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Abstract—This paper presents a method for breath-by-breath
noninvasive estimation of respiratory resistance and elastance
in mechanically ventilated patients. For passive patients, well-
established approaches exist. However, when patients are breathing
spontaneously, taking into account the diaphragmatic effort in the
estimation process is still an open challenge. Mechanical ventila-
tors require maneuvers to obtain reliable estimates for respiratory
mechanics parameters. Such maneuvers interfere with the desired
ventilation pattern to be delivered to the patient. Alternatively, in-
vasive procedures are needed. The method presented in this paper
is a noninvasive way requiring only measurements of airway pres-
sure and flow that are routinely available for ventilated patients. It
is based on a first-order single-compartment model of the respira-
tory system, from which a cost function is constructed as the sum of
squared errors between model-based airway pressure predictions
and actual measurements. Physiological considerations are trans-
lated into mathematical constraints that restrict the space of feasi-
ble solutions and make the resulting optimization problem strictly
convex. Existing quadratic programming techniques are used to
efficiently find the minimizing solution, which yields an estimate
of the respiratory system resistance and elastance. The method is
illustrated via numerical examples and experimental data from
animal tests. Results show that taking into account the patient ef-
fort consistently improves the estimation of respiratory mechanics.
The method is suitable for real-time patient monitoring, providing
clinicians with noninvasive measurements that could be used for
diagnosis and therapy optimization.

Index Terms—Mechanical ventilation, noninvasive parameter
estimation, optimization, patient monitoring, respiratory compli-
ance, respiratory mechanics, respiratory resistance.

I. INTRODUCTION

M EASUREMENTS of the mechanical properties of the
respiratory system are of paramount importance to clin-

icians for the management of mechanically ventilated patients.
Quantitative assessment of respiratory mechanics can aid the
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clinician to: 1) diagnose the disease underlying respiratory fail-
ure; 2) monitor the status and progression of the disease; 3)
measure the effects of treatments; 4) tune the ventilator set-
tings to the patient specific needs, and thus minimize the risk
of ventilator-induced complications, such as ventilator-induced
lung injury [1], [2].

Respiratory system mechanics is typically described via two
parameters, the resistance (R) and the elastance (E), which
account for the tendency of the system to oppose air flow and to
return to its original volume after being stretched, respectively.
For ventilated patients, methods for the assessment of R and
E from noninvasive measurements of airway pressure and flow
exist but they all present limitations.

A well-established technique is the inspiratory hold maneu-
ver, also called flow interrupter technique [3] or end-inspiratory
pause. This technique consists of rapidly occluding the circuit
through which the patient is breathing under conditions of con-
stant inspiratory flow, while measuring the pressure in the circuit
behind the occluding valve. The technique is noninvasive, easy
to perform and the majority of the modern commercial ventila-
tors have software that automates this procedure and computes
resistance and elastance values. However, the maneuver inter-
feres with the normal operation of the ventilator. As a result, it is
not suitable for continual monitoring of respiratory mechanics
and patient status. This is a severe limitation, as in critically ill
patients the mechanical properties of the respiratory systems can
rapidly change. Moreover and very importantly, the measure-
ments provided by this technique are reliable only if the patient
is completely passive throughout the duration of the inspiratory
hold.

An alternative to the inspiratory hold maneuver consists of
using the least squares (LS) method to fit a suitable mathemat-
ical model of the respiratory system to the pressure and flow
measurements obtained noninvasively at the patient’s airway
[4], [5]. In this context, the most widely used mathematical
representation of the respiratory system is the first-order single-
compartment model that describes the system as an elastic com-
partment, representing the lung, served by a single resistive
pathway, representing the upper airways [6]. Its parameters,
R and E, can be either assumed constant (linear model), or
varying with flow and/or volume (nonlinear models) [7]. Typ-
ically, data from an entire respiratory cycle are used in batch
LS algorithms to estimate the values of R and E, thus allow-
ing for breath-by-breath monitoring of respiratory mechanics.
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Adaptive algorithms, based on the recursive least squares for-
mulation with forgetting factor [8], have also been proposed
to avoid the need for data storage and to allow for tracking
of respiratory mechanics variations that correlate with disease
progression [9]–[11].

The LS method provides some advantages over the inspi-
ratory hold maneuver as it does not interfere with the normal
operation of the ventilator. However, and similarly to the inspi-
ratory hold maneuver, the LS method provides accurate results
only if the patient is fully passive. During spontaneous breath-
ing the pressure generated by the respiratory muscles (Pmus)
is no longer a negligible driving force and the theoretical basis
for the application of the LS method becomes invalid unless
Pmus is a known input quantity [5]. To obviate these limita-
tions, the additional measurement of esophageal pressure (Pes),
which serves as a surrogate for intrapleural pressure (Ppl), can
be included and the LS method can then be applied to transpul-
monary pressure (Pao − Pes) rather than airway pressure (Pao)
data. Khirani et al. [12], for instance, have proposed the use of
transpulmonary pressure measurements to provide online mon-
itoring of respiratory mechanics in spontaneously breathing pa-
tients, via application of LS-based algorithms. However, in this
case, the assessment of respiratory mechanics is only limited to
the lungs and the airways. It does not include the contribution of
the chest wall to the elastance. Most importantly, computation
of transpulmonary pressure requires continuous measurements
of Pes , hence the insertion of a balloon-tipped catheter into the
patient esophagus, as well as expert operators for correct place-
ment and inflation of the balloon. This procedure also requires
special equipment and attention to avoid errors and artifacts
[13]. The invasive nature of the technique makes it unattractive
in clinical settings.

From the above discussion, it emerges that monitoring of
respiratory mechanics in ventilated patients with inspiratory ac-
tivity is yet to be achieved, especially noninvasively. Moreover,
in critical care medicine the popularity of partially assisted me-
chanical ventilation modes (where the patient can actively in-
spire, e.g., pressure support ventilation, PSV) has recently in-
creased. These modes, in fact, are believed to promote patient
respiratory muscles activation and weaning, thus resulting in
better outcomes and reduced hospitalization costs [14]–[16].
Hence, a simple and reliable noninvasive technique for the as-
sessment of respiratory mechanics in mechanically ventilated
patients with spontaneous inspiratory efforts is a clear unmet
clinical need. In an attempt to answer this need, several meth-
ods have been developed in the past few years.

Younes et al. have proposed the use of end-inspiratory oc-
clusions [17] and pulses [18] to measure respiratory system
elastance and resistance, respectively. Similarly, Lopez-Navas
et al. [19] have used short expiratory occlusions, executed reg-
ularly at every three to seven consecutive breaths, to estimate R
and E via an algorithm fitting the difference between data from
occluded and undisturbed breaths. Even though the introduction
of pulses and occlusions in these methods have been shown to
be clinically tolerable from a patient perspective, both methods
still require some sort of maneuvers and hence interfere with
the normal operation of the ventilator.

