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Abstract—Intravascular imaging using ultrasound or optical
coherence tomography (OCT) is predominantly used to adjunct
clinical information in interventional cardiology. OCT provides
high-resolution images for detailed investigation of atherosclerosis-
induced thickening of the lumen wall resulting in arterial blockage
and triggering acute coronary events. However, the stochastic un-
certainty of speckles limits effective visual investigation over large
volume of pullback data, and clinicians are challenged by their
inability to investigate subtle variations in the lumen topology
associated with plaque vulnerability and onset of necrosis. This
paper presents a lumen segmentation method using OCT imag-
ing physics-based graph representation of signals and random
walks image segmentation approaches. The edge weights in the
graph are assigned incorporating OCT signal attenuation physics
models. Optical backscattering maxima is tracked along each A-
scan of OCT and is subsequently refined using global graylevel
statistics and used for initializing seeds for the random walks
image segmentation. Accuracy of lumen versus tunica segmenta-
tion has been measured on 15 in vitro and 6 in vivo pullbacks,
each with 150–200 frames using 1) Cohen’s kappa coefficient
(0.9786 ± 0.0061) measured with respect to cardiologist’s an-
notation and 2) divergence of histogram of the segments computed
with Kullback–Leibler (5.17 ± 2.39) and Bhattacharya mea-
sures (0.56 ± 0.28). High segmentation accuracy and consistency
substantiates the characteristics of this method to reliably segment
lumen across pullbacks in the presence of vulnerability cues and
necrotic pool and has a deterministic finite time-complexity. This
paper in general also illustrates the development of methods and
framework for tissue classification and segmentation incorporating
cues of tissue–energy interaction physics in imaging.

Index Terms—Intravascular imaging, lumen segmentation, opti-
cal backscattering physics, optical coherence tomography, random
walks.
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I. INTRODUCTION

CARDIOVASCULAR diseases increasingly account for
most deaths globally and is estimated to annually account

for 23.3 million by 2030 [1]. Atherosclerosis is a medical condi-
tion caused by thickening of the arterial wall (tunica media or t.
media) due to excessive deposition of extracellular contents like
lipids and calcium forming plaques between the tunica intima
and tunica media. This thickening of tunica intima subsequently
leads to decrease of the lumen area and eventually leads to partial
or complete blockage of blood flowing through the artery [2].
Presence of untreated plaques over prolonged periods leads to
onset of necrosis in lipid rich regions that often triggers vulner-
ability. It can lead to unstable or stable angina pectoris (chest
pain or discomfort), myocardial infarction (heart attack), and
sudden death due to full occlusion of a coronary artery when
a vascular plaque ruptures [3]. Coronary angiography is gen-
erally the corner stone for primary diagnosis and localization
of plaques within the artery. Due to their limited spatial res-
olution and inability to visualize the plaque, adjunct imaging
with intravascular optical coherence tomography (OCT) [4]–[6]
or intravascular imaging using ultrasound (IVUS) [2] is ad-
ditionally performed for high-resolution imaging and detailed
investigation.

OCT uses the principle of speckle formation through coher-
ence sensing in photons backscattered by a highly scattering
optical media, viz. biological tissues [7]. Intravascular imaging
is carried out using a catheter mounted system which is used
for high-resolution (10–20μm) cross-sectional imaging of the
artery up to depth of 0.5–2.0 mm. These characteristics make it
more preferable compared to IVUS since it allows clinicians to
assess symptomatic cues of plaque vulnerability like the thin-
cap fibroatheroma rupture [4]. However, the spatiotemporal non-
stationarity and stochastic uncertainty of speckle appearance in
OCT causes visual discomfort to the clinical interpreter and lim-
its effective use of the method for high-throughput deployment
across multiple centers. This has motivated substantial research
in developing computer-based methods of image segmentation
[8], [9], classification and tissue characterization [4]–[6], [10],
[11] for assisting clinicians with high-throughput screening. A
predominant challenge still remains while imaging and analyz-
ing thin-cap fibroatheromatous plaques where the necrotic pool
is present very close to the lumen and the stochastic of asso-
ciated speckles are very different. Most tissue characterization
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algorithms [4]–[6], [10] require cues about the lumen boundary
for effective functioning and a clinician manually annotates re-
gion of interest on the images for computer-based investigation,
while currently available methods for automatic lumen segmen-
tation in OCT images [8], [9] are limited in their ability to 1)
reliably segment lumen in presence of thin-cap fibroatheroma;
2) require manual initialization; and 3) iterative and do not have
deterministic time complexity.

