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Abstract

This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution
representations. We show that efficient (nonredundant) representations may be identzfiedfrom digital mammography and used
to enhance specific mammographicfeatures within a continuum ofscale space. The multiresolution decomposition of wavelet
transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature
analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency ,results
in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in
primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper.

Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from
%vavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving
the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while
requiring less time to evaluate mammograms for most patients (lower costs).

1. Introduction

Many cancers escape detection due to the density of surrounding breast tissue. For example, differences in attenuation
of the various soft tissue structures in the female breast are small, and it is necessary to use low levels of X-ray energy
to obtain high contrast in mammographic film. Since contrast between the soft tissues of the breast is inherently low and
because relatively minor changes in mammary structure can signify the presence of a malignant breast tumor, the detection
is more difficult in mammography than in most other forms of radiography. The radiologist must search for malignancy in
mammographic features such as microcalcifications, dominate and stellate masses, as well as textures of fibrous tissues.

A primary breast carcinoma can metastasize when it consists of a relatively small number of cells, far below our present
threshold of detection. The importance of diagnosis of breast cancer at an early stage is critical to patient survival. The cure
rate for breast lesions of 0.5cm or less in diameter can approach 100%. Despite advances and improvements in mammography
and mammographic screening programs, the detection of minimal breast cancer (those cancers 1 .0cm or less in diameter)
remains difficult. At present, mammography is capable of detecting some cases through indirect signs, particularly through
the presence of characteristic microcalcifications. It has been suggested that as nomrnlly viewed, mammograms display only
about 3% of the information they detect! The inability to detect these small tumors motivates the imaging techniques and
methods of analysis presented in this paper.

Digital image processing techniques have been applied previously mammography. The focus of past investigations
has been to enhance mammographic features while reducing the enhancement of noise. Gordon and Rangayyan[1 1] used an
adaptive neighborhood image processing to enhance the contrast of selected features relevant to mammography. This method
enhanced the contrast of mammographic features as well as noise and digitization effects. Dhawan[8][9][lO] have made
significant contributions towards solving problems encountered in mammographic image enhancement. Dhawan developed
an adaptive neighborhood-based image processing technique that utilized low-level analysis and knowledge about a desired
feature in the design of a contrast enhancement function to improve the contrast of specific features. They found that a
suitable contrast enhancement function is useful but difficult to design. Dhawan and Le Royer [10] developed a method
which defined an adaptive neighborhood and used a global model to compute the best contrast enhancement function based
on a priori knowledge of specific types of mammographic features. These results provided an algorithm that was very
efficient and "tunable" in many aspects to enhance relevant diagnostic information with little or no enhancement of noise.
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Recently, Tahoces [22] developed a method for the enhancement of chest and breast radiographies by automatic spatial
filtering. In their method, they used a linear combination of an original image and two smoothed images obtained from
the original image by applying different spatial masks. The process was completed by nonlinear contrast stretching. This
spatial filtering enhanced edges while minimally amplifying noise.

Recent approaches to automate the detection of tumors in mammograms have relied on some method of feature
enhancement. Brzakovic [2] developed an automated system for the detection and classification of particular types of tumors
in digitized mammograms based on tumor features. They used a threshold parameter and a fuzzy pyramid link to identify
homogenous regions and then applied a second threshold to separate selected regions from the background.

Methods of feature enhancement have been key to the success of classification algorithms. Lai [12] compared several
image enhancement methods for detecting circumscribed masses in mammograms. They compared an edge-preserving
smoothing function [20], a half-neighborhood method[21], k-nearest neighborhood, directional smoothing[6] and median
filtering[1I and in addition proposed a method of selective median filtering. In this method, the median was restricted
to those pixels having a difference in gray level intensity from the central pixel no larger than some threshold within
its neighborhood. Among the five techniques implemented, they concluded that selective median filtering with a 5 x 5
neighborhood performed best for image enhancement and noise-cleaning.

