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Abstract 

In this paper we prove the uniqueness of the representation of a convex n-gon (bounded or unbounded for n >/5, 
bounded for n >/3) by the peaks of its Hough Transform. 

Keywords: Convex polygons; Hough transform 

1. Introduct ion 

The most popular method for the recognition of 
straight lines in a digital image is the Hough Trans- 
form (Hough, 1962; Ballard, 1981). The main idea 
of the method is to solve the straight line equation 

y=cx+m (1) 

for m: 

m = ( - x ) c + y .  (2) 

The new equation defines a straight line in the 
parameter (Hough) space. This straight line has a 
slope equal to - x  and an intercept equal to y where 
(x, y) are the coordinates of a point. According to 
this equation a point in the image space is mapped 
on a straight line in the parameter space. This straight 
line represents the set of lines that belong to the 
pencil that passes through the point (x,  y). The 

* Corresponding author. E-mail: dioan@robotsg.nuceng.ufl.edu. 

0167-8655/96/$12.00 © 1996 Published by Elsevier Science B.V. All 
Pll s0167-8655(96)00098-0  

parameter space is segmented and each feature point 
(x,  y) votes for the lines that pass through it. Highly 
voted lines given an indication of the existence of 
straight line segments. 

The efficiency of the Hough Transform in recog- 
nizing digital straight line segments makes the tech- 
nique particularly well suited for the recognition of 
polygons in a digital image. A lot of research has 
been done in this area during the past few years 
(Engelbrecht and Wahl, 1988; Turney et al., 1985; 
Rosenfeld and Weiss, 1995). In this paper we ad- 
dress the problem of the uniqueness of the represen- 
tation of a convex polygon by the peaks of its Hough 
Transform. We will show that a bounded n-gon 
(with n >~ 3) is uniquely determined by the spikes of 
the Hough Space. We will also show that a convex 
n-gon (with n >~ 5) is uniquely determined by the 
spikes it gives in the Hough Space regardless of 
whether it is bounded or unbounded. We will assume 
that no digitization errors exist and that the peaks 
give the parameters of the equation of a straight line 
with no error. 
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In Section 2 we present the background work and 
the notation that will be used throughout this paper. 
Section 3 presents the main body of this paper. In 
this section we prove that a bounded convex n-gon 
is uniquely determined by the peaks in the Hough 
space, and that any convex n-gon, for n >/5, bounded 
or unbounded, is defined uniquely by the peaks it 
gives in the Hough space. Finally, Section 4 contains 
the conclusions. 

2. Background-notation 

Suppose a straight line L and a convex figure Q 
(bounded) are given. There are four possible arrange- 
ments (see Lyustemilc, 1966, p. 8): 
Case 1: L and Q have no points in common (line L I 
in Fig. 1), 
Case 2: L and Q have one point in common (line L 2 
in Fig. 1), 
Case 3: L and Q have as an intersection a line 
segment belonging entirely to the boundary of Q 
(line L 3 in Fig. 1), 

L 2 

L Q 

L1 

Fig. 1. Illustration of the four different relative positions of a 
straight line with a convex shape: line L~ has no common points 
with the convex shape Q, line L 2 has a single common point with 
the boundary of Q, line L 3 has an edge segment belonging to the 
boundary of Q and line L 4 has an intersection lying entirely 
inside Q except for its endpoints. 

Case 4: The intersection of L and Q lies entirely 
(with the exception of its endpoints) inside Q (line 
L 4 in Fig. 1). 

The following properties will be useful as we 
develop our theory: 
• a straight line cuts the plane into two semi-planes 

which are convex sets, 
• if the intersection of two convex figures is not the 

empty set it is convex. 
When the notation f (  A, B . . . . .  P)  > 0 is used, it is 
meant that function f becomes positive for all points 
A, B . . . . .  P. We will denote straight lines by L i and 

their equations by f i ( x ,  y) = y - c i x - m i = O. The 
notation P0 PI -.- P , -  J denotes the set of vertices of 
a bounded convex n-gon as one travels its boundary 
counterclockwise (see Fig. 2). The notation 
L0 Po Pi ..- P~- 2 L,_ l denotes an unbounded convex 
n-gon as one travels its boundary counterclockwise 
(starts from ray L o Po and ends with ray P~_ 2 L,_ 1, 
see Fig. 3). 

3. The uniqueness of the Hough Transform of 
convex polygons 

In order to prove the main theorem that will help 
us to establish the uniqueness of the representation 
of convex polygons by their Hough Transform Lem- 
mas 1, 2 and 3 will be needed. 

