space and time we chose to decompose each di-
mension into four equal length intervals to divide the frequency
spectrum of the signal into low frequencies (two inner intervals
centered around the zero frequency) and high frequencies (two
outer intervals). For an-D signal we apply a tiling of the
Fourier domain (four subintervals/dimension) and extract only
the inner subvolumes centered around zero frequency. These
subvolumes encode only the low frequency components of the
signal along 45 diagonal directions in -D. Since we wanted
to detect rather isotropic endocardial and epicardial borders, we
did not privilege any specific direction with tiling of the Fourier
domain. Denoising in each subquadrant was performed via hard
thresholding of the coefficients at 25% of maxima in the spa-
tial domain and soft-thresholding at 15% in the time direction.
These levels were selected via experimentation with a judicious
trade off between attenuation of noise components and enhance-
ment of directional features. Reconstruction was then performed
with these thresholded coefficients and segmentation, described
next, was then applied on the resulting reconstructed volumes.

C. Deformable-Model Segmentation

Segmentation of anatomical (and functional) structures re-
mains in practice the most time consuming part of modeling a
dynamic process. Automatic segmentation of anatomical struc-
tures in medical images remains an open problem. In clinical
practice, manual segmentation is often considered the most reli-
able technique (i.e., the gold standard). Efforts by researchers in
this field have shown the advantage ofdeformable modelsand
templates coupled with object parameterization, such as those
reported by McInerney and Terzopoulos in a recent survey [51].
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Along these lines, techniques based on the use of deformable
models for reconstructing 3-D surface shape and motion of the
left ventricle from computed tomography and magnetic reso-
nance imaging data have been developed [51], [52]. Our ap-
proach more closely follows the work of Metaxas [53] and uses
a balloon deformable model first introduced by L. Cohen [54].

The class of deformable models originated with the introduc-
tion of the “snake” by Kass, Witkin, and Terzopoulos [55] and
has been widely used to detect smooth contours in 2-D images.
Deformable models were then applied for 21/2 D and 3-D ob-
ject extraction from 2-D slice images [56].

A “snake” can be viewed as a curve that deforms under the
influence of internal and external forces. Internal forces depend
on the snake’s intrinsic properties such as its elasticity and cur-
vature. External forces are derived from image properties (in-
tensity gradient and edge maps).

Let a curve be defined on through the following
mapping:

(16)

We define a snake as the space of admissible deformations
that minimize the functional

(17)

with and weighting parameters that control respectively the
elasticity and rigidity of the snake and the potential of ex-
ternal forces, derived from the image edges. Letbe a local
minimum of , the associated Euler–Lagrange equation veri-
fied for is

for some
(18)

The first two terms represent the internal force that impose reg-
ularity to the curve, and the last term represents the potential of
the external force that attracts the curve to features of interest.
There are several approaches for defining this potential. In order
to attract the snake to minima of the potential force, a simple
model is to define an edge map

(19)

on the image , or

(20)

with a Gaussian kernel of standard deviation. Even though
the convolution of the image with a Gaussian kernel blurs the
edges it has the effect of increasing the capture range of an active
contour so that the initialization does not need to be close to the
correct position to converge. Cohen and Cohen [57] modified
the traditional gradient-based potential force to produce more
stable results. They proposed to define an external force as

(21)

where is the unit vector normal to the snake curve at point
. The first term represents an internal pressure force that

inflates the snake as aballoon. This prevents the curve from
shrinking or being trapped by spurious isolated edges and makes
the minimization process less sensitive to the initialization. The
second term normalizes the potential force to simulate a local
time step. This applies the same speed to every point in the snake
to overcome issues related to the selection of a common time
step for every snake point. Coefficientsand are chosen of
the same subpixel order with to let the snake stop at edge
locations. In our work, in order to keep implementation simple,
the balloon snake was programmed using a finite difference
approximation scheme as in [58] and [59] with similar parameter
values as suggested in [59]. However, rigidity was increased to
diminish the time step of the dynamic equations and ensure the
smoothness of a contour in situations where part of the LV wall
wasmissing (as was often the case inour data). The edge map was
defined as the gradient of the image blurred with 2-D Gaussian
filter of standard deviation 2. Three-hundred iterations
were run for each short axis slice in the transform domain.

III. RESULTS

A. Comparison of Denoising Performance in Three and Four
Dimensions

To quantitatively evaluate the performance of dynamic 4-D
analysis in decorrelating noise components in low spatial fre-
quencies, we first experimented with mathematical phantoms
corrupted with white or speckle noise. The phantom consisted
of an ovoid volume growing in time that schematically mim-
icked the aspect of the left ventricle with an inner gray cavity
surrounded by a thick white wall on a black background. The
size of a single volume matrix was 64 64 64 and there
were 16 volume “snap shots” growing in time. The volume size
increased by 70% over 16 time frames, similar to the average
ejection fraction in normal patients. We corrupted the volumes
with 1) additive uniform white noise; 2) multiplicative speckle
noise derived from uniform distribution; and 3) multiplicative
speckle noise derived from Rayleigh distribution. All noisy sig-
nals were constructed with a SNR equal to15 dB. Corrupting
noise is commonly modeled as Gaussian white noise. Ultra-
sound noise has been extensively studied in the literature. Be-
cause the ultrasound signal acquired by a transducer is not the
raw wave signal itself but the envelope of the complex radio fre-
quency signal, it can be shown that the initial Gaussian random
noise is transformed into a signal dependent noise that follows
a Rayleigh distribution in the case of fully formed speckle noise
[60]. This Rayleigh distribution tends to a Gaussian white noise
distribution when spatial resolution is increased. We have tested
this hypothesis of Rayleigh distributed noise in data acquired
with RT3D transducer and we found that it was indeed ver-
ified with good agreement. Brushlet analysis was performed
with four subintervals in each direction. Denoising was per-
formed via resetting of the higher frequency components and
hard-thresholding of the lower frequency coefficients at 15% of
coefficient maxima in each 3-D or 4-D subvolumes. In order
to compare denoising performance to methods of reference we
also performed denoising with Wiener filtering. Wiener filtering
is optimal for denoising of additive white noise in the mean
square error sense. We further adapted the filter to use variance
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Fig. 7. Comparison of denoising performance for white noise. (a.1) Original
slice, (a.2) noisy slice (SNR= �15 dB). (b.1) Denoised slice with 3-D brushlet
analysis (SNR= �14.16 dB), (b.2) denoised slice with 4-D brushlet analysis
(SNR= �8.5 dB). (c.1) Denoised slice with Wiener filtering for white noise
model (SNR= �14.84 dB), and (c.2) denoised slice with Wiener filtering for
Rayleigh noise model (SNR= �14.7 dB).