In the fields of image processing and computer vision, transforms such as windowed Fourier transforms that can
decompose a signal into a set of frequency intervals of constant size have been applied to many applications, including
image compression and texture analysis. Because the spatial and frequency resolutions of these transforms remain fixed,
the information provided by such transforms is not local within each interval. A wavelet transform[16][15] [17][18][4][5]
is a decomposition of a signal onto a family of functions called a wavelet family. It decomposes an image onto a set of
frequency channels having a constant bandwidth in logarithmic scale and overcomes many drawbacks of windowed Fourier
methods. The wavelet transform gives a precise understanding of the concept of multiresolution, which has been widely
USC(l in signal processing and harmonic analysis. In wavelet analysis, the variation of resolution enables the transform to
focus on irregularities of a signal and characterize them locally. Wavelet transforms can not only detect sharp variations of
a signal but may also characterize their local shape.

In this paper we propose a novel method for accomplishing feature enhancement[13]. Two complete image represen-
tations are engaged: coefficients from a dyadic wavelet transform and wavelet maxima coefficients[19]. We demonstrate
how to emphasize distinct features in a mammogram by modifying these representations for improved visualization of breast
pathology.

In the following section we present a description of a wavelet transform and its properties. In section 3, we introduce
several enhancement techniques based on wavelet representations. Preliminary results of our enhancement methods are
presented in section 4. Finally, in section 5, we summarize our results and discuss future directions of research.

2. A Framework for Multiscale Analysis

In this paper, we accomplish mammographic feature analysis through a novel method of multiresolution representation.
We shall demonstrate that efficient (nonredundant) representations may be identified from digital mammography and used
to reconstruct mammographic features within a continuum of scale space. Such reconstructions can complement existing
modalities and allow a radiologist to examine interactively emergentfeatures within a selected scale space. In addition, we
suggest that these representations may increase the capacity and reliability of autonomous systems to accomplish classification
of known abnormalities.

The novelty of our approach includes the application of wavelet transforms to accomplish scale space feature analysis
and detection. The wavelet transform, introduced by Lemane and Meyer (1986)[141 has received considerable attention
in the mathematical and signal processing communities. Using wavelets as a set of basis functions, we may decompose
an image into a multiresolution hierarchy of localized information at different spatial frequencies. Wavelet bases are more
attractive than traditional hierarchical bases because they are orthonormal, linear, continuous, and continuously invertible.
The multi-scale representation of wavelet transforms suggest a mathematically coherent basis not only for existing multi-grid
techniques, but also for embedding new methods. For example, wavelet transforms may be used to integrate sparse data,
resolve ambiguities in optic flow fields, accomplish fast surface interpolation, and image compression[7L

In contrast to ad-hoc approaches, the methods presented in this paper suggest the development of a practical diagnostic
tool embedded in a unified mathematical theory. By this virtue, wavelet methods can exceed the performance of previous
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multiresolution techniques that have relied mostly on traditional methods of time-frequency analysis such as the Wigner
distribution (1932) and Gabor's sliding-window (1946) transforms.

The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive
paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the
radiologist may first choose to look for coarse features (e.g. dominant masses) within low frequency levels of the wavelet
transform and later examine finer features (e.g. microcalcifications) at higher frequency levels. Choosing wavelets (or
analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for
image analysis. The inner-product of a signalf with a wavelet '1 (< f, 'i' >= (2ir)' < 1 I' > ) reflects the character of

f within the time-frequency region where W is localized ( W and f are the Fourier transforms of the analyzing function W
and the signal f ). If W is spatially localized, then 2-D features such as shape and orientation are preserved in the transform
space and may characterize a feature through scale space. We may "extract" such features by applying geometric constraints
within each level of the wavelet transform. We reduce the complexity of the reconstructed mammogram by selecting a
subset of features that satisfy certain geometric constraints. For example, we may choose to focus on only those features
oriented in the horizontal direction. Subsequent image reconstructions may use the context provided by previously enhanced
features to examine (diagnose) additional features emergent at other scales and orientations. Thus, fine vertical features may
be selected and analyzed in the context of previously classified large horizontal features. Our strategy provides a global
context upon which subtle features within finer scales may be classified incrementally through a precomputed hierarchy
of wavelet dilations.