This paper presents an algorithm for reliable segmentation of
lumen in sequence of OCT images of atherosclerotic arteries in
the presence of vulnerability cues like thin-cap fibroatheroma-
tous plaques. The problem of lumen segmentation is formally
defined in Section II. The algorithm detailed in Section III is
modeled using a random walks graph-based representation of
the OCT data incorporating photon propagation physics and op-
tical backscattering in biological tissues. Section IV presents
experimental results along with evaluation of lumen segmen-
tation accuracy. The results and different characteristics of the
algorithm are discussed in Section V. Finally, we conclude the
work elucidating its translating potential in Section VI. Imple-
mentation of this framework is also made available.1

II. FORMAL DEFINITION

Let us consider an intravascular OCT image I such that in-
tensity at a location x be i(x). The objective of lumen seg-
mentation is to split I into two disjoint sets Ilumen and Itunica

such that Ilumen ∩ Itunica = ∅ and Itunica = I − Ilumen . We
define I as an equivalent graph G such that the nodes of G
represent each x ∈ I and the edges connecting the nodes of
G are modeled, incorporating physics of photon propagation
and attenuation within highly scattering biological tissues. The
probability of each node of G is obtained by solving it using
the random walks for image segmentation approach [12]. The
class posterior probability of a location x is the probability of
the corresponding node in G and the pixel at x is labeled as
arg max {p(lumen|x, I), p(tunica|x, I)}.

Further, in order to achieve solution to the random walks,
a set of seeds M constituting some of the marked nodes
of G such that M ⊆ {(M ∈ Ilumen) ∪ (M ∈ Itunica)} and
(M ∈ Ilumen) ∩ (M ∈ Itunica) = ∅ is defined for initializa-
tion using physics-based models of photon backscattering in bi-
ological tissues that influence OCT speckle formation and imag-
ing. The random walks solver would assign class posterior prob-
ability to the unmarked nodes U = I −M to achieve the lumen
segmentation task such that I ⊆ {M∪ U} and M∩U = ∅.
Fig. 1 illustrates the different stages of our proposed algorithm
that are detailed in the subsequent sections.

III. EXPOSITION TO THE SOLUTION

OCT relies on the basic principle of using low time-coherence
interferometry depth scans performed in the time domain for im-
age formation [13]. A Michelson’s interferometer is illuminated
by a broadband low time-coherence light source which splits the

1http://www.facweb.iitkgp.ernet.in/˜debdoot/downloads/OCTLumSegRW
.zip

incident light into the sample and reference beams with fields
ES and ER , respectively. ES focuses through the scanning op-
tics and objective lens to the tissue constituting the artery being
images. A modified field US is returned by backscattering from
the tissues, while the reference field reflected from the depth
scan mirror is UR . The field from reference arm corresponds to
a large phasor UR = AR exp[j(α − Ωt)], where AR is the field
amplitude, Ω is the phase change introduced by pulsation of the
depth scan mirror, and α is the complex phase residual in the
source beam. The field from the sample beam is made up of a
small random phasor US = AT exp(jβ), where AT is the field
amplitude and β is the phase associated with the backscattering
media viz. tissues being images. The photodetector is sensitive
to the resultant intensity IT = UT U ∗

T , where the detected time
coherence field is UT = UR + US = AT exp(jθ) and U ∗

T is the
complex conjugate of UT . The most relevant for OCT imaging
is the phase difference φ between UR and US such that the
phasor summation of the intensity sensed at the detector can be
written as

IT = (UR + US )(UR + US )∗ = A2
R + A2

S − 2ARAS cos φ
(1)

where φ = β − α − Ωt and the effective OCT signal is obtained
after bandpass filtering to remove the constant intensity terms.
Since the coherence length of the imaging setup exceeds a few
wavelengths, the phase difference β − α � β remains constant
during a few rotations of US . The rotation of US at a frequency
of Ω

2π permits the phasors’ alignment during each measurement
since US takes a positive and real value in each cycle at φ = 0.
Thus, the demodulated signal amplitude is given as SOCT =
2ARAS [13], [14].