Fig. 8. Comparison of denoising performance for speckle noise with uniform
distribution. (a.1) Original slice, (a.2) noisy slice (SNR= �15 dB). (b.1)
Denoised slice with 3-D brushlet analysis (SNR= �13.21 dB), (b.2) denoised
slice with 4-D brushlet analysis (SNR= �6.85 dB). (c.1) Denoised slice with
Wiener filtering for white noise model (SNR= �14.97 dB), and (c.2) denoised
slice with Wiener filtering for Rayleigh noise model (SNR= �14.81 dB).

estimated from a Rayleigh noise model as presented in [61] to
improve the performance on noisy data corrupted with speckle
noise. A single slice from the original volumes, noisy volumes
and denoised volumes processed with the four different methods
is displayed in Fig. 7 for white noise, Fig. 8 for speckle noise
derived from uniform distribution and Fig. 9 for speckle noise
derived from Rayleigh distribution. Detailed results for the three
different types of noise are summarized in Table I and com-
mented below.

• In the case of additive white noise, the SNR of the noisy
volume was 15 dB. In Fig. 7, denoised results are dis-
played after brushlet analysis in 3-D and 4-D, and Wiener
filtering with white and Rayleigh noise models. Visually,
4-D brushlet analysis clearly performed better at denoising
the data. Quantitatively, we measured a SNR improvement
of 51% with Wiener filtering using white noise model and
43% with 4-D brushlet analysis. Quantitative SNR im-
provement with 3-D brushlet analysis and Wiener filtering
for speckle noise was negligible.

Fig. 9. Comparison of denoising performance for speckle noise with Rayleigh
distribution. (a.1) Original slice, (a.2) noisy slice (SNR= �15 dB). (b.1)
Denoised slice with 3-D brushlet analysis (SNR= �13.35 dB), (b.2) denoised
slice with 4-D brushlet analysis (SNR= �6.75 dB). (c.1) Denoised slice with
Wiener filtering for white noise model (SNR= �14.98 dB), (c.2) denoised
slice with Wiener filtering for Rayleigh noise model (SNR= �14.84 dB).

• In the case of multiplicative speckle noise derived from
a uniform distribution, the SNR of the noisy volume was
again 15 dB. In Fig. 8, denoised results are displayed
after brushlet analysis in three and four dimensions, and
Wiener filtering with white and Rayleigh noise models.
Visually, 4-D brushlet analysis clearly performed better
at denoising the data. Quantitatively, significant SNR im-
provement of 55% was achieved by 4-D brushlet anal-
ysis while the other methods only achieved negligible im-
provements.

• In the case of multiplicative speckle noise derived from a
Rayleigh distribution, the SNR of the noisy volume was
again 15 dB. In Fig. 9, denoised results are displayed
after brushlet analysis in three and four dimensions, and
Wiener filtering with white and Rayleigh noise models.
Visually, 4-D brushlet analysis clearly performed better
at denoising the data. Quantitatively, significant SNR im-
provement of 55% was achieved by 4-D brushlet anal-
ysis while the other methods only achieved negligible im-
provements.

B. Segmentation for Volume Extraction

Segmentation was executed on two types of data:in vitro
RT3D contrast echocardiogram phantoms, andin vivo clinical
RT3D volume data sets.

1) In Vitro Contrast Echocardiogram Phantoms: In vitro
contrast echocardiogram phantoms consisted of balloons filled
with human albumin. A layer of bubbles was artificially created
on the surface of the internal balloon wall to mimic the appear-
ance of the white myocardium and increase the contrast at the
wall interface. Ultrasonic RT3D data was acquired with a set
up identical to clinical conditions. The phantom database used
in this study consisted of two balloons of 35.0 ml and 65.0 ml.
Each RT3D volume had a size of 6464 258 voxels. Since
the volume spanned by the transducer beam is conic, voxel
position is determined in cylindrical coordinates. Each sample
slice in the direction (depth) was separated by 0.308 mm.
For each slice, 64 64 points were recorded spanning a total
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TABLE I
QUANTITATIVE COMPARISON OFDENOISINGPERFORMANCE ON4-D MATHEMATICAL PHANTOM CORRUPTED WITH1) WHITE NOISE; 2) SPECKLENOISEDERIVED

FROM UNIFORM DISTRIBUTION; AND 3) SPECKLENOISEDERIVED FROMRAYLEIGH DISTRIBUTION. MEASURES OFSNR ARE REPORTED FOR ASINGLE SLICE OF

THE PHANTOM DATA FOR THE ORIGINAL NOISY SLICE AND AFTERDENOISING WITH 1) 3-D BRUSHLETANALYSIS; 2) 4-D BRUSHLETANALYSIS; AND 3) WIENER

FILTERING FOR WHITE NOISE, AND 4) WIENER FILTERING FOR RAYLEIGH NOISE

azimuth and elevation angles of 64with 1 increment. With a
total depth of acquisition of 7.92 cm, the optimal resolution in
the short axis direction (perpendicular to the transducer) was
1.736 mm/pixel.