Fig. 1. (a) Schematic representation of respiratory mechanics; (b) electrical
analogue; (c) lumped electrical analogue.

Chiew et al. [20] have developed a method that provides esti-
mation of a time-varying elastance parameter in spontaneously
breathing patients, without requiring any specific maneuver.
However, the elastance parameter estimated by this method in-
cludes the confounding effects of the respiratory muscles pres-
sure exerted by the patient.

Other methods that analyze pressure and flow data in the
frequency domain, based on the principles of the forced oscilla-
tion technique (FOT), have also been proposed in the literature
[21], [22]. FOT-based methods require the use of external small-
amplitude pressure oscillations superimposed on the normal
breathing, and hence special software/hardware modifications
to the ventilator architecture.

In the present paper, we present a new method for noninvasive
breath-by-breath estimation of respiratory mechanics in actively
breathing patients without interfering with the normal operation
of the mechanical ventilator and without requiring Pes measure-
ments. The method uses air pressure and flow measured at the
patient airway opening and it is based on the traditional first-
order single-compartment model discussed above. The novel
aspect of the method presented lies in the introduction of a con-
strained optimization (CO) algorithm that takes into account the
presence of Pmus to render the estimation of R and E reliable
even in the presence of patient effort. Simulated data have been
used to validate the mathematical foundation of the method. Fur-
thermore, the method has been applied to real data from animal
tests and the reported results show potential for its extension to
humans.

The paper is structured as follows. First, we describe the
problem highlighting the challenges of the estimation of resis-
tance and elastance in the presence of patient inspiratory efforts.
Then, we provide a detailed description of the algorithm and we
show via numerical simulations its strengths and limitations.
Subsequently, we show experimental results on pigs. Finally,
the method is critically discussed and future work is outlined.

II. PROBLEM STATEMENT

The lungs are traditionally represented as an elastic compart-
ment (balloon) served by a single resistive pathway (airways),
as shown in Fig. 1(a). However simplistic this model is, it is
nevertheless representative of the real lung mechanics and ac-
cepted in the respiratory research community. In Fig. 1(a), the
pressure at the entrance of the resistive pathway corresponds to
the airway opening pressure (Pao), whereas the pressure inside
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the balloon is representative of the alveolar pressure (Pal). The
balloon, in turn, is enclosed in the chest wall that is represented
as an additional elastic compartment whose internal pressure
corresponds to intrapleural pressure (Ppl). The system is sub-
ject to an external pressure (Pmus) that represents an equivalent
pressure of the force exerted by the respiratory muscles (mainly
the diaphragm).

The electrical analogue corresponding to this schematic rep-
resentation of the respiratory system is shown in Fig. 1(b). The
resistance and elastance elements of the airways/lungs are de-
noted as Raw and EL , respectively, whereas the elastance of the
chest wall is denoted as Ecw . An additional resistance Rcw is
included to account for mechanical dissipation (friction) within
the chest wall. The simplest model assumes that the resistive
and elastic elements in the above electrical analogue are con-
stant parameters.

The electrical analogue in Fig. 1(b) distinguishes between the
airways/lungs and the chest wall components. For an equivalent
and more compact representation of the model, the number of
parameters can be reduced to two, namely the total resistance
R and elastance E of the respiratory system [see Fig. 1(c)].
The air flow V̇ (t) through the above mentioned elements is
driven by the pressure difference Pao(t) − Pmus(t). In Fig. 1(c),
the equation governing respiratory mechanics, known as the
equation of motion of the respiratory system, is

Pao (t) = RV̇ (t) + EV (t) + Pmus (t) + P0 (1)

where V (t) represents the volume of air inhaled from the be-
ginning of inhalation (t = 0), and P0 is a constant pressure
term balancing the pressure at the airway opening at t = 0
(V (0) = V̇ (0) = Pmus(0) = 0).

Given (1) above, the problem at hand is to estimate the pa-
rameters R and E from measurements of Pao(t) and V̇ (t) over
one breath in spontaneously breathing mechanically ventilated
patients. Note that the measurements of V (t) can be obtained
by numerical integration of V̇ (t) over time, whereas P0 and,
most importantly, Pmus(t) remain unknown.

Before plunging into the description of the method, it is useful
to mention the main challenge of the above estimation problem
and give an intuitive illustration. The problem is underdeter-
mined, i.e., if we define Rest , Eest , Pest(t) as possible estimates
of R, E, Pmus (t) + P0 in (1), there exist infinitely many solu-
tions of triplets Rest , Eest , Pest(t) satisfying (1) over a breath.
Only one of them is the solution that we are after, i.e., R, E,
Pmus (t) + P0 . To clarify this aspect, let us consider the electri-
cal analogue in Fig. 1(b) and focus on airways and lung compo-
nents only. The governing equation of motion can be written as

Pao (t) = Raw V̇ (t) + ELV (t) + Ppl (t) + P ′
0 (2)

where P ′
0 is, again, a constant pressure term to balance the

equation at t = 0. (2) is formally equivalent to (1). Hence,
given the same set of measurements Pao(t), V̇ (t) and V (t), the
set Rest = Raw , Eest = EL , Pest (t) = Ppl (t) + P ′

0 satisfies
(1) as well. As such, this would be another solution to the
estimation problem we are considering. Moreover, many other
solutions without physical interpretation exist. In fact, we could
virtually choose any value for Rest and Eest and compute a

corresponding estimated pressure profile Pest (t) from

Pest (t) = Pao (t) − Rest V̇ (t) − EestV (t) (3)

to find other solutions satisfying (1).

III. METHOD

The method we present is based on introducing constraints
on the unknowns to be estimated, with the aim of overcom-
ing the underdetermined nature of the mathematical problem.
The constraints are based on physiology. For instance, the sig-
nal profile of the pressure exerted by the respiratory muscles
does not change arbitrarily over one breath. It typically mono-
tonically decreases at the beginning of a spontaneous breath,
then monotonically increases when the muscles relax. In con-
ditions of passive expiration, this pressure remains zero during
exhalation. This physiological knowledge can then be infused
in the estimation algorithm in the form of regional constraints
where the monotonicity of Pmus(t) is enforced via inequalities
and equalities. For simplicity of mathematical formulation, in
(1) we let P̃mus(t) = Pmus (t) + P0 as P0 is constant over the
breath. The estimation problem can then be cast as a CO problem
with cost function

J =
k=N∑

k=1

(
Pao (tk ) −

(
RV̇ (tk ) + EV (tk ) + P̃mus(tk )

))2

(4)
to be minimized subject to the following constraints:

P̃mus (tk+1) − P̃mus (tk ) ≤ 0, for k = 1, 2, . . . ,m − 1
(5a)

P̃mus (tk+1) − P̃mus (tk ) ≥ 0, for k = m,m + 1, . . . , q − 1
(5b)