Let IS be the set of speckle intensity acquired by OCT at a
point; then, it is known to be negative exponentially distributed
[15]

p(IS ) =
1
σS

exp
(
− IS

σS

)
(2)

where σS is the variance of IS [15]. Since intravascular OCT
is acquired using a rotatory scanning mechanism, the acquired
data are stored in polar domain and a location is specified us-
ing s = (sa , sθ ), where sa represents the distance of a scan-
ning location from the start of the A-scanline and sθ rep-
resents the angular displacement of the A-scanline w.r.t the
starting scanline in the rotatory scan. Further, each location
x in the Cartesian coordinate space is associated with the
polar space as x = Tpol2cart(s) and also an inverse relation
Tcart2pol(·) = T−1

pol2cart(·) exists. Since the speckle intensity
IS (·) has a high dynamic range, it is generally compressed
nonlinearly to a lower dynamic range signal i(·) to form the
B-mode image, and they are related as

i(·) = p1 + p2 log10(IS (·) + p3) (3)

where p1 , p2 and p3 are empirically determined constants [16]
and i(x) ∈ I [see Fig. 1(c)] represents the OCT image in Carte-
sian coordinate space as defined earlier. Equivalently, IS (x) [see
Fig. 1(a)] and IS (s) [see Fig. 1(b)], respectively, represent the
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Fig. 1. Illustration of the different stages involved in our approach for lumen segmentation in intravascular OCT image. (a) IV-OCT speckle data (16bpp),
(b) IV-OCT speckle data (16bpp), (c) Log compressed (B-mode) IV-OCT data, (d) Approximate mask of tunica intima, (e) Maxima tracked along each A-scan
line for seed localization, (f) Initial estimate of seeds in tunica intima, (g) Initial estimate of seeds in lumen, (h) Initial estimate of seeds in tunica intima, (i) Initial
estimate of seeds in lumen, (j) Refined estimate of seeds in tunica, (k) Refined estimate of seeds in lumen, (l) Detected lumen boundary.

uncompressed speckle intensity in Cartesian coordinate space
and in polar space.

A. Graph Representation of the Image

Let an OCT image I be represented as an undirected graph
G, where it is defined as G = (V,E) with vertices v ∈ V and
edge e ∈ E ∈ V × V . The edge e connecting two vertices vp

and vq is denoted as epq and is assigned a weight wpq > 0. The
degree of the vertex at p is given by dp =

∑
wpq for all edges

epq connected with vp . Considering 4-adjacency of the pixels in
I such that (p, q) ∈ V are adjacent pixels in I, the edge weights
are defined following the physics of photon intensity attenuation
in OCT imaging [13]

wpq =
{

exp (−η|zp − zq |) , if p and q are adjacent
0, otherwise

(4)
where η is an empirically defined constant and its value depends
on the models of photon intensity attenuation in OCT imaging.
zp and zq are intensities of the pixels corresponding to vertices
(p, q) in I and are illustrated in Fig. 2.

B. Seed Initialization in Lumen and Tunica

The intensity of OCT signal IS (s) at any point along the
scanline is highest when φ → 0 in (1). In the demodulated signal
amplitude SOCT , this condition indicates the highest value of the
field amplitudes AS and arises when at s there is a sharp change
of refractive index of the media through which the photons are

Fig. 2. Equivalent graph representation of the OCT image I.

traveling. In intravascular OCT, the sharp changes occur at the
boundary of lumen and tunica intima, a thin layer of epithelial
cells laminating the vascular cavity and the muscular tunica
media [4]. At all other points following the maxima along the
A-scanline sθ , the intensity of the OCT speckle signal decays
exponentially until a further sharp change of refractive index in
the media [5], [11], [17].