Brushlet analysis was performed in three dimensions with a
tiling of the Fourier domain partitioned by 4 4 4 cubes as
described previously in Section II. Denoising was performed in
space via hard-thresholding of the lower-frequency coefficients
as described in the previous paragraph. Segmentation was car-
ried out using deformable-model on each slice. The snake was
initialized with a four-pixel-radius circle inside the cavity to seg-
ment. The center of the circle was identified by a circular Hough
transform applied on the edges extracted with a Prewitt filter for
every ten slices of the volume. For each inspected slice, if more
than one circle was detected, no center point was selected and
the next slice inspected. In this fashion, for every group of ten
slices we either selected one center point or none. We then com-
puted parameters of the best linear fit in the least square sense
over the entire set of center points detected. We, thus, obtained
two linear models and to determine the

and coordinates of the center points for each slice. The
circular Hough transform has been applied previously to RT3D
data by Stettenet al.[62], [63] for volume measurements on bal-
loon phantoms. Because of the high incidence of spurious edges
in ultrasound data, a simple Hough transform on single slices
might detect several different circles. Missing edges on the other
hand can lead the Hough transform to shift the position of the
center of the circular cavity. The linear best fit on the series of
center points was observed to be well suited to handle these er-
rors and provided a more robust initialization than a single slice
Hough transform.

Parameters values for the active contour were set to:0.2,
1, 2, 3, 0.2, and 2. An expert cardiol-

ogist performed manual segmentation of the inner balloon wall
on the original volumes. Table II reports volume measures for
manually traced balloon and deformable model segmentation.
Examples of segmentation of the inside cavity of the two bal-
loons are displayed in Fig. 10 for two slices.

In both cases, there is a consistent underestimation of volume
estimation when using the deformable model while manual
tracing estimations were within 5% of accuracy. This difference
can be explained by the fact that the expert cardiologist knew
that the real balloon wall borders were actually located inside
the thin layer of bubbles that was inserted to increase the con-

Fig. 10. Segmentation on balloon phantom data for the two data sets. (a.1–b.1)
Segmentation on original data via manual tracing. (a.2–b.2) Corresponding
slices after denoising via 3-D brushlet analysis using deformable-model. (c) One
balloon volume reconstructed from deformable-model contours.

TABLE II
MEASURES OFBALLOON VOLUMES WITH MANUAL SEGMENTATION ON

ORIGINAL DATA AND DEFORMABLE-MODEL SEGMENTATION ON FILTERED

DATA. TRUE BALLOON VOLUMES ARE REPORTED FORCOMPARISON

trast. From its construction and the constraints applied to it, the
active contour is forbidden to go inside the white-appearance
bubble layer, so that the final contours always underestimated
the real balloon cavity. Testing on the balloon data sets allowed
us to tune the deformable-model parameters on denoised data
leading to a stable behavior in situation where part of the wall
borders is missing. This situation is illustrated in Fig. 10.

2) In Vivo Clinical RT3D Volume Data Sets:A database of
six patients co-screened with cardiac functional MRI was used
for validation of LV volume segmentation and measure. Clinical
data sets consisted of either: 21 time frames of size (6464
373) voxels (two cases), 26 time frames of size (6464 438)
voxels (one case), or 21 time frames containing (6464 438)
voxels (three cases).

Brushlet analysis was performed in three dimensions for spa-
tial denoising followed by 1-D analysis along time for enhance-
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ment of cardiac structures. Tiling of the Fourier domain was set
to four subintervals in each direction. Denoising in space was
performed via hard thresholding of the lower frequency com-
ponents at 25% of coefficient maxima. Enhancement was then
performed in time via soft-thresholding at 15% of coefficient
maxima. Threshold values in space and time were empirically
set via testing on clinical data sets to achieve a good tradeoff
between removal of noise artifacts and enhancement of cardiac
structures.

Rescaling of the volumes from spherical coordinates to Carte-
sian coordinates via linear interpolation was performed prior to
segmentation. Rescaling produces isotropic volumes with iden-
tical resolution in each of the three dimensions. The best spa-
tial resolution in the acquired volumes is along the long-axis
with pixel size of 0.308 mm with over 400 slices. Because of
the computational time needed for the segmentation process,
whether manually or with the deformable model, we decided to
downsample the rescaled volumes. We initially downsampled
by a factor of four but manual tracing ended up too far off from
the correct values. We finally opted for a downsampling by a
factor of two, reaching an acceptable compromise between ac-
curacy of tracing and processing time. On average, 100 slices
were segmented for each volume with a voxel resolution of (2

0.308) 0.23 l.
End-diastole and end-systole time frames were identified

and manually segmented by an expert cardiologist. Manual
tracing was performed on the unprocessed data while de-
formable-model segmentation was performed on the denoised
data. The deformable model was initialized with a five-pixel-ra-
dius circle inside the cavity to segment. An operator manually
selected the centers of the circle for every ten slices since the
circular Hough transform applied to the balloon data sets failed
to produce accurate center estimations in this case. Center
locations for in-between slices were determined via linear
best fit. By identifying the best linear fit to the center points
detected inside the LV cavity we defined an approximation of
the LV medial axis. Parameters values for the active contour
were set to: 0.07, 2, 1, 2, 0.09, and

2. Examples of LV endocardium segmentation via manual
tracing and deformable model are displayed in Fig. 11 for one
short-axis and one long-axis view. After segmentation, the
LV cavity was reconstructed to compute end-diastolic volume
(EDV) and end-systolic volume (ESV). An example of LV
volume reconstruction is also provided in Fig. 11.

Ejection-fraction (EF) was then computed as

(22)

The six patients were co-screened with cardiac functional
MRI, which is considered as the method of reference in this
study. An expert cardiologist performed manual tracing on the
MRI data. Quantitative measures and errors for the six clinical
cases are reported in Tables III–V.