P̃mus (tk+1) − P̃mus (tk ) = 0, for k = q, q + 1, . . . ,N − 1
(5c)

where tk denotes the kth time sample, since the data are typ-
ically collected via sampling devices, and N is the total num-
ber of time samples in the breath. Defining the sampling time
as Δt, then t1 = 0, t2 = Δt, . . . , tk = (k − 1)Δt, . . . , tN =
(N − 1)Δt. The parameters tm and tq define the borders of
the three regions of the breath in (5) with different monotonic-
ity as illustrated in Fig. 2(a). The cost function is of LS type,
since the squared terms correspond to the difference between
the measured Pao and the one estimated from the model in (1)
at each time sample. The unknowns over which J is minimized
are R, E, P̃mus(t1), . . . , P̃mus(tN). Further constraints can be
added on the range of values that P̃mus(tk ) can take and on the
parameters R and E, which have to be positive, within some
physiological bounds Rmax and Emax

0 ≤ R ≤ Rmax (6a)

0 ≤ E ≤ Emax (6b)

P̃min ≤ P̃mus(tk ) ≤ P̃max . (6c)

The CO problem in (4)–(6) is characterized by a quadratic
cost function and linear constraints. It belongs to the class of
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Fig. 2. (a) Regional constraints in (5) imposed on P̃mus (t) in the estimation
method. The plot is an illustrative example of a possible profile satisfying
such monotonicity constraints. (b) Nominal profile of Pmus (t) used in the
deterministic example. The profile is given by (11) with Pp = −5, tp = 0.45
and tr = 0.6. The constraints used in the estimation method are defined by
tq = 0.8, whereas the search for the optimal tm is done over the interval
[t1 = 0, tr = 0.6] in increments of 0.05.

so-called quadratic programs, which are a mature mathematical
technique [23]. Well-established iterative algorithms such as
the interior-point and active-set methods exist to solve this class
of optimization problems and routines are available in most
commercial software, e.g., Matlab. To solve the minimization
problem in (4)–(6) via such quadratic programming techniques,
tm and tq in (5) need be specified. A search for the optimal
tm and tq is then necessary. The search is done by solving the
quadratic program for different pairs (tm , tq) and obtaining the
corresponding minimized values Jmin ’s. The solution arising
from the pair giving the minimum Jmin among the obtained
Jmin ’s provides the estimate of R and E. In practice, the possible
candidates for (tm , tq) can be significantly reduced by exploiting
information available from the ventilator. We narrow the search
for tm down to the interval t1 ≤ tm < tSOE , whereas tq can be
fixed and equal to tSOE (SOE stands for start of exhalation and
denotes the time sample when the ventilator stops supporting
the breath, a.k.a. cycling off). The rationale for this choice is
that in normal conditions the ventilator cycles off when or after
the patient effort terminates. More insight on the choice is given
in the next section. To take advantage of available routines in
commercial software, the quadratic program above is written in
the standard form

minimize J =
1
2
xT Hx + fT x + g (7a)

subject to Ax ≤ b (7b)

Aeqx = beq (7c)

l ≤ x ≤ u (7d)

where (8a)–(8e) are shown at the bottom of the next page.
In the following examples, the function quadprog available in

the optimization toolbox of Matlab is used to solve the quadratic
program in (7). Note that the matrix H of the quadratic term in
the cost function J is positive-semidefinite as all its eigenvalues
are nonnegative. Since H is the second derivative of J with
respect to x, J is convex. However, it is not strictly convex as
two eigenvalues are equal to 0. The corresponding eigenvectors
span the plane of solutions with same minimum cost. Hence,
different linear combinations of these two eigenvectors give rise

Fig. 3. Electrical analogue corresponding to (10).

to the infinitely many solutions of the estimation problem at
hand, as mentioned in Section II. The physiological constraints
introduced in the optimization problem aim to make such a
plane of minimizing solutions infeasible, except for the point
corresponding to the solution that we are after.

IV. NUMERICAL VALIDATION

To demonstrate the validity of the new estimation method,
numerical simulations have been performed. The simulations
were performed for the PSV mode, where the waveform for
Pao(t) is dictated by the ventilator until the cycling off. In
what follows is a simplified logic that was used in the study
to model the PSV ventilation mode. When the patient starts
the breath (Pmus changing from 0 to negative values), ideal
triggering is assumed for simplicity and the ventilator provides
pressure at the airway opening of the patient. Pao(t) increases
exponentially from an initial value (PEEP) and approaches
asymptotically the nominal PSV value. The time constant of
the exponential function is denoted as Trise . V̇ (t) and V (t) are
computed solving the ordinary differential equation (1). V̇ (t)
reaches a maximum value (V̇peak) and then decreases. Once it
crosses a threshold given by Ecycle V̇peak (0 < Ecycle < 1), the
ventilator cycles off, i.e., the inhalation valve shuts down and
the exhalation circuit opens. The time at which the ventilator
cycles off is indicated by tSOE . After tSOE , the ventilator is
modeled as maintaining an exhalation pressure equal to PEEP.
Pao(t) is typically higher than PEEP due to the internal resis-
tance Rv of the ventilator and tubing. In summary, the measure-
ments of Pao(t), V̇ (t), and V (t) are simulated via the following
equations:

Pao (t) = PEEP + PSV(1 − exp(−t/Trise)) (9a)

Pao (t) = RV̇ (t) + EV (t) + Pmus (t) + PEEP (9b)

for 0 ≤ t < tSOE and

0 = (R + Rv) V̇ (t) + EV (t) + Pmus (t) (10a)

Pao (t) = Rv V̇ (t) + PEEP (10b)

for tSOE ≤ t ≤ tN , where tN stands for the time at which the
breath ends. For each simulation, we choose the ventilator set-
tings (PEEP, PSV, Trise , Ecycle) as well as Rv and the nom-
inal values for the patient parameters (R, E) and respiratory
muscles pressure (Pmus(t)). During inhalation, we solve the
ordinary differential equation (9b) for V (t) and V̇ (t) with the
forcing function Pao(t) given by (9a). During exhalation, we
solve the ordinary differential equation (10a) for V (t) and V̇ (t)
and then compute Pao(t) from (10b). (9b) comes from (1) with
P0 = PEEP. (10a) and (10b) come from the model in Fig. 3,
modified from Fig. 1(c) by the introduction of the exhalation
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resistance Rv between the patient airway opening and the ex-
halation chamber in the ventilator. The PEEP terms cancel out
in (10a). The data coming from (9) and (10) are then sampled
at 100 Hz (Δt = 0.01 s).

For brevity, the units will be often omitted in the rest of
the paper. Time will always be reported in s (seconds), all the

pressure values (Pao , Pmus ,PEEP,PSV) in cmH2O, V in L
(liter), V̇ in L/s, R in cmH2O·s/L and E in cmH2O/L. These
are the units commonly used in clinical practice.