Our approach to feature analysis and classification is motivated in part by recently discovered biological mechanisms
of the human visual system. Both multiorientation and multiresolution are features of the human visual system. There
exist cortical neurons which respond specifically to stimuli within certain orientations and frequencies. In 1989, Nobel
laureate Wiesel demonstrated orientation selectivity in Area 17 of the visual cortex where binocular neurons (stereo) had
been previously mapped[31.

Wavelet decompositions provide a natural way to manipulate image features. A wavelet decomposition breaks down a
signal fx) into a family of functions that are the translations and dilations of a function 11(x) called a wavelet. From the
Fourier transform of a wavelet and its dilations we know that the passing bands for the dilations of a wavelet are the same
on a logarithmic scale for all scaling factors. Hence a wavelet transform decomposes a signal onto a set of frequency bands
of constant size on a logarithmic scale. Another important property of the wavelet transform is that the local regularity of
a signal (or the type of local singularity) can be characterized by the transform coefficients.

In this paper we show how these properties can be used for enhancement in digital mammography. In practice we
choose a special set of scaling factors and exploit the mathematical properties of wavelets (including linearity, continuity,
continuous invertibility) to make features more obvious. A wavelet transform depends on two parameters s and x which vary
continuously over the set of real numbers. If the scale parameter s is sampled along the dyadic sequence [2 ]z, we generate
a wavelet family of functions W(x). The dyadic wavelet transform of a function f(x): [W2, 1(x)]3 may be denoted by

WI = {W211(x)]jEz.

A function f(x) can be reconstructed from its dyadic wavelet transform,

1(x) = W231(x) *

and denoted by

1(x) = W1[Wf(x)].
Let V be the space of dyadic wavelet transforms [W21f(x)Jjfz for all functions f(x) e L2(R). If V is a subspace of l2(L2),

then W1 is an operator from 12(L2) to L2(R) and Pv = W • W1 is a projector from 12(L2) onto the space V.

As mentioned above, wavelet transforms can be used to characterize the type of local singularities of a signal. While
the maxima of a wavelet transform can be used to detect signal peaks (edges). For discrete signal, the wavelet maxima
is any points such that

I23I(x)I > IW231(x — 1)I I'VvI(x)I > IW2,f(x + 1)1.
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The local maxima of a wavelet transform detects a signals' acute variations and characterizes their local shape. The local
maxima defines a stable representation of an original signal. A slight perturbation of a signal will not change the position
of its local maxima. The completeness of the representation can be shown by the reconstruction of a signal from its wavelet
maxima alone.

It is easy to show that f(x) can be recovered from its dyadic wavelet transform[18]. We first reconstruct [Wf(x)]z
from the local maxima of each function Wf(x). For any scale 2' there exists an infinite number of functions g1(x) which have
the same local maxima as Wf(x). However any sequence of functions g1(x) is not necessarily a dyadic wavelet transform
of some function in L2(R). Of these sequences of functions, a function that satisfies the reproducing kernel conditions of
a dyadic wavelet is the dyadic wavelet transform. The set F of all sequences (gj)jez in 12(L2) i5 defined such that for all
scales 2, g1(x)fH1(R), g1(x) has the same maxima as Wif(x).

A classical technique for recovering the intersection of a convex set F with a linear space V is to iterate on alternative
projections on the convex and linear space[19]. Suppose F is closed in Hubert space, we can define a projection F on F
that transforms Lj(x)1jez into the sequence of functions [hf(x)IjfzeF that is closest to [gJ(x)IJfz. The set F is convex so the
projection F is not expansive. P is an orthogonal projection on the space V. The intersection of F and V is a fixed point,
which may be computed by iteration on the operator P. P = P •P . We can show that for any sequence of functions
[gj(x)]jez, n tends to positive infinity fi&[g1(x)]1 converges weakly to an element in the intersection of F and V. This
element is the dyadic wavelet transform of f(x).