Absolute errors of quantitative measures were computed for
volumes and ejection-fraction. We evaluated mean-error values
and standard deviation over the six cases for the three quantita-
tive measures. These results are reported in Table IV. Maximum
and minimum error values are provided to better assess the range

Fig. 11. Segmentation of the LV cavity in short-axis and long-axis views for
one clinical data set at end-diastole. Segmentation was performed on short-axis
slices. (a.1–b.1) LV segmentation on original clinical data via manual tracing.
(b.1–b.2) Corresponding slices after denoising via 4-D brushlet analysis and
segmented contour using deformable-model. (c) The LV cavity reconstructed
from deformable-model contours at end-systole (left) and end-diastole (right).

TABLE III
QUANTIFICATION OF EDV, ESV,AND EF FOR SIX CLINICAL CASES WITH:
1) MANUAL TRACING ON ORIGINAL DATA AND 2) DEFORMABLE-MODEL

SEGMENTATION ON DENOISEDDATA

TABLE IV
ABSOLUTE ERRORS INQUANTIFICATION OF VOLUMES AND EJECTION

FRACTION FOR THESIX CLINICAL CASESREPORTED INTABLE III. “M ANUAL ”
REFERS TOMANUAL TRACING BY AN EXPERT CARDIOLOGIST ON ORIGINAL

RT3D ECHO DATA, “MRI” R EFERS TOMANUAL TRACING BY AN EXPERT

CARDIOLOGIST ON MRI DATA AND “DEFORMABLE-MODEL” REFERS TO

DEFORMABLE-MODEL SEGMENTATION ON DENOISEDRT3D DATA. ERROR

MEASURESWERE COMPUTED FOR THESIX CASES. THE MEAN ERROR

(MEAN), STANDARD DEVIATION (STD) AND MAXIMUM AND MINIMUM ERROR

VALUES (MAX–MIN) ARE REPORTED FOREDV, ESV,AND EF

of variability achieved by the different segmentation methods.
We also report in Table V percentage mean error for volumes
and ejection-fraction measures over the six cases. We observed
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TABLE V
MEAN PERCENTAGEERROR INQUANTIFICATION OF END-DIASTOLIC VOLUME

(EDV), END-SYSTOLIC VOLUME (ESV) AND EJECTIONFRACTION (EF) FOR

THE SIX CLINICAL CASESPRESENTED INTABLE III

with these results a significant improvement of quantitative ac-
curacy with the deformable model when comparing to manual
tracing. EDV accuracy was improved by 50.1%, ESV accuracy
was improved by 60.6%, and ejection fraction measure accuracy
improved by 61.4%.

IV. DISCUSSION

This paper presented a method for feature extraction from
RT3D ultrasound that combines 4-D directional denoising and
model-based segmentation.

Denoising of ultrasound data was performed via space–fre-
quency brushlet analysis of the-D Fourier domain and thresh-
olding of the coefficients to remove speckle noise and enhance
coherent anatomical structures in space and time. Brushlet anal-
ysis identifies efficient tilings of the Fourier domain, along each
dimension of a signal. Through characterization of coefficients
within sets of redundant articulated (orientation rich) bases we
can separate signal and noise components. The performance of
brushlet analysis to decorrelate signal from white additive and
multiplicative speckle noise components was demonstrated on
a 4-D mathematical phantom. These examples also showed the
superiority of 4-D brushlet denoising over 3-D for 4-D data sets.
We have previously shown that we can characterize and iso-
late features of interest in LV volumes by selection of specific
brushlet coefficients [64]. Since decomposition on a brushlet
basis can efficiently isolate directional features at specific fre-
quencies, preprocessing of RT3D volumes via thresholding of
lower frequency brushlet coefficient can assist segmentation by
removing noise components and enhancing anatomical features.
The RT3D clinical data sets suffer from very low spatial resolu-
tion due to subsampling by the transducer during acquisition of
the echo, the high level of speckle noise and the motion of the
cardiac muscle. These three factors diminish the resolution of
the acquisition and create artifacts that can either remove parts
of the myocardial wall or introduce “myocardium-like” bright
signals inside the LV cavity or outside the ventricle. Since the
temporal resolution is much better compared to the three spa-
tial dimensions, the inclusion of time in the analysis of the data
was a tremendous advantage. It helped to remove artifacts not
persistent in adjacent time frames and added myocardial com-
ponents (fill in holes) when the cardiac surface was present in
adjacent time frames. We qualitatively compared denoising per-
formance on clinical data using 3-D or 4-D brushlet analysis
and Wiener filtering adapted to speckle noise. Results for the
different denoising schemes are illustrated in Fig. 12 for four
long-axis and four short-axis slices extracted from one clin-