H = 2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

V̇ 2 (tk )
N∑

k=1
V̇ (tk )V (tk ) V̇ (t1 ) V̇ (t2 ) · · · V̇ (tN )

N∑
k=1

V̇ (tk )V (tk )
N∑

k=1
V 2 (tk ) V (t1 ) V (t2 ) · · · V (tN )

V̇ (t1 ) V (t1 ) 1 0 · · · 0

V̇ (t2 ) V (t2 ) 0 1
. . .

...
...

...
...

. . .
. . . 0

V̇ (tN ) V (tN ) 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8a)

fT = −2
[

N∑
k=1

V̇ (tk ) Pao (tk )
N∑

k=1
V (tk ) Pao (tk ) Pao (t1 ) · · · Pao (tN )

]
(8b)

g =
N∑

k=1

P 2
ao (tk ), l =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

P̃m in

P̃m in

...
P̃m in

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rm ax

Em ax

P̃m ax

P̃m ax

...
P̃m ax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b = 0, beq = 0 (8c)

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 −1 0 · · · 0 0 0 · · · · · · 0 0 0 · · · · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0 0 0 0 · · · 0 −1 1 0 · · · · · · 0 0 0 · · · · · · 0 0
0 0 0 0 · · · · · · 0 1 −1 0 · · · 0 0 0 · · · · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
0 0 0 0 · · · · · · 0 0 0 · · · 0 1 −1 0 · · · · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

E

P̃mus (t1 )
P̃mus (t2 )

...

...
P̃mus (tm−1 )
P̃mus (tm )

P̃mus (tm +1 )
...
...

P̃mus (tq−1 )
P̃mus (tq )

P̃mus (tq+1 )
...
...

P̃mus (tN−1 ),
P̃mus (tN )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8d)

Aeq =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · · · · 0 0 0 · · · · · · 0 −1 1 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 0 0 0 · · · · · · 0 0 0 · · · · · · 0 0 0 · · · 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8e)
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TABLE I
DETERMINISTIC EXAMPLE

Active-Set Algorithm Interior-Point Algorithm

E c y c l e tS O E tS O E − tr R e s t E e s t R e s t E e s t

0.15 1.11 0.51 7.0000 20.0000 7.0000 20.0001
0.20 0.94 0.34 7.0000 20.0000 7.0001 20.0002
0.25 0.76 0.16 7.0000 20.0000 7.0008 20.0018
0.30 0.61 0.01 7.0000 20.0000 7.0008 20.0018
0.35 0.60 0.00 11.5180 30.0401 10.1807 27.0685
0.40 0.59 −0.01 6.7204 19.3786 10.3482 27.4409
0.45 0.58 −0.02 6.8956 19.7681 10.4334 27.6300
0.50 0.57 −0.03 6.7284 19.3964 10.4423 27.6498
0.55 0.56 −0.04 11.5180 30.0401 10.4193 27.5987

Estimated R and E from data simulated with the following ventilator settings and pa-
tient parameters: PEEP = 5, PSV = 17, T r i s e = 0.3, Rv = 2, R = 7, E = 20,
Pm u s (t) from (11) with tp = 0.45, tr = 0.6, tN = 4. E c y c l e is varied between 0.15
and 0.55 to generate breaths with positive and negative tS O E − tr . The parameters in
the estimation algorithm are tq = 0.8, search for optimal tm over [0,0.6] in increments
of 0.05, Rm in = Em in = 0, Rm a x = Em a x = 100, P̃m in = −30, P̃m a x = 15.

A. Deterministic Example

The first example is meant to show how the constraints intro-
duced in the previous section are capable of overcoming the un-
derdetermined nature of the original estimation problem. Mea-
surement noise is not taken into account here for clarity and will
be discussed in the next section. Numerical experiments have
revealed that the constraints introduced in the previous section
are always able to make the solution of the quadratic program
in (7) unique when the ventilator cycles off after the patient
effort is over. For the purpose of illustration, we show here an
example where the time at which the ventilator cycles off (tSOE)
is changed by varying the value of Ecycle over a broad range.
The nominal profile of Pmus(t) is chosen to be sinusoidal, as
implemented for example in a commercial breathing lung simu-
lator (ASL 5000, IngMar Medical). More precisely we simulate
Pmus(t) as

Pmus (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pp sin
(

π

2tp
t

)
, for 0 ≤ t < tp

Pp sin
(

π(t + tr − 2tp )
2 (tr − tp )

)
, for tp ≤ t < tr

0, for tr ≤ t ≤ tN

(11)

where tp and tr indicate the time samples at which the nomi-
nal Pmus(t) reaches its minimum (Pp , negative peak) and re-
turns to 0, respectively. To better illustrate the key aspects of
the method, in this example we exploit the knowledge of the
nominal profile of Pmus(t) to choose the estimation algorithm
parameters tm and tq as follows: tq is fixed as tq = tr + 0.2,
whereas tm varied between 0 and tr (t1 ≤ tm ≤ tr) in incre-
ments of 0.05. Fig. 2(b) graphically shows in the same plot the
nominal profile of Pmus used to simulate Pao(t), V̇ (t), and V (t)
waveforms and the algorithm constraint parameters tm and tq
used in this example. Table I reports the estimation results from
the measurements simulated for several values of Ecycle . As
this parameter increases, the ventilator cycles off earlier. Note
how the presented estimation method is able to find the nominal

Fig. 4. Example with Ecycle = 0.2 from Table I. (a) Simulated waveforms;
(b) estimates of R and E and minimum cost function Jm in from executions of
the quadratic program in (7) for different values of tm . The minimum among all
Jm in ’s and the corresponding estimates are circled. Such values are the outcome
of the presented estimation method.

patient parameters exactly (in the absence of noise) as long as
tSOE > tr , i.e., as long as Pmus(t) returns 0 before the ventila-
tor cycles off. Two different numerical algorithms are used to
solve the quadratic programs at the core of the method, namely
the active-set and interior-point algorithms (both available in
Matlab function quadprog). The former is more accurate when
the true solution is found, the latter is faster (on a laptop with
2.6 GHz Intel Core i7 processor, the average computational time
for a breath is 1 s for the interior-point algorithm versus 5 s for
the active-set algorithm). With the interior-point algorithm, the
final error of the iterations causes errors in the estimates of R
and E of less than 0.1%. Hence, the interior-point algorithm is
preferred in the real-time application at hand and will be used
in the rest of the paper.

