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Abstract—We propose a classification framework combined 
with a multi-scale image processing method for recognizing 
protein crystals in high-throughput images. The main three 
points of the processing method are the multiple population 
genetic algorithm for region of interest detection, multi-scale 
Laplacian pyramid filters and histogram analysis techniques to 
find an effective feature vector. Using human (expert 
crystallographers) classified images as ground truth, the 
current experimental results gave 88% true positive and 99% 
true negative rates, resulting in an average true performance of 
~93.5% validated on an image database which contained over 
79,000 images. 

I. INTRODUCTION 
ROTEIN structure determination is predominately 
solved through x-ray crystallography.[1]  Unfortunately, 
there current exists no methodology to reliability predict 

crystallization conditions for a macromolecule that has 
previously not been crystallized.  High-throughput 
experiments with varying crystallization conditions are 
currently performed with the hopes that one or more 
conditions will provide leads for actual protein 
crystallization.  In a typical setup, each protein is mounted 
under thousands of conditions and crystallization is 
attempted for all the conditions simultaneously.[2]  
Consortiums in structural genomics such as Northeast 
Structural Genomics (NESG) now perform tens of millions 
of such micro-experiments annually, resulting in the need to 
analyze an even large number of images.  Because crystals 
can form and dissolve in differing time scales, images from 
multiple time points are recorded per experimental 
condition. Unfortunately, since the images are currently 
classified manually, crystallographers can only inspect one 
time point per experimental setup in order to evaluate a 
specific experimental condition might have produced viable 
crystals.  
 Current proposed algorithms all involve the use of 
supervised learning algorithms.  They mainly revolve 
around the use of neural nets [3-5] or the use of support 
vector machines [6, 7].  In current literature, both classes of 
supervised learning algorithms have been implemented 
without significant optimization and it is the quality of the 
training data and pre-processing steps that significantly alter 
the performance of the resulting classifiers.  Unfortunately, 
none of the classifiers described in the literature thus far 
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performs at fast enough speeds to be practical in a 
production structural biology pipeline.  The current backlog 
of images at the NESG alone exceeds 50 million images.  To 
finish processing this backlog in 5 years, an algorithm must 
process more than 20 images per minute as opposed to the 
current average speed of 30s per image [6].   

We describe a classification framework that is being 
developed in collaboration with NESG to assist in the 
automated screening of protein crystal images.  The three 
component of the classification algorithms are a genetic 
algorithm in order to determine the region of interest, a 
multi-scale Laplacian pyramid filter, and subsequent 
extraction of feature vectors used in a neural net classifier. 
Speed is of particular importance in our algorithm.   

A. Pre-Processing 
Due to the large number of images that are generated 

from high-throughput experiments, speed of execution is an 
extremely important consideration for any algorithm.  Igor 
Jurisica’s group from the Ontario Cancer Center have 
leveraged the World Community Grid, the world’s largest 
public computing grid in order to tackle their image 
archives.  [3].  We have chosen to take a two-prong 
approach, taking significant steps to optimize our algorithms 
for speed, while preparing to execute our program on the 
Google Computing Grid (current negotiations pending for 
Google App Engine).   

Due to the variability of images that are captured by the 
robotics camera, finding the region of interest, an ellipsoidal 
droplet, using conventional algorithms such as the hough 
transform cannot be accomplished under a reasonable 
amount of time. As such, we have adapted a multi-
population genetic algorithm in order to accurately locate 
our region of interest.   

B. Network Classifier 
After locating our region of interest, we then decompose 

the ROI with a multi-level Laplacian operator.  Using the 
multi-level decomposition, we then compute different 
statistics that are used to train our classifier.   Image 
classification is executed by a nonlinear feed forward neural 
network trained using mean square error optimization and 
back-projection.  

The neural network itself is very easy to implement, and 
the key to the classifier’s accuracy is the feature set that is 
chosen.  With our current feature set, we calculate the mean, 
standard deviation, skewness, Kurtosis, energy, entrophy, 
area of enclosed regions, and linearity. 
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The classifier currently takes around a minute per image, 
and has accuracy around 90%.  

II. METHODOLOGY 
The flowchart of our method is shown in Fig. 1. The 

diagram shows the specific modules used to classify one 
image as well as the average execution time spent in 
module. 

  

 
 
Fig. 1.Flowchart of integrated algorithm  

A. Image Normalization and ROI Detection (Steps I-II) 
Given a potential crystal image, we normalize the gray 

scale image by performing grayscale histogram equalization.  
Then, we construct an edge image using a canny edge 
detector.  This edge image is then processed through an 
ellipsoidal multiple population genetic algorithm[8].  The 
details of the algorithms can be found in the reference 
above, but a brief overview will be provided here, along 
with specific adaptations that were implemented to better 
suit our purposes.   

Chromosomes in the algorithm are no more than 
candidate ellipses.  We know that each ellipse can be 
expressed in the standard equation 

 
2 22 2 2 1 0ax hxy by gx fy" " " " " #  (1) 

 
From above, it is evident that each ellipse is uniquely 
determined through the parameters (a, h, b, g and f)[9].  The 
actual chromosomes store 5 different points, genes, on the 
perimeter of a candidate ellipse. 