ical data set. It is interesting to note that Wiener filtering pro-
duced a high quality denoising in long-axis views but introduced
significant blurring that corrupted the data when displayed in
short-axis views. Blurring of the data, which is a common ar-
tifact with denoising filters, prevents segmentation from real-
izing accurate volume quantification. Such blurring was not ob-
served with brushlet expansions. When comparing 3-D and 4-D
brushlet denoising we observed that the introduction of the tem-
poral dimension improved the contrast of the denoised data with
enhanced myocardial wall and a more homogeneous inside LV
cavity. We observed that segmentation performance was en-
hanced by such contrast improvement as the deformable model
was not trapped in local minima inside the cavity, moved faster
toward the myocardial border, and localized border edges more
accurately. The main power of brushlet analysis is its flexibility
in decomposing -D signals and its ability to accommodate and
precisely match nonuniform sampling rates of each dimension
obtained during RT3D acquisition (sample spacing in and
time). The tiling of the Fourier domain determined the orienta-
tion and the resolution of the brush strokes on which the signal
was projected. In different terms, the tiling selected the textural
patterns used for the analysis of the original signal. From this
point of view, tiling can be considered as an added dimension
of the analysis. As described in Section II, brushlet analysis
was performed for a fixed tiling of the FT that divided each di-
mension into four intervals. This choice allowed us to extract
and denoise only the lower frequency components without se-
lecting any specific direction. This approach was originally mo-
tivated by the isotropic nature of the LV myocardium shape in
space and identification of low-frequency movements in time
(i.e., slowly moving structures). The next step is to investigate
mathematical and empirical methods for identifying the most
“efficient” brush stroke sizes and orientations for decomposi-
tion and reconstruction. From an empirical point of view, the
shape of the left ventricle is highly isotropic in short axis planes
(circular wall) while rather elongated in long-axis views. This
observation suggests that a selective tiling for horizontal fea-
tures might be more appropriate in thedimension. A math-
ematical framework for identifying an optimal basis was in-
troduced by Coifman and Wickerhauser [65] for the wavelet
packets and cosine transforms. By measuring a predefined cost
function, such as entropy, the algorithm selects an optimal tiling
of the Fourier domain where the energy of the signal is “best”
decomposed. Meyer and Coifman [33] applied this algorithm on
brushlet functions for compression of highly textured images. In
the current application, optimal speckle noise removal is desired
and a cost function adapted to denoising performance should
be designed to carry out an optimal-basis search. We presented
some preliminary work in that direction [61] with qualitative
evaluation of denoising quality as a function of the tiling. How-
ever, optimization of the tiling needs to be studied further and
would enable us to systematically adjust specific brushlet coef-
ficients for noise reduction and selective reconstruction of more
salient cardiac temporal features. Computation time for the 4-D
brushlet analysis applied to clinical data sets will also need to be
optimized for future real-time applications. Currently, the whole
process of analysis and segmentation takes less than one hour,
running on a Pentium II 400 MHz under Matlab.
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(a)

(b)

(c)

(d)

Fig. 12. Qualitative comparison of denoising and enhancement performance on RT3D clinical data. Denoising/enhancement results are presented for four
long-axis and four short-axis views from a single clinical data set. (a) Original data, (b) denoising with Wiener filtering adapted to Rayleigh speckle noise model,
(c) denoising with 3-D brushlet analysis, and (d) denoising with 4-D(3-D+ Time) brushlet analysis.

Regarding volume quantification using RT3D, we showed
that the deformable model could accurately segment balloon
phantom data with consistency in observed behavior. Quanti-
tative measures obtained from manual tracing were biased as
detailed in Section III such that validation of volume measure-
ments could not be obtained on this data.

Testing of volume quantification using a database of six pa-
tients showed that simple 2-D deformable-model segmentation
applied on denoised data improved by over 50% the accuracy
of volume and ejection fraction measures when compared to
manual tracing by an expert cardiologist. The gold standard used
in this clinical study was functional cardiac MRI. Takumaet al.
[66] reported an inter-observer variability of 8.3% and intra-ob-
server variability of 3.7% for LV volume estimation with par-
allel-plane-disks summation on RT3D echocardiograms. These
values set the variability limits for acceptability of automatic
volume extraction. Any segmentation method should achieve
this range of accuracy in order to be used in clinical settings.
As reported in Table V, mean percentage errors for volumes
and ejection fraction measures are higher than these values for
manual tracing while they fall below 8.7% with deformable-
model-based segmentation.

These results are quite encouraging and suggest that a de-
formable model applied to denoised RT3D ultrasound could be
used in clinical practice for rapid quantification of cardiac func-

tion. To fully validate our methods we need to carry out fur-
ther testing on a larger database of patients to evaluate the clin-
ical significance of these results. We are currently working on
the implementation of a deformable model in three dimensions
following the work of Jones and Metaxas [67]. Three-dimen-
sional deformable surfaces applied to medical image segmenta-
tion have drawn a lot of interest in recent years. A good survey
of the different approaches and implementations developed for
these surfaces is provided in [68]. We believe that extending
the segmentation algorithm to true three dimensions will have a
great impact on the quality and the robustness of the extracted
volumes. When using 2-D deformable models there are cases
where the model is stopped by false edges inside the cavity
and does not fully expand to reach the actual myocardium wall
border. This can be avoided with 3-D deformable models whose
deformations are controlled in 3-D space, ensuring smoothness
of the contours in every dimension.

After building a 3-D deformable model, we plan to further
adapt the method for segmentation of the epicardium borders.
A long-term goal of this research project is to extract the my-
ocardium wall borders and analyze wall deformation in time
as studied during stress-echo examinations. As true volumetric
data is acquired in time, usual post processing tasks such as in-
terpolation for volume reconstruction and registration of vol-
umes from different times is not required, leaving segmentation
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as the final step to realize a patient-specific dynamic model of
the left ventricle. This property makes RT3D ultrasound a very
strong candidate for becoming a powerful echocardiographic
screening modality that would enable fast and accurate compu-
tation of dynamic computer heart models for standard screening,
patient monitoring and stress-echo testing.

V. CONCLUSION

This paper presented a spaciotemporal analysis method for
feature extraction using a third-generation RT3D ultrasound
system. The challenge of developing a segmentation tool for
quantification of cardiac function from RT3D ultrasound lies
in the novelty of the data itself and the wealth of dynamic
information that can be extracted despite low spatial resolution
and high levels of speckle noise. Overcomplete wavelet-like
brushlet functions were used to analyze the multidimensional
FT of echocardiographic data and perform denoising and
enhancement on low-frequency directional components.
Speckle noise was decorrelated well from the original signal
and anatomical structures were enhanced at the same time
via nonlinear thresholding of analysis coefficients. The de-
formable-model based segmentation method was performed on
the denoised data in two dimensions.