3. Local Enhancement Techniques

In the case of two-dimensional signals (images), we can define a two-dimensional wavelet Wk (x,y), and its wavelet
transform by

Wf(x,y)= f(x,y)*Wk(-,fl k= 1K, K

f(x, y) = Wf(x, y) * Wk(X )
We used two orientations within the wavelet transform (K=2). The finite dyadic scale parameter J (J e 7) is the maximum
scale level for a wavelet decomposition. Let's take a closer look at the transforms W f(x ,y) and W f(x , y). The
horizontal variations of the original image f(x,y) at scale 2 are W f(x, y). The vertical variations off(x,y) at scale 2 are
l'V, f(x , y). We may combine W f(x ,y) and W, f(x , y) to obtain a concurrance of the variations in both horizontal and
vertical directions for an image at each scale 2,

W23f(x,y) = F(W,f(x,y),Wif(x,y)) ke(1,2),

where F is a combining function. The wavelet maxima for horizontal orientations M4,f(x, y) and vertical orientations

Af f(x y) at scale 2 are selected by the expressions below:

W.)'Jf(x, y) if W,f(x, y)> W2'3f(x + 1, y)

M'3f(x,y)= and Wf(x,y)> Wf(x— l,y)

o otherwise

Wf(x,y) if W.,f(x,y)> Wf(x,y+ 1)

22jJkx,Y) — and Wjf(x,y)> W2,f(x,y+1)

o otherwise

The image can be reconstructed from its two one-dimensional wavelet maxima components alone. Similar to the one dimen-
sional wavelet maxima case, we may reconstruct f(x,y) from its two-dimensional wavelet transform maxima representation
alone[19].
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Figure 1 . Processing structures for local feature enhancement by wavelet representations.

Wavelet representations localize mammographic features. In addition, wavelet maxima can localize image noise, which
usually lies in the higher frequency bands. A problem for image enhancement in mammography is the ability to emphasize
mammographic features while reducing the enhancement of noise. We shall show that by classifying transform coefficients
and wavelet maxima, noise may be removed and mammographic features enhanced non-destructively.

Non-linear techniques for image enhancement can be applied within the context of multiscale wavelet decompositions.
As shown in Figure 1, first we may choose an arbitrary (non-rectanular) region of interest within a digitized radiograph.
Next, wavelet maxima edges are extracted from the transform coefficients of the entire image. At this point, we must
choose to enhance features by either the maxima coefficients alone, or by using the maxima coefficients as "pointers" into
the complete transform space. Finally, we may simply invert the emphasized transform coefficients or projector operators
may be used to recover the enhanced image (f '(x,y)) from weighted maxima features alone. In both cases, the weight
are applied only to those coeffcients within the ROl. Below we present a general formula for processing wavelet transform
coefficients and maxima features respectively:

or

jE{O,1. .., J—1}

The functions F and G are user defined to emphasize certain features within a selected scale or region. We obtained
enhancements from representations of both wavelet coefficients and wavelet maxima by using the inverse wavelet transform
directly and by reconstruction from wavelet maxima features alone, i.e.

f'(x,y) = W_1(W'f(x,y)),
f'(x,y) = P(M'f(x,y))

where P is the projection operator described earlier in section 2. By defining F and G functions we may design alternate
enhancement schemes. For example, noise may be eliminated by thresholding wavelet coefficients:

I f(') if AI(x,y) <7
Wf(x,y)= 1<k<2, j{O1, J—1}

Tf(jy).g(j) if M.(x,y)>T

f'(x,y) = W_1(W,f(x,y))
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where T is some threshold constant, and g(l) is a scale-space weighting function defined below:

I C constant enhancement

Ii _ J k . 1 + c linear enhancement
g ) —

exponential enhancement
I. k . ln(l) logrithmic enhancement

The parameters c, k are small constants, and I is a selected decomposition level. To enhance features "living" in a single
level or within a contiguous subset of levels, we simply modify the wavelet scale-space weight function:

g'(l) = >6(l—lj) .g(l)

where lj is the level number upon which an enhancement is focused.

Alternatively we may target exactly horizontal or vertical mammographic features by using g(l) to weight coeffcients
within each distinct level j:

I IV,f(x,y) if Mj(x,y)<Tj
W9f(x,y) = j e {O,1, .., J — 1}.

Wf(x,j).g(j) if M(x,y)>Tj

Wf(x,y) = W'f(x,y)
and reconstruct an enhanced image simply by

f'(x,y) = W_1(Wf(x,y)), k e {1,2}, j e {O, 1, .., J — 1}.

