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Abstract
Iterative reconstruction with point spread function (PSF) modeling improves contrast recovery in
positron emission tomography (PET) images, but also introduces ringing artifacts and over
enhancement that is contrast and object size dependent. Mitigation of these artifacts is crucial for
clinical and research purposes. In this work we introduce a new iterative regularized
reconstruction method that incorporates locally-weighted total variation denoising designed to
suppress artifacts induced by PSF modeling. The reconstruction method is evaluated on a
simulated cylindrical phantom and preliminary results show that ringing artifacts are suppressed
while contrast recovery is maintained.
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1. INTRODUCTION
Existing and commonly used iterative reconstruction techniques in positron emission
tomography (PET) provide a flexible framework for modeling the physics and the scanner
geometry, yielding greater image contrast, visual quality and noise robustness than
analytical reconstruction methods. Modeling and accounting for the physics of the emissions
(e.g. positron range) and the detection processes (e.g. crystal scattering or depth of
interaction) is possible by measuring and incorporating the detector point spread function
(PSF) into the reconstruction process. Such approach has been shown shown to improve
spatial resolution and image contrast [1]. Unfortunately, it also introduces significant edge
artifacts such as over enhancement and Gibbs type of ringing that are both contrast and size
dependent (leading to up to 70% overshoot in a cylinder phantom) [2, 3]. Mitigation of the
above artifacts is crucial to ensure image quantification accuracy, especially since
reconstruction with PSF modeling is now implemented and widely used in clinical PET/CT
systems.

Some work has been done to characterize and compensate for PSF modeling artifacts. Bai et
al. Showed that the overshoot depends on region sizes and contrast ratios [2]. Snyder et al.
observed that the overshoot might be explained by the mismatch between the true and
measured PSF [4]. Tong et al. reported that ringing frequency and amplitude are related to
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objects’ sizes [5]. A number of different mitigation strategies have been discussed, such as
under sampling the PSF and post-filtering the reconstructed images [5]. While these
approaches reduce artifacts, they also blur the PET images and undermine the benefits of
PSF modeling [4]. Rapisarda et al. incorporated a new regularization prior into the
reconstruction process that locally modifies the image estimate at each iteration in an
attempt to locally control edge enhancement [6]. This method is promising but currently
requires optimizing two parameters and while artifacts are suppressed there is loss of
contrast recovery.

Total variation (TV) denoising methods have been adapted for Bayesian iterative
reconstruction algorithms suitable for use with PET, showing effective suppression of noise
and reconstruction of homogenous regions with sharp edges [7]. Previous works assumed a
uniform distribution of noise and therefore applied TV globally, which is not suitable for
localized PSF modeling artifacts. In this work we develop a new locally-weighted TV
strategy, where denoising weights are derived empirically from the data and are incorporated
directly into the iterative reconstruction process. We evaluated the proposed reconstruction
method on a simulated cylindrical phantom image, assessing contrast and resolution
recovery.

2. METHODS
2.1 PET iterative image reconstruction: MLEM algorithm

The maximum likelihood estimate of the PET images is computed using the maximum
likelihood expectation maximization (MLEM) algorithm [5]. Following the notation from
[6], the MLEM iterative update equation is given as follows:

(1)

where  represents the counts in a voxel b within the image λ at iteration k, yd is the
measured projection recorded as number of counts along the line of response (LOR) d, and 1

is a unit matrix of the same size as yd. The forward  and backward

 projectors contain a weight matrix pbd that links the voxel b and LOR
d. The term BPb1 is called the geometric sensitivity, and can be pre-computed prior to
reconstruction. Projection terms applied at iteration k can be combined into a multiplicative

updating term .

2.2. PSF modeling
Following the methodology introduced by Rapisardra et al., incorporating the PSF model
into (1) is achieved by modifying the projectors as follows:

(2)

(3)

where PSF represents the PSF kernel and * is a discretized convolution operator as defined
in Appendix of [6]. For a symmetric kernel, PSF = PSFT. MLEM reconstruction that utilizes
Eq. (2)–(3) will be here referred to as PSF-MLEM.
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2.3 Reconstruction software and simulated data
All reconstructions were performed using the STIR open source C++ software (v2.2) [9].
The modified projectors in Eq. (2) and (3) were written in C++ within STIR. A 200mm
diameter cylindrical phantom object was simulated, with a background intensity equal to 10,
three hot spots of diameter 25mm, 16mm, 12mm with a 1.5:1 contrast ratio (CR), and three
8mm diameter hot spots with CR of 1.25:1, 1.5:1 and 2:1, respectively. The phantom was
blurred with a symmetrical 4.5mm FWHM Gaussian kernel [10] to simulate the resolution
loss due to physics inherent in the ECAT HR+ scanner (Siemens/CTI) at use in our facility.
Figure 1 illustrates the phantom image with resolution and contrast loss due to blurring.

2.4 Total Variation denoising
Following the notations above, at each iteration of Eq. (1) the total variation problem
amounts to finding an estimate image λ̂k that satisfies the following optimization problem:

(4)

where | · | and ‖ · ‖ are the L1 and L2 norms, respectively and β is the regularization weight.
TV optimization was performed using the toolbox [7] implemented in Matlab1.

2.5 Locally-weighted Total Variation denoising
The classical framework given by Eq. (4) minimizes TV over the whole image, while PSF
modeling introduces local artifacts. We therefore propose to locally integrate the TV filtered

estimate λ̂k into , re-expressing λ̂k as:

(5)

where,  represents the net change in each voxel b on the image estimation
after TV denoising. Since TV filtering is only needed at specific voxel locations we propose
to locally constrain TV enforcement by introducing a local weight on each TV filtered
voxel, defining:

(6)

where  is the locally weighted TV estimate and wb is a spatially-varying weight imposed
on the net change of each voxel. Note that if wb = 1 then λ̇b = λ̂b, corresponding to the
classical solution to Eq. (4). The PSF-MLEM with TV denoising (TV-PSF-MLEM)
algorithm is thus given as follows:

For iteration 1 to N:

Step 1: obtain  from  using Eq. (1)

Step 2: apply Eq. (4) on  to obtain 

Step 3: apply Eq. (6) on  to obtain 

Step 4: repeat from Step 1 using 

1Tremoulheac, Benjamin (2012). Split Bregman method for Total Variation Denoising (http://www.mathworks.com/matlabcentral/
fileexchange/36278), MATLAB Central File Exchange. Retrieved September 29, 2012
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2.6 Definition of the TV-denoising spatial weights
We needed to design a local weighting scheme such that flat homogenous regions and edges
were preserved from the original MLEM estimation, while edge ringing was reduced with
TV filtering. Instead of filtering the current estimate relying on its edge maps, we chose a
novel approach, to see if we could exploit the information learned on the evolution of λk

over the iterations of the MLEM reconstruction. Figure 2 shows, on the phantom’s
horizontal midline profile, the evolution of λk over several MLEM iterations (toward
convergence), as well as the number of iterations required for each voxel along the profile to
converge and the second spatial derivative of the MLEM profile at convergence.

We based our weighting strategy on a few observations: (a) each cylinder’s edges have
inflection points (defined as zero-crossing of the second spatial derivative) that spatially
converge very quickly, (b) the interiors of flat regions converge quickly, while edge
refinement continues for a long time (as the peak expands while the support shrinks); (c) the
convergence rate for the 8mm cylinders is contrast dependent, and faster for the cylinder
with CR 1.25:1 versus 1.5:1, and (d) while the rate of convergence globally mimics the
second derivative of the reconstructed profile, there are many local differences. This
suggests that there might be unique information contained in the evolution of the MLEM
reconstructions that cannot be derived directly from the structure of the reconstructed image.

Based on these observations we designed a new spatial weight wb as follows:

(7)

where cb is defined as the earliest MLEM iteration k in which voxel b converges (in practice

when ), and wb is derived by normalizing cb such that 0 ≤ wb ≤ 1. Figure 3 illustrates
the obtained spatial TV-weights wb.

3. RESULTS
3.1 Evaluation setup on synthetic phantom data

To test whether our spatially weighted TV denoising approach improved image quality, we
ran TV-PSF-MLEM empirically setting β = 0.02. Over several experiments with β = {.005, .
01, .02, .04} we found that β = 0.02 yielded optimal ringing suppression without degrading
image quality. For the MLEM reconstruction, we initialized with λ0 = 1. The other
reconstructions were initialized with the MLEM estimate.

We quantitatively evaluated contrast recovery using the recovery coefficient (RC) measure,
defined as:

(9)

where the ΩROI is the region of interest (e.g. inside a cylinder), λrecon is the reconstruction
being evaluated and λtrue is the original non-blurred (ideal) phantom. RC measures can be
above or below one and RC=1 for a perfect reconstruction.