We illustrated the superiority of 4-D - over
3-D analysis in decorrelating white and speckle noise from 4-D
phantom and clinical data. We have shown that we can extract
LV endocardial borders using 2-D deformable models and quan-
tify volumes of interest with a higher degree of accuracy than
those achieved with manual tracing. Future work will extend the
segmentation process itself to higher dimensions to integrate the
continuity of the echo data in space and time. Finally, we plan
to investigate mathematical and empirical methods for identi-
fying the most “efficient” brushlet analysis tiling for denoising
and enhancement.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Donis, Department
of Medicine, Echocardiography Laboratories, Columbia-Pres-
byterian Medical Center, for performing manual tracing, Vol-
umetrics Medical Imaging Inc. (Durham, NC) and Echotech
3D Imaging Systems (Hallbergmoos, Germany) for assisting in
reading and visualizing RT3D data, and Dr. M. Teragaki, De-
partment of Internal Medicine and Cardiology, Graduate School
of Medicine, Osaka City University for providing some RT3D
clinical cases with cardiac functional MRI data.

REFERENCES

[1] A. S. Gopal, M. J. Schnellbaecher, and Z. Shenet al., “Freehand
three-dimensional echocardiography for determination of left ventric-
ular volume and mass in patients with abnormal ventricles: comparison
with magnetic resonance imaging,”J. Amer. Soc. Echocardiogr., vol.
10, p. 853, 1997.

[2] , “Freehand 3-dimensional echocardiography for measurement of
left ventricular mass:in vivoanatomic validation using explanted human
hearts,”J. Amer. Coll. Cardiol., vol. 30, p. 802, 1997.

[3] M. D. Handschmaker, J. P. Lethor, S. C. Siu, D. Mele, J. M. Rivera, M. H.
Picard, A. E. Weyman, and R. A. Levine, “A new integrated system for
three-dimensional echocardiographic reconstruction: development and
validation for ventricular volume with application in human subjects,”
J. Amer. Coll. Cardiol., vol. 21, pp. 743–753, 1992.

[4] P. Sapin, K. Schroeder, M. Smith, A. DeMaria, and D. King, “Three-di-
mensional echocardiographic measurement of left ventricular volume
in vitro: Comparison with two-dimensional echocardiography and cin-
eventriculography,”J. Amer. Coll. Cardiol., vol. 22, 1993.

[5] T. Menzel, S. Mohr-Kahaly, and J. Meyeret al., “Quantitative assess-
ment of aortic stenosis by 3-dimensional echocardiography,”J. Amer.
Soc. Echocardiogr., vol. 10, p. 215, 1997.

[6] G. Stetten, T. Ota, C. Ohazama, C. Fleishman, J. Castelucci, J. Oxaal, T.
Ryan, J. Kisslo, and O. V. Ramm, “Real-time 3D ultrasound: A new look
at the heart,”J. Cardiovasc. Diagnosis Procedures, vol. 15, pp. 73–84,
1998.

[7] S. W. Smith and O. T. Ramm, “High-speed ultrasound volumetric
imaging system-Part I: Transducer design and beam steering,”IEEE
Trans. Ultrason., Ferroelect. Freq. Contr., vol. 38, pp. 100–108, Mar.
1991.

[8] O. T. V. Ramm, S. W. Smith, and J. H. G. Pavy, “High-speed ultra-
sound volumetric imaging system- Part II: Parallel processing and image
display,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr., vol. 38, pp.
109–115, Mar. 1991.

[9] O. T. V. Ramm and S. W. Smith, “Real time volumetric ultrasound
imaging system,”J. Digital Imag., vol. 43, pp. 261–266, May 1990.

[10] T. Ota, C. E. Fleishman, C. J. Ohazama, G. Stetten, C. W. Lewis, D. D.
Glower, J. Li, T. Ryan, J. Kisslo, and O. T. V. Ramm, “Measurement
of left ventricular volume by real-time, three-dimensional echocardiog-
raphy in dogs,”Circulation, vol. 94, p. 379, 1990.

[11] S. W. Smith and O. T. Ramm, “High-speed ultrasound volumetric
imaging system-Part II: Parallel processing and image display,”IEEE
Trans. Ultrason., Ferroelect. Freq. Contr., vol. 38, pp. 109–115, Mar.
1991.

[12] I. Herlin, D. Bereziat, G. Giraudon, C. Nguyen, and C. Graffigne, “Seg-
mentation of echocardiographic images with Markov random fields,” in
Proc. Eur. Conf. Computer Vision, 1994, pp. 201–206.

[13] J. M. B. Dias and J. M. N. Leitao, “Wall position and thickness estima-
tion from sequences of echocardiographic images,”IEEE Trans. Med.
Imag., vol. 15, pp. 25–38, Feb 1996.

[14] D. Boukerroui, O. Basset, A. Baskurt, and A. Noble, “Segmentation of
echocardiographic data. Multiresolution 2-D and 3-D algorithm based
on grey level statistics,” inProc. MICCAI, Cambridge, UK, 1999, pp.
516–523.

[15] E. A. Ashton and K. J. Parker, “Multiple resolution Bayesian segmenta-
tion of ultrasound images,”Ultrason. Imag., vol. 17, pp. 291–304, 1995.

[16] S. K. Setarehdan and J. J. Soraghan, “Automatic cardiac LV boundary
detection and tracking using hybrid fuzzy temporal and fuzzy multiscale
edge detection,”IEEE Trans. Biomed. Eng., vol. 46, pp. 1364–1378,
Nov. 1999.

[17] J. Feng, W. Lin, and C. Chen, “Epicardial boundary detection using fuzzy
reasoning,”IEEE Trans. Med. Imag., vol. 10, pp. 187–199, June 1991.