This model of optical backscattering is used for finding the
initial estimate of boundary seeds [see Fig. 1(e)] on the region
between lumen and tunica intima

sboundary =
{

arg max
sa

(IS (s))
}

∀sθ ∈ IS . (5)

However, in the presence of stochastic uncertainty associated
with nonstationary speckles in OCT as mentioned in (2), the
initial estimate of seeds is not always error free as illustrated in
Fig. 3. This estimate is subsequently used to obtain an initial
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Fig. 3. Error in initial location of tunica intima seeds selected by tracking of
maxima along each A-scanline. (a) A-scanline with maxima tracked at location
other than on lumen boundary. (b) Maxima points detected along each A-
scanline and erroneous points encircled. (c) A-scanline with maxima tracked at
correct location on lumen boundary.

estimate of seeds in tunica [see Fig. 1(f) and (h)] and lumen [see
Fig. 1(g) and (i)]

slumen = {(sa − a1 , sθ )} ∀(sa , sθ ) ∈ sboundary (6)

stunica = {(sa + a2 , sθ )} ∀(sa , sθ ) ∈ sboundary (7)

where a1 and a2 are two empirically chosen constants and the
initial estimates are used to obtain the set of marked nodes M
after refinement as present in the subsequent section.

C. Refinement of Lumen and Tunica Seeds

The tunica is formed of endothelial cells, muscle fibers, and
muscle tissue, epithelial cells in healthy arteries, and extracel-
lular plaque constituents during atherosclerosis. The densely
placed fibrous tissues in the pool of extracellular matrix causes
intermittent change of refractive index leading to φ → 0 and
high value of the field amplitude AS in (1) thus giving rise to
high speckle intensity IS and i(x) ∈ I [13], [14]. This generally
forms a bimodal distribution of the probability density of I that
is used for determining the speckle rich region BS constituting
tunica in major and the complementary region BS̄ constituting
the lumen as deeper regions within tunica where heavy signal
attenuation limits speckle formation such that BS ∩ BS̄ = ∅ and
BS ∪ BS̄ = I:

BS = argx∈I {I ≥ τ} (8)

where τ is obtained following the method in [18] and an ex-
ample of BS post-morphological geodesic reconstruction is
illustrated in Fig. 1(d). The marked nodes M [see Fig. 1(j)
and (k)] for initializing random walks solver on G are hence
obtained as

M ∈ Ilumen = slumen ∩ BS̄ (9)

M ∈ Itunica = stunica ∩ BS . (10)

D. Solution to Random Walks for Lumen Segmentation

The graph G is represented as a combinatorial Laplacian
matrix L for achieving an analytically convergent solution [12]

Lpq =

⎧⎪⎪⎨
⎪⎪⎩

dp , if p = q

−wpq , if vp and vq are adjacent nodes

0, otherwise

(11)

where Lpq is indexed by vertices vp and vq . The set of vertices
or nodes V can be divided into two groups:

(1) VM ∈ M consisting of marked or seeded nodes;
(2) VU ∈ U consisting of unmarked or unseeded nodes;
such that VM ∪ VU = V and VM ∩ VU = ∅. Thus, the Lapla-

cian matrix can be decomposed as

L =

[
LM B

BT LU

]
(12)

where LM and LU are Laplacian submatrices corresponding to
VM and VU , respectively. We denote the probability of a random
walker starting at a node vq to reach a seeded point belonging
to tissue type ω ∈ {lumen, tunica} as xω

q s.t.
∑

ω xω
q = 1. Fur-

ther, to achieve a solution, the set of labels defined for all the
seeds in VM ∈ M is specified using a function

Q(vq ) = ω ∀vq ∈ VM (13)

where ω ∈ Z, 0 < ω ≤ 2 s.t. ω = 1 is the set of label corre-
sponding to Ilumen , and ω = 2 is the set of labels corresponding
to Itunica . This helps us in defining M ∈ M is a 1-D vector
of |VM | × 1 elements corresponding to each label s at node
vq ∈ VM constituted as

mω
q =

{
1, if Q(vq ) = ω

0, if Q(vq ) 
= ω.
(14)

Therefore, for label ω, the solution can be obtained by solving

LU xω
q = −BT mω

q (15)

LU X = −BT M (16)

where solving for ω = 1 yields X = {xq∀q|vq ∈ V } as the set
of solution probabilities of a random walker originating at a
node q ∈ G and reaching the lumen and is associated and solved
accordingly

p(lumen|x, I) = xω
q ∀{q ∈ G ⇔ x ∈ I}, ω = 1 (17)

p(tunica|x, I) = 1 − p(lumen|x, I) (18)

Ilumen =
{

arg max
ω,x

(p(ω|x, I)) = lumen
}

. (19)

IV. EXPERIMENTS AND RESULTS

A. OCT Data Collection

1) In vitro: Human coronary arterial segments were ob-
tained from anonymous autopsy examinations, less than 12 h
past death at the New York Presbyterian Hospital/Columbia
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Fig. 4. Illustration of the different regions around the detected lumen bound-
ary used for quantifying the accuracy between the two regions. (a) Detected
lumen boundary (red) with the seeds for lumen (yellow) and tunica (green). (b)
Magnified view of the lumen boundary (red) and the seeds for lumen (yellow)
and tunica (green). (c) Thin neighborhood around the detected lumen boundary
within lumen Nlum en (cyan) and within tunica Ntu n ica (red).

University Medical School, NY, USA. To prevent artery
contraction and deformation, the hearts were pressure-fixed be-
fore excision using 10% formalin, recirculating at 100 mmHg
for 2 h. Artery segments presenting significant plaque accumu-
lation were identified and excised. During in vitro OCT imaging,
the artery segments were immersed in a bath of 0.9% NaCl so-
lution maintained at 37 ◦C. The arteries were imaged with a
rotary catheter based Fourier-domain OCT system2 with a cen-
ter wavelength of 1320 nm and axial resolution of 7.3μm in
air (5.4μm in tissue) and segments with symptomatic thin-cap
fibroatheroma were also identified. Details of data acquisition
and histological correlation are available in [4].

2) In vivo: OCT imaging on six follow-up patients with
stents implanted in coronary arteries was performed with a
Fourier-domain OCT system with same specifications as used
for in vitro data. The details of data acquisition are available in
[6].

B. Implementation

Data acquired in vitro from 15 artery segments and in vivo
from six arteries symptomatic of atherosclerotic plaque forma-
tion and thin-cap fibrotheroma were used for our experiments.
Each pullback of OCT data consisted of 150–300 frames. Each
frame of OCT signal IS acquired in polar domain consisted of
400 A-scanlines s.t. |sθ | = 400 and had 752 samples along each
A-scanline s.t. |sa | = 752. The polar domain data are converted
to Cartesian coordinate space of size 512 × 512. The values
for the nonlinear compression in (3) are p1 = 0, p2 = 1, and
p3 = 10. The constant η = 90 in (4). The empirically chosen
constants a1 = 10 in (6) and a2 = 20 in (7). The random walks
solution is obtained using [12].3

C. Quantification of Segmentation Accuracy

1) Divergence of Speckle Intensity Between Segments: Un-
supervised evaluation is done by comparing the statistical diver-
gence [19] between the distribution of intensity values of I in a
thin neighborhood around the lumen boundary in the segmented
result, with Nlumen located within the lumen and having pdf Q
and Ntunica located within the tunica and having pdf P . Fig. 4

2C7-XR, LightLab Imaging Inc., Westford, MA, USA.
3http://cns.bu.edu/ lgrady/software.html

TABLE I
STATISTICAL DIVERGENCE BETWEEN PDF OF INTENSITY VALUES IN Nlum en

AND Ntun ica INDICATING ACCURACY OF LUMEN DETECTION IN

INTRAVASCULAR OCT DATA

Divergence measure Our approach [17]

Kullback–Leibler distance 5.1735 ± 2.39 4.2211 ± 6.99
Bhattacharya distance 0.5641 ± 0.2822 0.2653 ± 0.3649

TABLE II
SUPERVISED EVALUATION OF SEGMENTATION ACCURACY

Measure Our approach [17]

Cohen’s Kappa coefficient 0.9786 ± 0.0061 0.8692 ± 0.0709
Contour RMS Error 8.4655 ± 3.8540 52.0845 ± 20.4840

Fig. 5. Comparison of results obtained with our approach and prior art [17].
The expert annotated ground truth (red) and segmentation result (yellow) are
marked. The failure of prior art to segment in presence of necrotic pool is
evident. (a) Our approach (κ = 0.9797). (b) Prior art [17] (κ = 0.9621).

illustrates the selection of the different regions used, and the fol-
lowing measures used for divergence computation are reported
for the complete dataset in Table I.