Lemma 1. Suppose P o P t . . .  P ,_ l  is a bounded 
convex n-gon. A straight line L , ,  which has a 
common point with the interior o f  the n-gon and 

does not pass through any o f  its vertices, cuts it into 

two bounded convex polygons. The number o f  sides 

o f  the two polygons m I and m 2 satisfy the following 
relation: 

m 1 + m 2 = n + 4 .  

Proof. The convexity of the two polygons is guaran- 
teed by the argument that they are the intersection of 
two convex sets (the original convex n-gon and the 
two semi-planes, from Section 2 a semi-plane is a 
convex set). The boundedness is guaranteed by the 
fact that they both are subsets of the original n-gon. 
It only remains to show that the relation between the 
number of the sides of the two polygons which was 
given in the statement of Lemma 1 is indeed correct. 
Suppose that one semi-plane of line L, contains k 
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Fig. 2. A hounded convex n-gon which is cut by line L,,. 
Obviously k vertices P0-.. Pk- l are left on one semi-plane and 
the remaining (n-k) vertices of the n-gon are on the other 
semi-plane. 

vertices of the n-gon and the other n -  k, where 
1 ~< k ~< n - 1. Obviously, the n-gon is cut into two 
polygons, one (k + 2)-gon and one (n - k + 2)-gon 
(see Fig. 2). So the sum of the number of vertices of 
the two polygons is 

m l + m 2 = ( k + 2 ) + ( n - k + 2 ) = n + 4 .  [] 

Lemma 2. Given an unbounded convex n-gon, a 
straight line L ,  which has a common point  with its 

interior and does not pass through any o f  its vertices 

either 
(i) cuts it into an unbounded convex m v g o n  and a 

bounded convex m2-gon, which satisfy the rela- 
tion m~ + m z =  n + 4, or 

(ii) cuts it into two unbounded convex polygons 

which satisfy the relation m t + m 2 = n + 3. 

Proof. The two cases are shown in Fig. 3 (lines L, 
(i) and L, (ii)). The proof is in the same spirit as in 
Lemma 1. [] 

Lemma 3. Suppose a line L ,  cuts a convex polygon 
into two. Supppose also that none o f  the vertices o f  
the polygon belongs to the straight line L, .  The two 

new polygons that are created have m I and m 2 
sides. The number o f  sides o f  the new polygons 
satisfy the fol lowing relation: 

max(m l, m2) = n + 1. 

Proof. Obvious. If one notices that the smallest 
possible number of vertices for a bounded convex 
n-gon is three and the unbounded convex n-gon with 
the smallest number of vertices is the 2-gon. The 
results of Lemmas 1 and 2 can be used to show that 

max(ml,  m2) = n + 1. [] 

Theorem 1. I f  a set o f  n >I 5 lines defines a convex 
n-gon this n-gon is unique. I f  a set o f  n >>, 3 lines 

defines a bounded convex n-gon this bounded n-gon 

is unique. 

Proof. Obviously three straight lines define only one 
bounded convex 3-gon (triangle). Let f0(x, y)=-0,  
f t ( x ,  y ) =  0 and f 2 ( x ,  y ) =  0 be the equations for 
lines L 0, LI and L z and A, B, C the vertices of the 
triangle (see Fig. 4(a)). All interior points of the 
triangle satisfy the following equations (see e.g. 
Kelly and Weiss, 1979, p. 134): 

f~(x, y ) > 0  for i = 0 ,  1,2.  (3) 

If this is not the case, one can always substitute 
f~( x, y) = -f , . (x,  y) to make it happen. These three 
lines also define three unbounded 3-gons whose 
interior points satisfy the equations (Kelly and Weiss 
1979, p. 134) 

f / ( x ,  y ) > 0 ,  f /+l(X, y ) > 0 ,  

f, .+,(x, y) < 0 ,  

for i =  0, 1 ,2 .  (4) 

! Ln- I LO II Ln (ii) 
1 

PO \ ', }Pn-2 

~i ~ ] 

I 

P2 

Fig. 3. An unbounded convex n-gore When a straight line has a 
common point with the interior of  the n-gon two cases exist: case 
(i) line L n cuts the unbounded n-gon giving one hounded polygon 
and one unbounded convex polygon, case (ii) line L.  cuts the 
unbounded n-gon giving two unbounded polygons. 
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Fig. 4. (a) Figure showing the case where line L 3 does not cut the 
triangle ABC. The case is equivalent to (b) (i.e., interchange L 2 
and L 3 and L 3 now cuts the single triangle defined by the set of  
lines LoLI L2). (b) Figure showing the case where L 3 does cut the 
triangle ABC. 