[18] C. Kotropoulos, X. Magnisalis, I. Pitas, and M. G. Strintzis, “Nonlinear
ultrasonic image processing based on signal-adaptive filters and self-
organizing neural networks,”IEEE Trans. Image Processing, vol. 3, pp.
65–77, Jan 1994.

[19] G. Coppini, R. Poli, and G. Valli, “Recovery of the 3-D shape of the left
ventricle from echocardiographic images,”IEEE Trans. Med. Imag., vol.
14, pp. 301–317, June 1995.

[20] P. R. Detmer, G. Bashein, and R. W. Martin, “Matched filter identifica-
tion of left-ventricular endocardial borders in transoesophageal echocar-
diograms,”IEEE Trans. Med. Imag., vol. 9, pp. 396–404, Dec 1990.

[21] A. Sarti, K. Mikula, and F. Sgallari, “Nonlinear multiscale analysis of
three-dimensional echocardiographic sequences,”IEEE Trans. Med.
Imag., vol. 18, pp. 453–466, June 1999.

[22] V. Chalana, D. T. Linker, D. R. Haynor, and Y. Kim, “A multiple active
contour model for cardiac boundary detection on echocardiographic se-
quences,”IEEE Trans. Med. Imag., vol. 15, pp. 290–298, June 1996.

[23] I. Mikic, S. Kruncinski, and J. D. Thomas, “Segmentation and tracking
in echocardiographic sequences: Active contour guided by optical flow
estimates,”IEEE Trans. Med. Imag., vol. 17, pp. 274–284, Apr. 1998.

[24] S. Malassiotis and M. G. Strintzis, “Tracking the left ventricle in
echocardiographic images by learning heart dynamics,”IEEE Trans.
Med. Imag., vol. 18, pp. 282–290, Mar. 1999.

[25] R. Drezek, G. D. Stetten, T. Ota, C. Fleishman, E. Lily, C. Lewis, C. J.
Ohazama, T. Ryan, D. Glower, J. Kisslo, and O. T. v. Ramm, “Active
contour based on the elliptical Fourier series, applied to matrix-array
ultrasound of the heart,” inProc. 25th AIPR Workshop: Emerging Ap-
plications of Computer Vision, 1997, pp. 26–34.

[26] A. Salustri and J. R. T. C. Roelandt, “Ultrasonic three-dimensional re-
construction of the heart,”Ultrasound Med. Biol., vol. 21, pp. 281–293,
1995.



ANGELINI et al.: LV VOLUME QUANTIFICATION VIA SPATIOTEMPORAL ANALYSIS 469

[27] R. N. Rohling, A. H. Gee, and L. Berman, “3-D spatial compounding of
ultrasound images,”Med. Image Anal., vol. 1, pp. 177–193, 1997.

[28] G. M. Treece, R. W. Prager, A. H. Gee, and L. Berman, “Fast surface and
volume estimation from nonparallel cross-sections for freehand three-
dimensional ultrasound,”Med. Image Anal., vol. 3, pp. 141–174, 1999.

[29] E. O. Ofili and N. C. Nanda, “Three-dimensional and four-dimensional
echocardiography,”Ultrasound Med. Biol., vol. 20, 1994.

[30] M. Mulet-Parada and J. A. Noble, “2D + T acoustic boundary
detection in echocardiography,” inProc. Medical Image Computing
and Computer-Assisted Intervention-MICCAI’98, Cambridge, MA,
1998, pp. 806–813.

[31] G. D. Stetten and S. M. Pizer, “Medial-node models to identify and
measure objects in real-time 3-D echocardiography,”IEEE Trans. Med.
Imag., vol. 18, pp. 1025–1034, Oct. 1999.

[32] G. Jacob, J. A. Noble, M. Mulet-Parada, and A. Blake, “Evaluating a
robust contour tracker on echocardiographic sequences,”Med. Image
Anal., vol. 3, pp. 63–75, 1999.

[33] F. Meyer and R. R. Coifman, “Brushlets: A tool for directional image
analysis and image compression,”Appl. Computational Harmonic
Anal., vol. 4, pp. 147–187, 1997.

[34] T. McInerney and D. Terzopoulos, “Deformable models in medical
image analysis: A survey,”Med. Image Anal., vol. 1, pp. 91–108, 1996.

[35] X. Papademetris, A. J. Sinusas, D. P. Dione, and J. S. Duncan, “3-D car-
diac deformation from ultrasound images,” inProc. MICCAI’99, Cam-
bridge, UK, 1999, pp. 420–429.

[36] J. Montagnat, H. Delingette, and G. Malandain, “Cylindrical
echocardiographic image segmentation based on 3-D deformable
models,” inProc. Medical Imaging and Computer-Assisted Interven-
tion—MICCAI’99, Cambridge, U.K., 1999, pp. 168–175.

[37] R. Coifman and D. Donoho, “Translation invariant denoising,” in
Wavelet and Statistics. Berlin, Germany: Springer-Verlag, 1995,
Lecture Notes in Computer Science.

[38] K. Berkner and R. O. W. Jr, “Smoothness estimates for soft-threshold
denoising via translation invariant wavelet transforms,” Computational
Math. Lab., Rice Univ., Houston, TX, CML TR 98-01, 1998.

[39] S. S. B. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposi-
tion by basis pursuit,”SIAM J. Scientif. Computing, vol. 20, pp. 33–61,
1999.

[40] S. G. Chang, B. Yu, and M. Veterlli, “Spatially adaptive wavelet thresh-
olding with context modeling for image denoising,” presented at the
Proc. Int. Conf. Image Processing, Chicago, IL, 1998.

[41] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, “Noise re-
duction using an undecimated discrete wavelet transform,”IEEE Signal
Processing Lett., vol. 31, pp. 532–546, Jan. 1996.

[42] R. R. Coifman and Y. Meyer, “Remarques sur l’analyze de Fourier a
fenêtre,” in Comptes Rendus de l’Academie des Sciences, 1991, pp.
259–261.