As an example representative of the case tSOE > tr , Fig. 4(a)
shows the simulated waveforms Pao(t), V̇ (t) and V (t) for
Ecycle = 0.2 and Fig. 4(b) reports the corresponding output
of the quadratic programs run for different values of tm (in the
search for the optimal tm , expected to be tm = tp ). Note how
the estimates of R and E are very accurate in a relatively large
range of tm values. This means that the estimates are not very
sensitive to the values of tm chosen in the quadratic program.
A full search for tm is then not necessary for practical purposes
and can be done over a reduced grid of values. Additionally,
even though the presence of measurement noise might shift the
position of the minimum of the cost function to a value tm �= tp ,
the estimates of R and E are expected not to be significantly
affected. In summary, the estimation method can be made com-
putationally efficient and is expected to be robust to noise. In
Fig. 4(b), it is worth noting how for both R and E the estimate
obtained via the method presented is significantly better than the
one obtained via the ordinary LS method assuming the patient is
passive (e.g., [5]). Also note how the value of tq does not affect
the method as long as tq ≥ tr . In practice, since tr is unknown, a
possible approach consists of setting tq = tSOE and limiting the
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Fig. 5. Example with Ecycle = 0.4 from Table I. (a) Simulated waveforms;
(b) estimates of R and E and minimum cost function Jm in from executions of
the quadratic program in (7) for different values of tm . The minimum among all
Jm in ’s and the corresponding estimates are circled. Such values are the outcome
of the presented estimation method.

Fig. 6. Examples of convergence of the quadratic programs for the cases
shown in Figs. 4 and 5. Convergence to the minimum J is always achieved,
in both Ecycle = 0.2 and Ecycle = 0.4 cases. For tm = 0.45, the minimized
values of J are lower since the true Pmus reaches its minimum at tp = 0.45.
For other values of tm , the constraints in (5) are not compatible with the true
Pmus , therefore the minimum attainable J is higher.

search for tm to the interval t1 ≤ tm < tSOE . tSOE is provided
by a standard ventilator; hence, it is available to the estimation
algorithm.

It is of interest to analyze what happens when Ecycle ≥ 0.35,
where Table I suggests that the estimation method is not able
to find the exact solution. As a representative example, Fig. 5
shows more details for the case with Ecycle = 0.4. The com-
ments are very similar to the case with Ecycle = 0.2, except for
the fact that when tm = tp the quadratic program does not yield
the correct solution. As shown in Fig. 6, the interior-point al-
gorithm converges to the minimum of the cost function (which,
within the convergence tolerance, corresponds to perfect fitting,
since no noise affects the data), as expected. However, the es-
timated R and E are not equal to the nominal values. In this
specific example they actually are quite different. Understand-
ing this event via eigenvalue decomposition gives a satisfactory

Fig. 7. Example with Ecycle = 0.4, tm = 0.45 and tq = 0.8. There exists
a linear combination of the two eigenvectors of H corresponding to zero eigen-
values that is compatible with the constraints. This illustrates how the solution
to the quadratic program is not unique when tSOE ≤ tr , tm = tp and tq ≥ tr .
The linear combination of eigenvectors has its minimum value at t = 0.45 (inset
figure) and is constant for all t > 0.8.

explanation to this undesired result. Any solution consisting of
R, E, P̃mus (t1) , . . . , P̃mus (tN) values can be written as a linear
combination of the eigenvectors of H , the quadratic matrix of
the cost function. As mentioned in Section II, the analysis of
the eigenvectors of H reveals two null eigenvalues. In the afore-
mentioned linear combination, the coefficients multiplying the
eigenvectors corresponding to such null eigenvalues can be arbi-
trarily modified without affecting the value of the cost function.
This gives rise to infinitely many solutions minimizing J in (7a).
The introduction of the constraints in (7b)–(7d) aims to make
these infinitely many solutions infeasible, except for the physi-
ological solution corresponding to the respiratory resistance R
and elastance E. Unfortunately, the eigen-decomposition anal-
ysis reveals that when tSOE ≤ tr and the chosen tm and tq
give rise to constraints perfectly compatible with the nominal
Pmus(t), such constraints are not sufficient to make the solu-
tion of the quadratic program in (7) unique. Fig. 7 shows the
two eigenvectors corresponding to null eigenvalues for the H
matrix arising in the case with tm = tp , circled in Fig. 5(b). To
be more precise, the plots in Fig. 7 refer only to the entries of
such eigenvectors corresponding to P̃mus (t1) , . . . , P̃mus (tN).
The entries corresponding to R and E are reported in the legend.
Fig. 7 also shows that there exists a linear combination of such
eigenvectors that is perfectly compatible with the constraints in
(7b)–(7d) when the latter are chosen with tm = tp = 0.45 and
tq = 0.8 ≥ tr = 0.6. Such a linear combination of eigenvectors,
multiplied by an arbitrary scaling factor, can be added to the so-
lution that is found by the quadratic program, since it does not
violate the constraints, without increasing the value of the cost
function, because it is a linear combination of eigenvectors cor-
responding to zero eigenvalues (hence, the contribution to J is
zero). This proves how the solution to the optimization problem
is not unique when tSOE ≤ tr and the constraints are perfectly
compatible with the true Pmus(t). The iterative algorithm to
solve the quadratic program then terminates once any feasible
and minimizing solution is found. The solution we are after is
one among several feasible and minimizing solutions. As shown
in Table I, the desired solution is not guaranteed to be found.
If the constraints are not compatible with the true Pmus(t), for
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example because tm �= tp , then the linear combination of eigen-
vectors shown in Fig. 7 cannot be added to the estimated Pmus(t)
found by the quadratic program because it would violate the con-
straints. Hence, for tm �= tp the quadratic program has a unique
solution. Although this is not the desired solution, it gets closer
to the true solution as tm approaches tp , as shown in Fig. 5(b).
Hence, for tSOE ≤ tr , the case with tm and tq giving rise to
constraints perfectly compatible with the nominal Pmus(t) is a
singular case. It is sufficient to solve a quadratic program with
tm slightly different from the nominal tp to obtain estimates of
R and E very close to the desired nominal values. We can state,
therefore, that in the absence of noise, disturbances or model-
ing error, the estimate obtained from the method presented is
exact in the limit of the constraints approaching compatibility
with the nominal Pmus(t). For constraints perfectly compatible
with the nominal profile of Pmus(t), the estimate is indeed exact
if tSOE > tr , whereas it is generally not exact for tSOE ≤ tr .
For constraints not perfectly compatible with the nominal pro-
file of Pmus(t), the estimate is close to the desired nominal
value.

One can then think of avoiding the problem due to the singu-
larity by choosing an estimate from the neighborhood around
the singularity, possibly making the constraints intentionally
incompatible with the true profile of Pmus(t). However, in
practice the measurements are affected by noise and the op-
timization problem is generally ill-conditioned around the sin-
gularity. Hence, when tSOE ≤ tr there is no guarantee that the
estimates of R and E are indeed close to the desired true val-
ues. The choice of tq = tSOE (with t1 ≤ tm < tSOE ) is an at-
tempt to address the singularity of the method. Such a choice
forces the algorithm to find a profile of Pmus(t) that becomes
constant right after tSOE , making the constraints incompatible
with the true profile of Pmus(t) when tSOE ≤ tr . Unfortunately,
the effectiveness of this choice is difficult to generalize when
tSOE ≤ tr . If tSOE occurs very close to tr , the constraints might
not be sufficiently incompatible with the true profile of Pmus(t),
resulting in high variance of the estimates (ill-conditioning).
On the other hand, if tSOE occurs very close to tp , the con-
straints might introduce significant error from the true profile
of Pmus(t), resulting in high bias of the estimates. Conversely,
as previously explained, the choice of tq = tSOE does not af-
fect the method capability of finding the desired solution when
tSOE > tr .