Suppose that f 3 ( A ,  B ) > 0  and f 3 ( C ) < 0  (see 
Fig. 5). Obviously L 3 has no common points with 
the boundary of  the unbounded 3-gon L 2 BAL o (both 
its points of intersection with lines L 0 and L 2, D 
and E belong to the triangle ABC and from Eq. (3) 

we get f~(D,  E) > 0) and since f 3 ( A ,  B) > 0 it does 
not intersect the segment AB. Also, for the un- 
bounded 3-gons LoCBL j and L 1ACL 2, it is obvious 
that they have at least one common point with line 

L 3. Because line L 3 is not parallel with L t it has a 
common point with L~, either in the ray ALl or in 
the ray BL I. So a line L 3 that cuts the triangle 
defined by lines L o L IL 2 always gives an unbounded 
convex 4-gon by cutting one of  the unbounded 3-gons 
created by the same lines; has one common point 
with the second unbounded 3-gon giving two un- 
bounded 3-gons; and has no common point with the 
third unbounded 3-gon. 

This means any set of  four straight lines, where 
no pair is parallel and no three pass through the same 
point, gives one bounded convex 4-gon and one 
unbounded convex 4-gon (Fig. 5). For  the case of  
two of  the straight lines being parallel  it can be 
shown that the set of four lines defines either one 
bounded convex 4-gon or two unbounded convex 
4-gons. For the case of three of  them passing through 
the same point or being parallel it is easy to show 
that they do not define a convex 4-gon. We will 
show now that five straight lines can only give one 
convex 5-gon, either bounded or unbounded. 

Whenever  the subscript k, indicating a member  of a 
set of  n elements, exceeds the largest value an 
element can take (i.e., n - 1 for a set of n elements 
when counting starts from zero), the element with 
subscript k m o d ( n ) w i l l  be implied. 

Suppose now, that a fourth line L 3 with equation 
f 3 ( x ,  y ) =  0 is added to the set. Two cases exist: 
either L 3 cuts the triangle or it does not cut it (see 
Figs. 4(a) and 4(b)). It can be proved that the two 
cases are equivalent by just reordering the set of 
lines (if  the line L 3 does not cut the triangle defined 
by lines LoL~L 2 then the line L 3 c u t s  the triangle 
defined by the lines LoL j L 2 , this fact is illustrated in 
Figs. 4(a) and (4b)). Hence, we only need to check 
what happens to the unbounded 3-gons when a 
straight line cuts the triangle. 

\ 
L 3 

Fig. 5. Line L 3 cuts the triangle ABC giving a convex bounded 
4-gon (ABED) while cutting the unbounded 3-gon LoCBL I giv- 
ing an unbounded convex 4-gon (LoCEFLI). 
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Fig. 6. Cases (i)-(iv) illustrate the necessary condition for a set of 
5 straight lines to define a bounded convex 5-gon. 

The bounded 4-gon is determined by the inequali- 
ties f ,  >t 0 for i = 0, 1, 2, 3 and the unbounded 4-gon 
by the inequalities f ,  >~ 0 for i = 0, 1 and f~ < 0 for 
i = 2, 3. I f  line L 4 with equation fa(X, y) = 0 cuts 
the 4-gon giving a 5-gon and a triangle, one of the 
following has to be satisfied: 
(i) f4(B) < O, f4(E, D, A) > 0 (see Fig. 6, line L 4 

(i)); 
(ii) f4(A) < 0, fa(B, E, D)  > 0 (see Fig. 6, line L 4 

(ii)); 
(iii) f4(D) < O, f4(A, B, E)  > 0 (see Fig. 6, line L 4 

(iii)); 
(iv) f4(E) < O, f4(D, A, B) > 0 (see Fig. 6, line L 4 

(iv)). 
We will now show that if one of these four cases 

arises there is now way the unbounded 4-gon will be 
cut by the straight line L 4 to give a 5-gon. 