[43] H. Malvar, “Lapped transforms for efficient transform/subband coding,”
IEEE Trans. Acoust. Speech Signal Processing, vol. 38, pp. 969–978,
June 1990.

[44] P. Ausher, G. Weiss, and M. V. Wickerhauser, “Local sine and cosine
bases of Coifman and Meyer and the construction of smooth wavelets,”
in Wavelets- A tutorial in Theory and Applications, C. K. Chui, Ed. San
Diego, CA: Academic, 1992, vol. 2, Wavelet Analysis and its Applica-
tions, pp. 237–256.

[45] F. G. Meyer and R. R. Coifman, “Adaptive directional image compres-
sion with oriented wavelets,” inProc. Int. Conf. Image Processing, Lau-
sanne, Switzerland, 1996, pp. 601–603.

[46] F. G. Meyer, A. Z. Averbuch, J. O. Stromberg, and R. R. Coifman,
“Multi-layered image representation: application to image compres-
sion,” in Proc. Wavelet Applications in Signal and Image Processing
VI, vol. 3458, San Diego, CA, 1998, pp. 128–136.

[47] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 11, pp. 674–693, July 1989.

[48] X. Zong, A. F. Laine, and E. A. Geiser, “Speckle reduction and contrast
enhancement of echocardiograms via multiscale nonlinear processing,”
IEEE Trans. Med. Imag., vol. 17, pp. 532–540, Aug. 1998.

[49] I. Koren, A. F. Laine, J. Fan, and F. J. Taylor, “Edge detection in echocar-
diographic image sequences by 3-D multiscale analysis,” inProc. IEEE
Int. Conf. Image Processing, 1994, pp. 288–292.

[50] J. W. Lin, A. F. Laine, and S. R. Bergmann, “Improving PET-based
physiological quantification through wavelet denoising,”IEEE Trans.
Biomed. Eng., vol. 48, pp. 202–212, Feb 2001.

[51] T. McInerney and D. Terzopoulos, “A finite element model for 3-D
shape reconstruction and nonrigid motion tracking,” inProc. 4th Int.
Conf. Computer Vision, Berlin, Germany, 1993, pp. 518–523.

[52] P. Shi, A. Amini, G. Robinson, A. Sinusas, C. T. Constable, and
J. Duncan, “Shape-based 4-D left ventricular myocardial function
analysis,” inProc. IEEE Workshop Biomedical Image Analysis, Seattle,
WA, 1994, pp. 88–97.

[53] D. N. Metaxas,Physics-based deformable models. Applications to com-
puter vision, graphics and medical imaging, 1997.

[54] L. D. Cohen, “On active contour models and balloons,” inProc. Com-
puter Vision, Graphics, and Image Processing: Image Understanding,
1991, pp. 211–218.

[55] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,”Int. J. Comput. Vis., vol. 1, pp. 321–331, 1987.

[56] D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on deformable
models: Recovering 3-D shape and nonrigid motion,”Artif. Intell., vol.
36, pp. 91–123, 1988.

[57] L. D. Cohen and I. Cohen, “Finite-element methods for active contour
models and balloons for 2-D and 3-D Images,”IEEE Trans. Pattern
Anal. Machine Intell., vol. 15, pp. 1131–1147, Nov. 1993.

[58] F. Leymarie and M. D. Levine, “Tracking deformable objects in the
plane using an active contour model,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 15, pp. 617–634, June 1993.

[59] C. Xu and J. L. Prince, “Snakes, shapes and gradient vector Flow,”IEEE
Trans. Image Processing, pp. 359–369, Mar. 1998.

[60] V. Dutt, “Statistical Analysis of Ultrasound Echo Envelope,” inUltra-
sound Research Laboratory. Rochester, MN: Mayo Foundation, 1995,
p. 181.

[61] E. Angelini, S. Takuma, A. Laine, and S. Homma, “Spatio-temporal di-
rectional analysis of 4-D echocardiography,” inProc. SPIE-45th Annu.
Meeting, San Diego, CA, 2000, pp. 605–614.

[62] G. Stetten and R. Morris, “Shape detection with the flow integration
transform,”Inform. Sci, vol. 85, pp. 203–221, 1995.

[63] G. Stetten, M. Caines, C. Ohazama, and O. T. V. Ramm, “Toward the
volumetricardiogram (VCG): Volume determination of cardiac cham-
bers using 3-D matrix-array ultrasound,” inProc. SPIE Symp. Medical
Imaging, 1995, pp. 185–196.

[64] E. Angelini, A. Laine, S. Takuma, and S. Homma, “Directional repre-
sentations of 4-D echocardiography for temporal quantification of LV
volumes,” inProc. Medical Imaging and Computer-Assisted Interven-
tion—MICCAI’99, Cambridge, U.K., 1999, pp. 430–440.

[65] R. R. Coifman and V. M. Wickerhauser, “Entropy based algorithms for
best basis selection,”IEEE Trans. Inform. Theory, vol. 38, pp. 713–718,
Mar. 1992.

[66] S. Takuma, T. Ota, T. Muro, I. Oropesa, R. Sciacca, L. Mendoza, M.
R. D. Tullio, D. K. Blood, J. Yoshikawa, and S. Homma, “Assess-
ment of left ventricular function by real-time 3-D echocardiography
compared with conventional noninvasive methods,”Amer. J. Cardiol.,
1999.

[67] T. N. Jones and D. N. Metaxas, “Segmentation using deformable
models with affinity-based localization,” inProc. CVRMED’97, 1997,
pp. 53–62.

[68] J. Montagnat, H. Delingette, N. Scapel, and N. Ayache, “Representation,
shape, topology and evolution of deformable surfaces. Application to
3-D medical image segmentation,” inINRIA, 2000, Sophia Antipolis
RR-3954.