We begin the algorithm by randomly generating 100 
potential candidates.  The five points comprising each 
chromosomes are selected at random, from the foreground 
of the edge image.  Then each candidate chromosome is 
evaluated based on two fitness criteria, similarity and 
distance.  [4].  Essentially, the similarity score measures how 
close the five candidate points matches to an actual ellipse, 
while the distance score measures how far or close is the 
pattern to the ideal ellipse. 

Evolution is carried out through both selection and 
diversification.  Selection eliminates the ellipses that are 
particularly unfit, and replace those candidates with new 
candidates.  Diversification allows for fit ellipses to pass 
onto the next generation through both crossovers and 
mutations.   

The algorithm terminates when the convergence criteria is 
met.  For our algorithm, convergence happens when no 
more subpopulations are created in 100 generations.   

 

    
Fig. 2.  Image Histogram equalization and ROI detection.  
 

B. Laplacian Pyramidal decomposition and Feature 
Extraction (Step III - IV) 
The Multi-scale Laplacian pyramid technique was 

originally used in image encoding [10]. Each level of the 
Laplacian pyramid is the prediction error L which is given 
by subtracting a low-pass filtered image from the original 
image.  This Laplacian expansion is scale invariant, and thus 
allows us to compute global features without regards to 
orientation.  The feature vector contains quantitative shape 
descriptions of the first, second and third-order histogram of 
Laplacian pyramid coefficients. This feature vector provides 
a more complete representation of the data driving the neural 
network as input. 
The shape of an image histogram provides many clues as to 
the character of the protein crystal image. The selected 
quantitative shape descriptors of a first-order histogram are: 
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One of the second-order histogram features is used: 

Input Image Data 

Image Normalization (Step I) – 1s 

Region of Interest Detection (Step II) – 51s 

Laplacian Pyramidal decomposition (Step III) – 0.1s

Feature Extraction (Step IV) – 0.4s 

Crystal Classification (Step V) – 0s 
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Where P(b) is the first-order histogram estimate. P(a, b) 
represents the histogram estimate of the second order 
distribution. Parameter b is the pixel amplitude value. L is 
the upper limit of the quantized amplitude level. Finally,  $ 
is the standard deviation.  Im refers to the image matrix.  

In addition to these scale invariant features, we have 
added two more features that are only performed at the 
original resolution.  These two features were added based on 
intuition from expert crystallographers.  First, ellipses 
detected by a second run of the MPGA algorithm inside the 
ROI are extracted and their area summed.  This is to better 
capture the fact that crystals are usually well defined 
enclosed shapes.  We also used the linear Hough transform 
to complete a linearity score on the original resolution.  This 
is to better capture needle crystals in images.    

C. Expert Evaluation 
The above procedure was tested on a data set of 79,632 

classified images.  These crystal images were each manually 
classified by 3 independent crystallographers at the 
Hauptman Woodward Medical Research Institute at the 
State University of New York at Buffalo.  Each image was 
categorized into one or more of the following categories: 
Clear, Phase Separation, Precipitate, Skin, Crystal, Garbage, 
Unsure.  For our purposes, we treated all images that were 
classified as crystals or crystals with additional categories by 
all 3 crystallographers as our ground truth crystal image.  
All other images were considered as non-crystal images.  
The 10 outcomes that arose are shown below. 

 

   
Crystal Precipitate Precipitate & Skin Clear 

   
Skin Phase Separation Precipitate  & Crystal Unsure 

 

  

 

 Phase Separation & 
Precipitate 

Phase Separation & 
Crystal 

 

 

III. EXPERIMENTS AND RESULTS 
Using the entire image database for training, and using 

leave-one-out cross validation, the current classification 
algorithm produced 88% true positive and 99% true negative 
rates on the validation dataset, resulting in an average true 
performance of ~93.5%). 

The execution time on average is 12.5 seconds per image 
on a Core2Duo 2.4 Ghz machine with 6 GB of ram.   
 

IV. CONCLUSIONS 
With one focus on robustness of our classifier, our other 

focus was on speed of algorithms.  Due to the enormous 
volume of images that high-throughput experiments are 
generating, a classifier cannot exceed 3 seconds an image 
without creating backlog.  Since our classifier is a network 
based classifier, almost all of our processing time comes 
from pre-processing, i.e. the analysis of features from each 
image.  The most time consuming steps have always been 
the identification of ROI in potential crystal images and the 
later calculation of feature vectors needed for either neural 
networks or support vector machines.  With our 
implementation of the modified Multiple Population Genetic 
Algorithm, we have managed to decrease execution time to 
less than 15 seconds an image.  Further work remains to be 
done to further decrease the processing time to less than 3 
seconds per image without compromising the accuracy of 
the classifier.   

Future refinements to the classification method include 
the use of more features, application of other pyramidal 
filters, and the further distinction of the microscopic images 
to separate drops with crystals, precipitates or organic 
matter.   

We are also working with Google to prepare our current 
algorithm to run on their new Google App Engine.  It is our 
hope that by leveraging the Google computing grid, we can 
further cut down our computational time from 60s an image 
to less than 20s an image.   
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