For k=1 , k'=2, horizontal features are enhanced, and for k—2, k' =1 , vertical features are enhanced.

When wavelet maxima representations alone are modified for feature enhancement, we apply a global threshold across
all levels of the decomposition, and multiply the maxima coefficients by a similar weighting function,

I AIf(x,y) if M(x,y) < T
Mf(x,y)= '

A1f(x,y)g(j) if M(x,y)>T

f'(xy) = P(Mf(x,y)) j {O,1, .., J — 1}; 1 < k <2.

Similarly, we may also weight the horizontal or vertical mammographic features independently within each scale.

I I Aif(x,y) if M(x,y) < T
M9f(x,y) = j E {O,1, .., J — 1}

(Mf(x,y).g(j) if M.(x,y)>T

Mf(x,y) = Mf(x,y)
and reconstruct an enhanced image without noise by

f'(x,y) = P(Mf(x,y)), k E {1,2}, j E {O, 1, .., J — 1}.

An advantage of using mutilscale analysis for mammographic enhancement is that we can incrementally and selectively focus
on features of mammographic interest. If the weighting function g(l) is defined to enhance a single scale, then a focused
enhancement of the features "living" within that scale is accomplished in reconstruction. We may combine additional
representations from any subset of scales and visualize incrementally mammogrphic features of specific size and/or shape.
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4. Experimental Results

Preliminary results have shown that the wavelet processing techniques described above, can make more obvious unseen
or barely seen features of a mammogram without requiring additional radiation. Our study examined reconstructions and well
localized transform coefficients in scale-space obtained from several analyzing functions. Mammograms were reconstructed
from their wavelet maxima representations and enhanced by linear, exponential and constant functions through scale-space
using several analyzing wavelets.

In this section, we show photographs for reconstructions of a dyadic scale space. A cubic spline analyzing function[18J
was used to accomplish each decomposition. An original pair of dense mammograms are shown in Figure 2. Magnitudes
of the wavelet coefficients for the first three levels are displayed in Figure 3 (horizontal projections only).

The wavelet maxima coefficients are shown as binary images in Figure 4. As described earlier, we used this
representation as an "index" for coefficient weights to emphasize significant features "living" within levels of the transform
space. Thus, we accomplished various non-linear enchancements as shown in Figure 5. In this context, the opportunity
to focus on specific features for enhancement via geometric constraints is likely to be extremely valuable. Please note
that each picture shown in Figures 3 was obtained exactly from the original mammogram shown in Figure 2 (right). No
new information has been added. Rather, we have selectively discarded information in each case. Figure 5(a) shows a
mammogram enhanced by indexing wavelet maxima coefficients and multiplying the non-negative coefficients in the two
finest levels of scale by the weights 3 and 5 respectively. The same weight factors were applied to levels 3 and 4 in Figure
5(b). The improved visibility of the microcalcifications shown in Figure 5, clearly illustrates the potential of wavelet analysis
to enhance the visibility of objects of interest to mammography.

5. Summary

We have presented a methodology for accomplishing feature enhancement by multiscale wavelet representations. We
have defined and demonstrated how scale-space weighting functions can be used to acquire local emphasis of features in
mammography. Enhanced images were reconstructed by modifying two wavelet representations: (1) transform coefficients
and (2) transform edges (maxima) computed from the modulus. Future directions for research include the introduction of
muluwavelet decompositions to improve the visualization of mass carcinomas and the application of true two-dimensional
wavelets to increase orientation sensitivity for improved detection and enhancement of mammographic features.
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Gainesville. The authors wish to thank Edward Staab, Janice Honeyman, Barbara Steinbach, Walter Huda and Bjorn Jawerth
(University of South Carolina) for their support and encouragement.
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Figure 3. Magnitude of wavelet coefficients for horizontal orientations, levels 1, 2 and 3.
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Figure 4. Wavelet Maxima along horizontal and vertical directions, levels 1, 2 and 3, for the mammogram shown in Figure 2 (right).
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Figure 5. (a) Nonlinear enhancement, weights applied to fine level coefficients.
(b) Nonlinear enhancement, weights applied to the coarse level coefficients.