(1) Kullback–Leibler divergence

dK L =
g∑

i=1

P (i) ln
(

P (i)
Q(i)

)
(20)

(2) Bhattacharya distance

dB = − ln

[
g∑

i=1

(√
P (i)Q(i)

)]
(21)

where g is the total number of graylevels considered while com-
puting the pdf and g = 256 in our experiments where I is an 8
bpp image.

2) Kappa Coefficient for Comparison of Interannotator Vari-
ability: Supervised evaluation of the segmentation results in
contrast with ground truths annotated by an experienced Car-
diologist is performed using the Cohen’s Kappa coefficient (κ)
[20]. The ground truth lumen boundaries were annotated on 41
different OCT frames. Further, the contour RMS error between
the manually annotated lumen contour and segmentation results
(Fig. 5.) was also computed and performance of our approach
in comparison with [17] is presented in Table II.
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Fig. 6. Result of lumen detection in a sample with sparse seeds. The image
is divided in to five sectors and the seeds of lumen (yellow) and tunica intima
(green) are marked.

TABLE III
STATISTICAL DIVERGENCE BETWEEN PDF OF INTENSITY VALUES IN Nlum en

AND Ntun ica IN THE FIVE SECTORS MARKED IN FIG. 6

Divergence measure Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Kullback–Leibler distance 4.12 2.44 0.94 3.97 2.91
Bhattacharya distance 3.05 0.1027 2.1715 2.3714 0.08

V. DISCUSSION

A. Boundary Detection in Presence of Sparse Seeds

One of the characteristics of this algorithm is its ability to
refine the placement of seeds in lumen and tunica (see Section
III-C) for obtaining an accurate random walks solution of the
detected lumen boundary. In certain situations, this leads to
discontinuity of seeds place in the lumen, and despite this, the
algorithm is expected to perform accurately. Fig. 6 elucidates
some of such scenarios and the reliability of this algorithm
to accurately detect lumen boundary despite such limitations.
Sector 1 has an evident discontinuity in the contour of seeds
in lumen and tunica. Sector 2 has minor discontinuity in the
seeds of lumen. Sector 3 has a complete stretch of nonexistent
seeds of lumen. Sectors 4 and 5 present complete continuity
of seeds, while Sector 4 is also characterized by presence of
calcification. The detected lumen boundary contours in all the
five sectors are visually evident to accurately follow the actual
lumen boundary. Further, there is no observed discontinuity
between the detected contour in these regions. Table III presents
the divergence measures of segmentation accuracy in all the five
sectors in Fig. 6 to substantiate their consistency and reliability.

B. Interframe Consistency of Lumen Detection

An important characteristic desired in any lumen detection
algorithm is consistency of detection across adjacent frames to
ensure smooth transverse section profile of the imaged vessel.
This property is evaluated following the framework in Fig. 7.
We have considered an intravascular OCT stack of 200 frames
for one pullback data. A transverse section is sliced out from

Fig. 7. Result of interframe consistency of lumen boundary detection.
(a) Stack of IV-OCT frames (16bpp), (b) Detected Lumen Boundary, (c) Trans-
verse Section of IV-OCT frames (8bpp), (d) Detected Lumen Boundary in
Transverse Section, (e) Segmented Lumen Boundary (green) with manually ini-
tialized seeds for Lumen (yellow) and tunica intima (magenta), (f) Comparison
of Consistency of detected Lumen boundary (red) accross frames in contract
with manual segmentation (green).

this stack [see Fig. 7(c)] and the lumen boundary is detected
in it using manually seeded random walks [see Fig. 7(e)]. This
resultant contour is compared with the contour observed by
transverse sectioning of the lumen contour map in the detected
results [see Fig. 7(d)]. The comparison is presented in Fig. 7(f).
The mean squared error between these two lumen contours is
computed to be limited with displacement of 2.01 pixels and
evidently substantiates the claim of interframe consistency of
detected lumen boundary.