B. Stochastic Example

The next example shows how the method performs in the
presence of noise in the data. For the purpose, Gaussian noise
with zero mean and different values of standard deviation (0.1,
0.5, 1) is generated and added to Pao(t) to simulate noisy data
in the model in (1). Additionally, it is of interest to see how
the method responds to a nominal profile of Pmus(t) that does
not feature a well-defined tr . In real breaths, the respiratory
muscles usually relax gradually and it is typical to assume an
exponential decay of Pmus(t) to 0. Like, for instance, in [24]
and [25], the nominal Pmus(t) is chosen to have the following
parabolic-exponential profile

TABLE II
STOCHASTIC EXAMPLE

Noise Resistance Elastance

True Estimate True Estimate

Std dev Mean Std dev Mean Std dev

0.1 7 7.023 0.023 20 20.047 0.042
0.5 7 7.153 0.126 20 20.312 0.235
1 7 7.353 0.262 20 20.712 0.498

Estimated R and E (mean and standard deviation over Monte Carlo
simulations with 100 runs). The data are simulated with the following
ventilator settings and patient parameters: PEEP = 5, PSV = 17,
T r i s e = 0.3, E c y c l e = 0.2 Rv = 2, R = 7, E = 20, Pm u s (t)
from (12) with Pp = −5, tp = 0.5, τ r = 0.05, tN = 4. The param-
eters in the estimation algorithm are tq = tS O E , search for optimal tm

over [0,tS O E ) in increments of 0.05, Rm in = Em in = 0, Rm a x =
Em a x = 100, P̃m in = −30, P̃m a x = 15. Three Monte Carlo sim-
ulations are shown, each with different noise standard deviation (0.1,
0.5, 1).

Pmus (t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pp
tp (tN −tp )

(
tN t − t2

)
, for 0 ≤ t < tp

Pp

exp
(

(t p −t )
τ r

)
−exp

(
(t p −t N )

τ r

)

1−exp
(

(t p −t N )
τ r

) , for tp ≤ t ≤ tN

(12)

where τr is the time constant of the relaxation of the muscles.
The decaying exponential approaches 0 asymptotically. Hence,
Pmus(t) never becomes exactly constant.

Table II reports the results of Monte Carlo simulations for
the case with Ecycle = 0.2. The mean and standard deviation of
the estimates obtained for R and E over 100 runs are shown
and demonstrate how the bias introduced by noise is negligible
compared to the bias that one would have by neglecting Pmus(t)
and using the ordinary LS method [see Figs. 4(b) and 5(b)].

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the presented technique in real
case scenarios, the estimation method has been retrospectively
tested on available experimental data. The data were collected
as part of an educational study performed at the Pulmonary
Research and Animal Laboratory at Duke University Medical
Center on a 44 kg adult male pig. The experimental protocol
was approved by the local institutional review board commit-
tee. During the study, a pig was anesthetized, intubated and
connected to an Esprit ventilator with NM3 respiratory moni-
tor (Philips-Respironics). Airway pressure (Pao) and flow (V̇ )
were measured at the Y-juncture, between the breathing circuit
and the endotracheal tube, via the standard proximal sensors
of the NM3 monitor. The pressure inside the esophagus (Pes)
was measured as a surrogate of intrapleueral pressure (Ppl) us-
ing an esophageal balloon connected to a differential pressure
transducer (Model PS309D, Validyne Engineering, Northridge,
CA). Occlusion tests were performed to assess the correct posi-
tioning of the balloon as described in [13]. Data were acquired
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Fig. 8. Comparison between invasive and noninvasive estimates on the first experimental dataset. From top to bottom: measured airway pressure (Pao ) and
CO fitting error, esophageal pressure (Pes ), flow, estimated resistance (R) and elastance (E). The inputs to the CO estimation method are, for every breath, the
waveforms of airway pressure, flow and volume as well as the ventilator tSOE (from NM3 respiratory monitor). The parameters in the CO estimation method are
tq = tSOE , search for optimal tm over [0, tSOE ) in increments of 0.05, Rm in = Em in = 0, Rm ax = Em ax = 100, P̃m in = −30, P̃m ax = 15. The quadratic
programs are solved by the interior-point algorithm (Matlab function quadprog). The esophageal pressure measurements are not used by the CO nor LS estimation
methods. They are used to compute the invasive estimates.

and collected at 100 Hz using a dedicated system for real-time
data acquisition and computation.

The datasets used to test the algorithm are related to peri-
ods during which the pig was subject to continuous positive
airways pressure with variable levels of pressure support venti-
lation (PSV). Two datasets were collected, for a total of 312 con-
secutive breaths. The performance of the algorithm presented
was evaluated by comparing the resistance and elastance non-
invasively estimated via the presented CO method (RCO and
ECO ) with their invasive counterparts (Rinv and Einv ). The in-
vasive estimates are used as a gold standard and were obtained
from the esophageal pressure data according to the following
procedure:

1) At the end of the study, the pig was placed on volume
control ventilation (VCV) in order to be ventilated pas-
sively with moderate to high tidal volumes so that its
spontaneous respiratory drive was temporarily inhibited
[Pmus(t) = 0 in (1)]. The flow (V̇ ) and pressure (Pao and
Pes) data from five such passive breaths were then used
to compute the resistance and elastance of the chest wall
(Rcw and Ecw ) via the LS algorithm. This method fits the
data via the equation representing the part of the electrical
analogue in Fig. 1(b) that pertains to the chest wall (i.e.,
from Ppl to Pmus), namely

Ppl (t) = Rcw V̇ (t) + EcwV (t) + P ′′
0 (13)

where P ′′
0 is, again, a constant pressure term to balance the

equation at t = 0. The LS method yielded values of Rcw
and Ecw for each selected passive breath. Final estimates
of Rcw and Ecw were then obtained by averaging across
five individual VCV breaths.

2) The resistance and elastance of the airways/lungs (Raw
and EL ) were computed breath by breath across all the
312 breaths. The LS method was applied to fit (2) to the
breath-by-breath flow (V̇ ) and pressure (Pao and Pes) data.
Note that thanks to the use of Pes as a surrogate for Ppl ,
estimation of Raw and EL via LS is, in this case, a fully
tractable mathematical problem since all the signals in (2)
are known and the only unknowns are the parameters Raw
and EL .