The synthetic cylindrical phantom was reconstructed (200 iterations) with the three different
algorithms (MLEM, PSF-MLEM and TV-PSF-MLEM) and the RC values were measured
inside each six cylinders. TV-PSF-MLEM yielded better RC measures than MLEM, and
only slightly lower than PSF-MLEM, in all cylinders (Figure 4).
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3.2 Evaluation of ringing artifacts at edges
To evaluate ringing artifacts, we visually compared the resulting images. For the PSF-
MLEM reconstruction, results, illustrated in Figure 5, show that MLEM had no ringing
artifact (as expected), PSF-MLEM generates ringing in the background and at edges of the
25mm and 16mm cylinders, as well as over enhancement of the 12mm cylinder. For the
8mm cylinders there were contrast-dependent over- and under- enhancement.

For the TV-PSF-MLEM reconstruction, results, illustrated in Figure 6, show that ringing
artifacts were suppressed on all cylinders edges. The contrast in the 25mm and 16mm
cylinders was very well recovered, and over-estimation of the 12mm cylinder intensity was
reduced, compared to PSF-MLEM reconstruction (cf. Figure 5). The contrast in the 8mm
cylinders was similar for TV-PSF-MLEM and PSF-MLEM reconstructions, demonstrating
that locally-weighted TV denoising can suppress ringing within large structures while
maintaining the contrast in small regions. In addition to removing ringing artifacts, TV also
enforces homogeneity in large regions. This effect is illustrated in Figure 7 in the 25mm
cylinder, where MLEM yielded a noisy image, PSF-MLEM induced heterogeneity and
ringing at the edge, while TV-PSF-MLEM prevented the ringing and enforced homogeneity
inside the cylinder.

4. CONCLUSIONS
We introduced TV denoising in the PSF-MLEM iterative reconstruction method for PET
images. This method was evaluated on a synthetic phantom image with multiple cylinders
varying in size and contrast. Results showed that TV-PSF-MLEM maintains the good
contrast recovery properties of PSF-MLEM while reducing ringing artifacts at edges.

These results are promising, but remain preliminary and need to be investigated further on
more complex synthetic phantoms. Indeed, the proposed reconstruction method needs to be
evaluated in objects with greater variations in size and contrast and including negative
contrast (i.e. cold spots). Robustness with respect to the presence of Poisson noise in the
sinogram should also be evaluated. Regarding the methodology itself, the influence of the
TV parameter β needs to be studied, and we need to derive stopping criterions of the
reconstruction process optimized separately for each of the reconstruction approaches,
instead of using the same fixed number of iterations. Finally, further characterization of the
proposed reconstruction method using a physical phantom will be the subject of future work.
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Figure 1.
Cylindrical phantom blurred with a 4.5 mm FWHM Gaussian kernel (left) and horizontal
profile of pixel intensities through the midline (right) on: the actual phantom (blue line) and
the ideal phantom (black line), shown for reference.
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Figure 2.
Illustration of how λk evolves and its relation with the image structure. Ideal phantom’s
horizontal midline profile (black line). Reconstructed (MLEM) profiles over several
iterations of Eq. 1 (blue lines). Number of iterations to convergence (green line). Second
derivative of the blurred phantom’s profile (magenta line). Arrows show the dominant
direction of evolution of reconstructed profiles over the iterations. Red circles highlight the
localization of the inflection points of the reconstructed profiles, which take a relatively
small number of iterations to converge.
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Figure 3.
Horizontal profiles through the horizontal midline of ideal phantom (black line), MLEM
reconstruction at convergence (blue line) and spatial TV weight wb (orange line), from the
spatial weight map (top left). Left and right axes are for the profiles and wb, respectfully.
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Figure 4.
Recovery coefficient (RC) measures for different size cylinders and contrast ratios (CR) of
different reconstruction routines. The x-axis reports cylinder diameter (mm) and contrast
ratio (CR) relative to the background.

Mikhno et al. Page 10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 December 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Horizontal midline profile through the ideal (black line), MLEM (blue line) and PSF-MLEM
(red line) reconstructions.
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Figure 6.
Horizontal midline profile through the ideal (black line), MLEM (blue line) and TV-PSF-
MLEM (red line) with β =0.02 reconstructions.
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Figure 7.
Images of the 25mm cylinder with three reconstructions (MLEM, PSF-MLEM, TV-PSF-
MLEM). TV-PSF-MLEM removes PSF-related ringing artifacts and restores homogeneity
and contrast level that is similar to true phantom.
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