First we study case (i) which is equivalent with 
case (iii). Because f 4 ( B ) < 0  and f a ( A ) > 0 ,  we 
have f a ( F ) < 0 .  Hence, line L 4 c r o s s e s  line L 3 

within the segment FE (see Lemmas  2 and 3). The 
only way the crossing of  line L 4 to the unbounded 
4-gon LoCFL ~ can produce a 5-gon is by making a 
triangle one of whose vertices is either E or F. This 
implies that L 4 has a common point with either ray 
FL~ or segment EC. Both cases are impossible 
because L 4 already has a common point with the line 
L~ (within the segment AB) and line L 2 (within the 
segment BE). 

Now we examine case (iv). Because f a ( E ) <  0 
and f 4 ( D ) >  0 we have f 4 ( F ) <  0. Using the same 
reasoning we can show that f 4 ( C ) <  0. So line L 4 

crosses lines L 0 and L 1 within the segments BF and 
CD, respectively. Also line L 4 c r o s s e s  lines L 2 and 
L 3 within the segments EB and E o. Obviously, none 
of the points of  intersection of L 4 with lines L i, 
i = 0, 1, 2, 3, belongs to the boundary of  the un- 
bounded convex 4-gon LoCEFL I. So line L 4 has no 
common points with the unbounded convex 4-gon. 
Case (ii) can be studied in the same way as case (iv). 

Hence, if a line L 4 Cuts a bounded convex 4-gon, 
defined by a set of  four lines giving a bounded 
convex 5-gon it is guaranteed that the unbounded 
4-gon which is defined by the same set of  lines will 
not give a 5-gon. We can also prove the reverse. If  
the line cuts the unbounded convex 4-gon defined by 
the same set of  four lines giving a 5-gon, it will not 
cut the bounded 4-gon defined by the same set of  
lines to give a 5-gon. 

We proved that a set of  5 lines can only define 
one convex 5-gon, either bounded or unbounded. 
With the use of  induction we will prove that for 
n >/5 a set of  n lines can define only one convex 
n-gon. 

(i) The case n = 5 has already been proved. 
(ii) Suppose that if a set of n = k > 5 lines defines 

a convex k-gon, this k-gon is unique, 
(iii) We will prove that this is also the case for 

n = k + 1. In other words we need to prove that 
given that a set of  lines L 0, L l . . . . .  L k defines a 
(k + 1)-gon this (k + 1)-gon is unique. Obvi- 
o u s l y  a n y  s u b s e t  o f  k l ines ,  say  
L0, L l , . . . ,  Lk-z ,  defines at least one convex 
k-gon (bounded or unbounded). I f  this is not 
true then because of Lemma 3 it would be 
impossible for the set of  (k + 1) lines to define 
an (k + 1)-gon. By (ii) the k-gon is unique. The 
addition of one more line cuts it into two poly- 
gons one of  which is by hypothesis a (k + 1)- 
gon. This ( k +  1)-gon is unique because the 
k-gon is unique. [] 

We can summarize the results of  Theorem 1 as 
follows (the assumption is that no three of  the straight 
lines are parallel or have a common point). 

(i) Three straight lines define one bounded convex 
3-gon and three unbounded convex 3-gons. 

(ii) Four straight lines define (if there is no pair of  
parallel lines) one bounded convex 4-gon and 
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Fig. 7. An example where two non-convex polygons are defined 
by the same set of straight lines. Both non-convex hexagons 
ADFEIJA and KECDGJK are def'med by the same set of straight 
lines (and therefore give the same peaks in the Hough space). 

Proposition 2. For n >f 5, a convex n-gon is uniquely 
defined by the peaks of its Hough Transform. 

Proof. The proof is similar to the proof of Proposi- 
tion 1. [] 

4. Conclusions 

We showed that any bounded convex polygon is 
uniquely determined by the peaks its vertices give in 
the Hough space. We also showed that a convex 
polygon with more than five sides is uniquely deter- 
mined by the peaks it gives in the Hough space. 
Unfortunately as one can conclude by the example of 
Fig. 7 this is not the case for non-convex polygons. 
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one unbounded convex 4-gon. If two of the 
lines are parallel, they define either two un- 
bounded convex 4-gons or one bounded convex 
4-gon. 

(iii) n straight lines, where n >~ 5, can only define 
one convex n-gon (bounded or unbounded). 

The previous theorem helps us to establish the 
following propositions. 

Proposition 1. Any bounded convex polygon is 
uniquely determined by the peaks of its Hough 
Transform. 

Proof. Obviously the n sides of the n-gon give n 
peaks in the Hough space (n straight lines). By 
hypothesis, these n peaks define a bounded convex 
n-gon. From Theorem 1 this n-gon is unique. [] 
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