3) Finally, the invasive respiratory system resistance and
elastance estimates were computed by combining the
chest wall and the lungs/airways parameters according
to

Rinv = Rcw + Raw (14a)

Einv = Ecw + EL . (14b)

The experimental results are summarized in Figs. 8–12. Fig. 8
shows the results from the first dataset. The top three plots show
the experimental pressure and flow data, whereas the bottom two
plots show the comparison between invasive and noninvasive es-
timates of resistance (R) and elastance (E). Two different non-
invasive estimates are reported: those obtained via the presented
CO method and those obtained via the ordinary LS method (e.g.,
[5]) assuming no patient effort is present (Pmus(t) = 0). The top
plot also reports the fitting error from the presented estimation
method (CO). The periods with missing data in the resistance
and elastance plots correspond to periods that were excluded be-
cause the invasive and/or the noninvasive parameters could not
be reliably computed due to artifacts in the experimental pres-
sure and flow data. For instance, artifacts in the esophageal pres-
sure waveform around 1100 s are most likely due to esophageal
spasms (and hence not real diaphragmatic activity). These were
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Fig. 9. Snapshots of breaths from different segments of the dataset in Fig. 8.
Top plots: measured airway pressure (Pao ) and CO fitting error. Bottom plots:
respiratory muscle pressure (Pmus ) reconstructed from measured esophageal
pressure (Pes ) and estimated chest wall parameters (Rcw and Ecw ).

thus excluded from the computation of the invasive estimates.
Similarly, artifacts in the pressure and flow data (around 400
and 1000 s), due to autocalibration of the sensors operated by
the NM3 software, precluded the computation of both the in-
vasive as well as the noninvasive estimates. As we can notice
from the Pao waveform (top plot of Fig. 8), the dataset includes
periods at different PSV levels. Particularly, after 100 s at 5
cmH2O, PSV is progressively reduced throughout the dataset
from 20 to 10 cmH2O in steps of 3 cmH2O at intervals of 5 min,
as indicated by a reduction in the peak airway pressure values.
This is associated with a drop in peak flow (see middle plot of
Fig. 8). The reduction in peak flow correlates with a reduction
in Rinv . This is due to the dependence of the resistance on the
flow, as reported in the literature (e.g., Rohrer’s equation [26]).
Conversely, the elastance Einv appears to be unaffected by the
variations in respiratory patterns throughout the dataset. From
Fig. 8, we can observe that the agreement between invasive and
(noninvasive) CO estimates is remarkable, across PSV changes.
A bias of about 1 cmH2O·s/L in the CO estimates of R can be
noticed from 100 to 500 s (PSV of 20). The analysis of the Pmus
waveforms that can be reconstructed from the measured Pes
data and the estimated chest wall parameters Rcw and Ecw (see
Fig. 9) suggests that, during this period, the pig was “fighting”
the ventilator (i.e., exerting positive Pmus during inhalation). For
lower PSV values, minimum or no positive effort was made by
the pig. The presence of a positive Pmus deflection violates the
assumptions behind the constraints in (5) at the core of the CO
estimation method. A significant positive deflection (amplitude
of the anomalous positive deflection comparable to the ampli-
tude of the negative deflection indicating inspiratory effort) like
at PSV of 20 gives then rise to bias in the estimates from CO and
overall poorer fitting of (1). As the positive deflections become
smaller at lower PSV, the bias tends to disappear.

Fig. 10 shows the results from the second dataset. In this case,
the PSV level was gradually increased from 5 to 15 cmH2O in
steps of 5 cmH2O. Again, the changes in PSV correlate with
changes in Rinv . Similar to the results from the first dataset, the
periods with missing data in the resistance and elastance plots
are due to artifacts in the esophageal pressure data that prevented
the computation of reliable Rinv and Einv estimates. Even in this
case, the agreement between the invasive and (noninvasive) CO

Fig. 10. Comparison between invasive and noninvasive estimates on the sec-
ond experimental dataset. From top to bottom: measured airway pressure (Pao )
and CO fitting error, esophageal pressure (Pes ), flow, estimated resistance (R)
and elastance (E). The inputs and parameters of the CO estimation methods are
the same as for the first experimental dataset (see Fig. 8).

Fig. 11. Zoom in on Fig. 10 around four of the incorrectly estimated breaths
from the second experimental dataset. From top to bottom: airway pressure
(Pao ), resistance (R) and elastance (E).

estimates of resistance and elastance is satisfactory, except for
a few breaths at the lowest PSV for which the CO algorithm
underestimates both R and E. Fig. 11 shows a zoom in on
such cases. A deeper analysis of the Pao waveform reveals, in
the incorrectly estimated breaths, the absence of the positive
spikes that characterize all the other correctly estimated breaths
(dashed ellipses in Fig. 11). The positive spikes in Pao right
before the ventilator cycles off can be interpreted as a sign of
rapid decrease of inspiratory activity. A reduction in Pmus acts
as a disturbance for the ventilator controller that regulates Pao .
Since the controller is not ideal, it requires some time to respond
to this disturbance. As a consequence, the reduction in Pmus
gets reflected as a temporary increase in Pao . These findings are
in agreement with the limitations of the estimation algorithm
highlighted in Section IV. When the decrease in Pmus occurs
before the ventilator cycles off (spike in Pao), the algorithm
yields accurate estimates. Conversely, the CO estimates that are
far from the invasive ones emanate from breaths for which the
ventilator cycles off before the decrease in Pmus occurs. Such
breaths are more frequent in regions of low PSV, where Pmus is
generally more sustained and likely to extend past the ventilator
cycling off. The same phenomenon occurs in the first 100 s of
the first dataset.

Finally, Fig. 12 summarizes the overall performance of the
presented method on all 312 breaths. Fig. 12(a) shows the lin-
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Fig. 12. (a) Linear regression plots and (b) Bland–Altman plots on the 312
breaths from two experimental datasets.

ear regression plots, where the noninvasive CO estimates are
plotted against the corresponding invasive estimates. The red
lines represent the diagonals along which the data would lie if
perfect agreement existed. Fig. 12(b) shows the Bland–Altman
plots, where the absolute errors (noninvasive minus invasive es-
timates) are plotted as function of the invasive estimates. The
black dashed lines indicate the accuracy of the presented estima-
tion method computed as the mean of the absolute errors. The
red dashed lines indicate the precision of the presented method
computed as ±1 standard deviation of the absolute error. The
method provides resistance estimates with a bias of 0.27 and
precision of 0.79. These correspond to 4.5% and 13.1% of the
mean value of Rinv over the entire dataset, respectively. The
elastance, on the other hand, is estimated with a bias of 0.37 and
precision of 1.20, corresponding to 2.0% and 6.4% of the mean
Einv , respectively. It is envisioned that these small biases and
errors would be generally acceptable to the clinical community.
Note that these statistics include all the breaths shown in Figs.
8 and 10, i.e., also the breaths with anomalous response of the
pig at PSV of 20 in the first dataset as well as the breaths with
early ventilator cycling off in both datasets. As a last note, the
average computational time per breath over the two experimen-
tal datasets was 1.6 s on a laptop with 2.6 GHz Intel Core i7
processor, which is suitable for the intended real-time applica-
tion.

VI. DISCUSSION

Continuous, noninvasive measurement of lung function has
been long desired, especially in the intensive care unit for pa-
tients in respiratory failure and requiring mechanical ventilation.
The method presented in this paper takes in pressure and flow
at the mouth (or Y-juncture for patients ventilated with an en-
dotracheal tube) and outputs the patient respiratory resistance
and elastance. These quantities help the clinician understand
basic mechanical properties of the respiratory system and thus
make decisions about providing (and withdrawing) mechanical
respiratory support.

The main characteristics of the presented method can be sum-
marized as follows: 1) The estimation technique is noninvasive
(airway pressure and flow are available for any ventilated pa-
tient); 2) The algorithm processes data from an entire breath
to output patient respiratory elastance and resistance; 3) The
method is designed to take into account respiratory effort from
the patient, hence it is suitable for spontaneously breathing pa-
tients as is the case in PSV mode; 4) It is based on a mechanistic
model of respiratory physiology; 5) It overcomes the underde-
termined nature of noninvasive estimation of respiratory me-
chanics by adding physiological constraints to the unknowns
to be estimated. These constraints are general and only assume
passive exhalation (no positive Pmus during exhalation) and no
patient double effort during inhalation (no double negative peak
in Pmus during inhalation). The occasional violation of these
assumptions acts like a disturbance to the estimation method,
as shown in the first experimental dataset (see Figs. 8 and 9).
Additionally, in contrast with the classic two-point method (see
for instance [27]), the presented technique does not rely on
zero-flow points to estimate the respiratory elastance. This is
particularly important for patients affected by chronic obstruc-
tive pulmonary disease, whose typical dynamic hyperinflation
makes the two-point method invalid as noted by Rossi et al.
[28].

The numerical examples and their detailed analysis provide
good insight into the general estimation problem and the pre-
sented method in particular. For instance, the examples show
the importance of the inhalation breath segment where the ven-
tilator is exciting the system (before cycling off) and the patient
effort has already terminated (Pmus = 0 or, more rigorously,
Pmus = constant). With a simpler approach, one could then
think of the ordinary LS method applied only to data points
for which Pmus can be considered to equal 0. The drawback is
that, in practice, it is difficult to identify the time sample after
which Pmus = 0. In the numerical examples such a time sample
can be identified via the characteristic change in the slope of
the flow, but with real waveforms the slope change is typically
blurred if at all identifiable. In contrast, the presented method
is a practical solution that only uses the SOE time sample,
which is readily available from the ventilator, to automatically
define constraints on P̃mus . Furthermore, one may want to rely
on the SOE time sample provided by the ventilator to apply
the ordinary LS method to data for exhalation only (for which
the assumption Pmus = 0 generally holds), fitting the model in
(10a) or Fig. 3 instead of the model in (1) or Fig. 1(c). However,
that could, at best, yield the ratio of R + Rv to E (i.e., the time
constant of the system in Fig. 3), and not the actual values of
the patient parameters R and E like the method presented in
this paper. Additional complications in fitting (10a) arise with
ventilators whose expiratory valve is controlled to intentionally
change Rv during the exhalation phase. In contrast, the method
presented in this paper is completely based on fitting (1). Hence,
it does not suffer from time-varying Rv .

Both the numerical and experimental data validated the esti-
mation method when the ventilator cycles off after the patient
effort is over, which is the most frequent situation in mechani-
cal ventilation practice. Also, the examples presented show how
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performance can degrade when the ventilator cycles off early,
i.e., before Pmus vanishes. The mathematical justification for the
estimation to become critical in such a condition was investi-
gated and led to proposing a practical solution based on the SOE
time sample that is already provided by the ventilator. However,
its effectiveness cannot be generalized since it depends on the
relative position between the SOE time sample and the times at
which Pmus reaches its minimum value and returns to 0, which
varies on a per case basis. The first experimental dataset also
showed the presented method in action in conditions where its
underlying assumptions are violated (positive Pmus). Addition-
ally, both experimental datasets highlighted how the advantage
of using the presented approach over the ordinary LS method is
more significant as the respiratory muscle activity increases.

Although the estimation method has been demonstrated and
validated in the most common ventilator support situations, fur-
ther work will aim to improve its performance in the case of
delayed ventilator cycling off. This could be achieved directly,
for instance, by a different formulation of the constraints in the
optimization problem. Alternatively, similar to the automated
respiratory cycles selection approach proposed by Rigo et al.
[29], the presented method could be complemented with indica-
tors of anomalous conditions of ventilation that are detrimental
for the estimation algorithm. Taking into account the strengths
and weaknesses of the presented estimation technique, we en-
vision that the method could be utilized in conjunction with al-
gorithms that would detect either asynchrony in the cycling off
of the ventilator, or activity of the expiratory muscles, or patient
double effort during inhalation. These algorithms would detect
such anomalous conditions without the additional challenge of
their quantification. Their output would suggest whether the
estimates from the presented CO approach are reliable. Since
such anomalous conditions are usually clinically undesirable,
the clinician would, typically and based on experience or on the
alerts generated by the envisioned detection algorithms, adjust
the ventilator settings so that the ventilation conditions return
to normal. In turn, normal ventilation conditions are the most
favorable for the presented estimation method.

One of the limitations of this study is that only data from
healthy animals and numerical simulations were used. Further
studies on patients with broader variation of respiratory me-
chanics parameters are anticipated to better assess the efficacy
of the presented technique in real clinical settings.

VII. CONCLUSION

The paper presented a method for the estimation of respi-
ratory resistance and elastance in spontaneously breathing me-
chanically ventilated patients. Compared to existing techniques,
the new method is noninvasive, does not require maneuvers in-
terfering with the desired ventilation patterns and takes into
account the possibility of respiratory muscles effort, making the
technique suitable even for spontaneously breathing patients.
The method is based on a mechanistic mathematical model of
the lung mechanics, more specifically on a single-compartment
first-order linear model widely accepted in the respiratory re-
search community. At the core of the method is the minimization

of an objective function subject to physiological constraints that
aim to overcome the underdetermined nature of the estimation
problem in the presence of patient effort. Both numerical sim-
ulations and animal data are used to illustrate and validate the
method. Assumptions, strengths and weaknesses are also dis-
cussed.

The method makes it possible to continually estimate respira-
tory elastance and resistance in both passive and active patients
during normal operation of the ventilator. Continual noninvasive
insight into respiratory mechanics holds the promise that clini-
cians will be able to better provide mechanical ventilator support
with fewer adverse effects and ultimately better outcomes.
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