C. Reliable Detection in Plaques of Different Sizes and Shapes

Another important characteristic desired in any lumen bound-
ary detection algorithm is its ability to perform with equal reli-
ability across multiple shapes and sizes of plaques images with
intravascular OCT. Fig. 8 illustrates this ability of this algo-
rithm. The segmentation accuracy in these two OCT images is
presented in Table IV and their consistency strongly substanti-
ates this ability of the algorithm.

D. Effect of Guide-Wire and Stent Strut Shadows

A major challenge in lumen segmentation is the presence of
shadows due to the guide-wire and stent struts during in vivo



612 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 20, NO. 2, MARCH 2016

Fig. 8. Illustration of reliable lumen boundary detection across plaques of
different shapes and sizes. (a) Section with small lumen size. (b) Section with
larger lumen size.

TABLE IV
STATISTICAL DIVERGENCE BETWEEN PDF OF INTENSITY VALUES IN Nlum en

AND Ntun ica IN FIG. 8

Divergence measure Fig. 8(a) Fig. 8(b)

Kullback–Leibler distance 12.1649 7.6227
Bhattacharya distance 0.6841 0.3785

Fig. 9. Reliable lumen boundary detection in in vivo OCT images in presence
of guide-wire and stent strut shadows. The seeds of lumen (yellow), tunica
(green) and segmented lumen boundary (red) are marked.

imaging. Fig. 9 illustrates the characteristics of our approach to
accurately segment the lumen in the presence of such artifacts.

E. Computational Time

The proposed algorithm was implemented in MATLAB
r2013b and executed on a laptop computer with Intel Core i3
@ 2.50-GHz CPU, 4.00 GB of RAM, and Windows 8 (64 bits)
operating system. Per frame processing time was 18.82 ± 1.77
s when tested over 30 frames of OCT pullback data.

VI. CONCLUSION

This paper presents a computationally efficient and reliable
algorithm for completely automated and user-interaction free lu-
men boundary detection in intravascular OCT image sequences.
The algorithm models the problem as a graph-based segmenta-
tion approach and uses cues of tissue–photon interaction in OCT
for creating the model, thus contributing in its high accuracy and
reliability. Initially, the OCT data acquired in polar domain are
converted to Cartesian coordinate space and its speckle inten-

sity is nonlinearly compressed to a lower dynamic range. This
is subsequently modeled as a 2-D graph with four-neighbor ad-
jacency between the nodes and the edge weights are modeled
following speckle intensity attenuation physics of OCT signals.
The solution to segmentation is obtained using a random walks
solver, where the initial estimates of seeds for lumen and tunica
are provided by estimating them from backscattering properties
along each A-scanline and through refinement in the presence of
stochastic uncertainty of OCT speckle intensity. The segmented
lumen boundary in OCT data of 15 in vitro and six in vivo pull-
backs each with 150–300 frames has been assessed to be highly
accurate as indicated by quantified scores of statistical diver-
gence measures and interannotator variability comparison with
Cohen’s Kappa coefficient. The method also demonstrates 1)
reliable lumen segmentation in the presence of different tissues
under the lumen border, 2) interframe consistency of detected
lumen, 3) ability to segment lumen over wide shape and size
variations, 4) reliability in presence of guide-wire and stent
strut shadows, and 5) deterministic and finite time complexity
and assured convergent results [12]. These characteristics make
it unique and provide it with an edge compared to other state-
of-the-art methods of lumen segmentation. Furthermore, this
framework also presents rational incorporation of OCT imag-
ing physics into each stage of the algorithm to compensate for
uncertainty inherent to tissue–energy interaction physics of the
imaging modality.
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the Université Libre de Bruxelles, Brussel, Belgium,
in 1996, and the Ph.D. degree in biomedical engineer-
ing from Erasmus University, Rotterdam, Nether-
lands, in 2001.

He is currently an Interventional Cardiologist at
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