SP1E Vol. 1768 Mathematical Methods in Medical Imaging (1992) /315

Downloaded from SPIE Digital Library on 30 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



References

[11 A.C. Bovik, T. S. Huang, and D. C. Munson. The effect of median filtering on edge estimation and detection. IEEE
Trans. Pattern Anal. Machine Intel!., PAMI-9: 181—194, 1987.

[2] D. Brzakvoic, X. M. Luo, and P. Brzakvoic. An approach to automated detection of tumors in mammograms. IEEE
Trans. Med. Imaging, MI-9(3):233—24 1 , 1991.

[3] F. Campbell and J. Kulikowski. Orientation selectivity of the human visual system. Journal of Physiology, 197:437—
441, 1966.

[4] I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics,
XLI:909—1005, 1988.

[5] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. on Info. Theory,
36(5):961—1005, 1990.

[6] L. S. Davis and A. Rosenfield. Noise cleaning by iterated local averaging. IEEE Trans. Syst., Man. Cybern. , SMC-
8:705—710, 1978.

[7] R. A. Devore, B. Jawerth, and BJ. Lucier. Image compression through wavelet transform coding. IEEE Trans. on Info.
Theory, 38(2):719—746, 1992.

{8] A. P. Dhawan, 0. Buelloni, and R. Gordon. Enhancement of mammographic feature by optimal adaptive neighbothood
image processing. IEEE Tran. Med. Imaging, MI-5:8, 1986.

[9] A. P. Dhawan and R. Gordon. Reply to comments on enhancement of mammographic feature by optimal adaptive
neighbothood image processing. IEEE Trans. Med. Imaging, MI-6:82, 1987.

[10] A. P. Dhawan and E. Le Royer. Mammographic feature enhancement by computerized image processing. Comput.
Methods Programs Biomed., 27:23, 1988.

[1 1J R. Gorden and R. M. Rangayyan. Feature enhancement of film mammograms using fixed and adaptive neighborhoods.
Appi. Opt., 23:560, 1984.

[12] S. M. Lai, X. Li, and W. F. Bischof. On techniques for detecting circumscribed masses in mammograms. IEEE Trans.
Med. Imaging, MI-8(4), 1989.

[13] A. Lame. Multiscale wavelet representations for mammographic feature analysis. In Image Enhancement Techniques:
Computer Science, National Cancer Institute Breast Imaging Workshop: State-of-the-Art and New Technologies,
September 5, 1991, Bethesda, MD.

[14] P. G. Lemarie and Y. Meyer. Ondelettes et bases hilbertiennes. Revista Mathematica Ibero Americana, 2, 1986.
[15] S. Mallat. Multiresolution approximations and wavelet orthonomal bases of 1(r). Trans. Amer. Math. Soc., 315(1):69—

87, 1989.
[16] S. MallaL A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on PAMI,

1 1(7):674—693, 1989.

[17] 5. Mallat. Timefrequency channel decompositions of image and wavelet models. IEEE Trans. ASSP, 37(12):891—896,
1989.

[18] 5. Mallat and S. Zhong. Signal characterization from multiscale edges. In 10th International Conf. on Pattern
Recognition, pages 89 1—896, 1990.

[19] S. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEE Trans. on PAM!, 14(7):710—732, 1992.

[20] M. Nagao and T. Matsuyama. Edge preserving smoothing. Computer Graphics and image processing, 9:394—407, 1979.
[21] A. Scheer, F.R.D. Velasco, and A. Rosenfield. Some new image smoothing techniques. IEEE Trans. Syst., Man. Cybern.,

SMC-10(3):153—158, 1980.
[22] P. G. Tahoces, J. Correa, M. Souto, C. Gonzalez, L. Gomez, and J. Vidal. Enhancement of chest and breast radiographs

by automatic spatial filtering. IEEE Trans. Med. imaging, MI-10(3):330-.335, 1991.

316 / SPIE Vol. 1768 Mathematical Methods in Medical imaging (1992)

Downloaded from SPIE Digital Library on 30 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms


