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Rat iona le  a n d  Objectives.  The authors evaluated the feasibility of com- 
bining wavelet transform and artificial neural network (ANN) technologies 
to prescreen mammograms for masses. 

Me thods  a n d  Materials.  Fifty-five mammograms (29 with masses and 26 
without) were digitized to 100-mm resolution and processed by using 
wavelet transformation. These wavelets were subjected to a linear output 
sequential recursive auto-associative memory ANN and cluster analysis 
with feature vector formation. These vectors were used in two separate ex- 
p e r i m e n t s - o n e  with 13 cases and another with seven cases held out in a 
test se t - - to  train feed-forward ANNs to detect the mammograms with a 
mass. The experiments were repeated with rerandomization of the data, 
four and six times, respectively. 

Results.  There was a stati~stically significant correlation (P < .01) between 
the network 's  prediction of  a mass and the presence of a mass. With major- 
ity voting, the feed-forward ANNs detected masses with 79% sensitivity and 
50% specificity. 

Conclusion. Although preliminary, the combination of wavelet transform 
and ANN is promising and may provide a viable method to prescreen mam- 
mograms for masses with high sensitivity and reasonable specificity. 

Key Words .  Computers, neural network; breast neoplasms, diagnosis; 
breast radiography 

B ecause breast cancer is now estimated to strike one in eight adult 

American women  [ 1, 2], many national institutions are promoting 

large-scale breast cancer screening programs [3-5]. Application of com- 

puter-aided diagnosis techniques to mammography screening programs 
may offer substantial benefit in terms of cost reduction and increased effec- 

tiveness 0 f the  screening process. The use of computers to directly pre- 
screen mammograms may eventually permit a substantial reduction in the 

number  of  studies that must be viewed by a radiologist. Of course, this im- 

plies that computers must be able to directly interpret digitized images and 

that this process must be fully automated. To date, this capability has been 
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limited b y  available technologies. Several rule-based 

schemes that use thresholding, subtraction, or both 

have been developed for computer  analysis of digitized 

mammograms [6-9]. Although these techniques have 

produced promising results, they have been hampered 
by high false-positive detection rates [10, 11]. 

Mammograms show only an estimated 3% of their ac- 

tual information content [12]. Improvements in the vis- 

ibility of mammographic information content  will prob- 

ably improve detection of small tumors. It is unlikely, 

however, that state-of-the-art screen-film radiography 

alone can be improved to display more information. 
Wavelet transformation, an image enhancement  tech- 

nique, has been used successfully to enhance the vis- 

ibility of image information content in mammograms, 

including both masses and microcalcifications [13-24]. 

Another advantage of wavelet image representations is 

that they can provide high magnitudes of data compres- 

sion without loss of important image features [25]. 

Artificial neural networks (ANNs) have been sug- 

gested as an alternative to traditional hale-based meth- 

ods for computer-aided detection of mammographic 

lesions [26-28]. ANNs learn the importance of image 

features on the basis of example training images. In 

general, they have proved very adept at pattern recog- 

nition problems [29-35]. Because of technologic limita- 

tions, however, most of the investigators attempting di- 

rect digitized data analysis of mammograms with ANNs 

have used small regions of interest selected from an en- 

tire image [27,28]. Others have extracted features, ei- 

ther qualitative or quantitative, for network training 

[36] or have incorporated ANNs into other computer- 

aided diagnosis schemes to improve lesion detection 

[37, 38]. 
In this pilot study, we investigated the potential of a 

set of customized ANNs to directly screen entire digi- 

tized mammograms for radiographically dominant 

masses. We used ANNs to detect masses from wavelet- 
transformed data from pairs of e n t i r e  digitized mammo- 

graphic images. We took advantage of wavelet transfor- 

mation techniques for both feature enhancement  and 

data compression. 

M A T E R I A L S  A N D  M E T H O D S  

A data set consisting of 55 mammograms, 29 with 

masses and 26 without, was digitized to 1004tm resolu- 

tion. The optical density of the darkest area of any im- 

age measured 4.1. Each of the patients had undergone 
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FIGURE 1. Schematic diagram of image processing with wavelet 
and neural network processing. LOSRAAM = linear-output se- 
quential recursive auto-associative memory. 

breast biopsy because of a radiographically detected 

mass or microcalcifications or because of a palpable 

abnormality not detected on a mammogram. All mam- 

mograms were pathologically correlated with the re- 

suits of biopsy. Because this is a pilot study, the mam- 

mograms were selected from a 380-case database to 

be representative of various mass appearances, includ- 

ing a variety of sizes, locations within the breast, and 

edge appearances. 

The average age of patients in the chosen data set 

was 57.0 years __. 12.9. The masses ranged in size from 

5 to 35 mm, with a mean of 14.1 mm _+ 6.4. On the ba- 

sis of pathologic findings, 11 masses corresponded to 

benign lesions and 18 corresponded to cancer. The 

edges of six, 12, and 11 masses were classified as pre- 

dominantly smooth, ill defined, and spicuiated, respec- 

tively. Similar to a method described by Chan et al [37], 

mammographic abnormalities, including both masses 

and microcalcifications, were scored according to a 

subjective five-point scale of visibility ranging from 1 
(easiest to see) to 5 (most difficult to see). In each case 

the same radiologist (L.K.) scored the difficulty of the 

finding on entry into the database. These scores were 

reviewed by another radiologist (W.R.R.) for accuracy, 
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and disagreements were resolved by the radiologists to- 

gether in review of the images. The masses in our data 

set had an average visibility of 2.3 +- 1.2. Smooth, spicu- 

lated, and ill-defined masses had visibility scores of 2.0 
+ 1.4, 2.1 4- 1.2, and 2.7 + 1.1, respectively. 

Data Preparation 

The overall method of data acquisition and process- 

ing is shown in Figure 1. The mammograms, consisting 

of two images each, were digitized by using a film digi- 

tizer system (FB1; Eastman Kodak, Rochester, NY). This 

system incorporates a 100¢tm focal spot film digitizer 

(model 200; Lumisys, Sunnyvale, CA). Each image mea- 

sured 9.375 x 6.825 inches (23.43 x 17.06 cm); after 
digitization, the images were on the order of 1,920 x 

1,536 pixels. All image processing and neural network 

training was done on a SPARe Center 2000 (Sun Micro- 

systems, Sunnyvale, CA) with 20 available parallel pro- 

cessors. To accommodate our wavelet transformation 

software, each image was resized by using an area-sam- 

piing algorithm based on that used by Newman and 

Sproull [39], from a rectangular matrix to a square one 

(1,024 x 1,024 pixels, each 1 byte in depth). This algo- 
rithm determines the value of each pixel in the new im- 

age in proport ion to the area from which it is derived 

in the original image. After the image was resized, the 

entire data set was contained in 115,343,360 bytes. 

Wavelet Transformation 

Multiresolution (five-level) and multidirection (two- 

dimensional) wavelet analysis with quadratic spline 

wavelets was used to transform each square image 

[40]. These wavelets are equivalent to the first-order 

derivative of a smoothing function, and so they en- 

hance the edges of image objects. This algorithm trans- 

formed the data set to 699,392 4-byte floating point co- 

efficients within the interval (-1, 1). The wavelet coef- 

ficients can be viewed hierarchically descending along 

the two dimensions (x followed by y) at each of the 

five levels of resolution, terminating with the remaining 

(nondecomposed)  coefficients at level five (Fig 2). 

Laine and Song [16] showed that high-quality mammo- 

gram reconstruction can be performed with a trtmcated 

wavelet hierarchy wherein coefficients below a certain 

threshold are discarded. We tested thresholds between 

0.25 and 0.75 and fotmd that a threshold of 0.4 was op- 
timal for analysis in that this threshold provided the 

best results with our later methods (see below). After 

truncation of the wavelet transform, with use of 0.4 as 

the coefficient threshold, the data set was represented 

by 174,841 triplets (wavelet coefficient, hierarchy 
level, position within level) of 4-byte floating point inte- 

gers with an average of 1,589 triplets per image. Thus, 

the entire data set was contained in 2,098,092 bytes af- 

ter wavelet transformation and truncation, a compres- 

sion ratio of 55:1 from the original 110 images in 1,024 

x 1,024 by 1-byte format. 

LOSRAAM Analysis and Clustering 

Because two-dimensional wavelet transforms quan- 

tize an image in terms of space and spatial frequency 

and can be ordered linearly, images can be processed 

recursively to determine prominent features. On the ba- 

sis of our previous experience parsing natural language 

(a problem with similar characteristics to the current 

one), we used a neural network approach derived from 

sequential recursive auto-associative memory to parse 

the wavelet coefficients and hierarchy data. This 

method is fully described elsewhere [41]. In this case, 

because the wavelet coefficients are continuous, linear 

output  instead of sigmoidal output  was used. This varia- 

tion is therefore called linear output sequential recur- 

sire auto-associative memory, or LOSRAAM. 

Because the objective of training the LOSRAAM net- 
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FIGURE 3. LOSRAAM neural network. All 
units in the input layer are connected to 
both of the units in the hidden layer (solid 
arrows). Each of the two hidden units is 
connected to each of the units in the out- 
put layer (solid arrows). In addition, each 
of the hidden units is connected in feed- 
back to the two context input-output units 
in the input layer (dashed arrows). The ob- 
jective of the network is to set each of the 
corresponding units in the output layer 
equal to the values in the units in the input 
layer. (See text for more explanation.) 

Output Layer 

Universally Connected to 
Output Nodes 

Hidden Unit#1 Hidden Unit#2 

\'t~iverselly Connected from ] I --  ~ ~. 
"~ ~tnl~t Nodes \ "~" \ 

Input Layer 

work is to have the output  exactly match the input, the 

network is constructed by using an input layer and a 

mirror-image output  layer. Each consisted of three in- 

put-output units, which corresponded to the values in 
wavelet triplets, and two context  units (Fig 3). Be- 

tween these two layers is a layer with two hidden 

units. The number  of hidden units chosen for the 
L O S R A A  architecture was determined empirically by 

testing architectures with one to three units. Use of 

two units proved superior to either the one- or three- 

unit experiments. The values of the context  units in the 

input layer are set by using the values developed in the 

hidden units from input of the immediately preceding 

wavelet coefficient triplet. The values of the initial con- 

text units input with the first wavelet coefficient triplet 

in the series are set randomly. Each of the three layers 

is fully connected with adjacent layers in a feed-forward 

direction (Fig 3). Training is carried out on the entire 

data set until a threshold is reached and no better pre- 

diction can be obtained. Because this network is used 

as a classification system for the wavelet coefficients, it 

is not  tested on data not used in training the network. 

Once this network is fully trained, the coefficients 

and their context units can be given to the LOSRAAM 

network and it will predict the preceding wavelet coef- 

ficient within a predetermined error tolerance. In this 

sense, the context  units associated with each coeffi- 

cient triplet become operators that predict the prior 

adjacent wavelet coefficient triplet and its context 
units. Thus, given any but the first wavelet coefficient 

information, the network can approximately predict 

the prior wavelet coefficient, its hierarchical level, its 

position within the level, and the two context units 
that will predict the next preceding wavelet coefficient 

triplet. Thus, the entire set of wavelet coefficients can 

be predicted from the last pair of hidden (contexO 
units. 

The context unit pairs arising from serial evaluation of 

the wavelet coefficient triplets were collected as two-di- 

mensional vectors. These were subjected to cluster 

analysis according to a method modified from Fu [42]. 

Fu's method was modified to handle data that clustered 

at any point, including at the origin. This analysis, with 

use of a sensitivity factor of 0.5, yielded six identifiable 

and discrete states (Fig 4, Table 1). From these, a six-ele- 

ment feature vector was created for each image [43]. 

Each element in the feature vector represented the num- 

ber of times the corresponding state from the above clus- 

ter analysis was found in each image. Representing each 

image as a six-element feature vector, with each element 

contained in 4 bytes, gives a final compression ratio for 

the data set of 43,691:1. 
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FIGURE 4. Graph of LOSRAAM clusters. Solid lines represent 1 
standard deviation and dotted lines represent 2 standard devia- 
tions of point distribution about the cluster centroid. Each of the 
six clusters developed during LOSRAAM analysis is distinct from the oth- 
ers. CL = cluster. 

A N N  A r c h i t e c t u r e  

Finally, in t w o  sepa ra t e  e x p e r i m e n t s ,  t w o  sets o f  

f eed- fo rward  neura l  n e t w o r k s  (FFNNs) w e r e  t r a ined  to  

classify t he  image  pai rs  c o r r e s p o n d i n g  to  each  case  for  

the  p r e s e n c e  o f  a mass.  The  FFNN a rch i t ec tu re s  in- 

c luded  six i n p u t  units ,  w h i c h  c o r r e s p o n d e d  to the  sca- 

lars f rom each  d i m e n s i o n  o f  the  image  fea ture  vec tors ,  

and  five o u t p u t  units .  A midd l e  layer  w i t h  h i d d e n  uni ts  

was  also used.  

The  h i d d e n  uni t  layer  c o n t a i n e d  t w o  uni ts  in t he  first  

e x p e r i m e n t  and  four  uni ts  in the  s e c o n d  e x p e r i m e n t .  

Al though  de r i ved  empir ica l ly ,  t he se  n u m b e r s  o f  h i d d e n  

units  ensu re  tha t  overf i t t ing  of  the  da ta  wi l l  n o t  occur .  

This c la im is b a s e d  on  w o r k  b y  MacKay [44], in w h i c h  

an O c c a m  fac tor  (OF) is c o m p u t e d  as fol lows:  (pa t t e rns  

× EO)/EP, w h e r e  EO = log 2 ( n u m b e r  of  o u t p u t  ca tego-  

ries) is the  n u m b e r  of  effect ive  ou tpu t s  and  EP the  ef- 

fect ive  pa ramete r s .  Effective p a r a m e t e r s  are  a func t ion  

of  the  n e t w o r k  a r ch i t ec tu re  and  d e p e n d  on  the  n u m b e r  

of  effect ive  ou tpu t s ,  the  n u m b e r  o f  h i d d e n  uni ts  (H), 

and  the  n u m b e r  o f  effect ive  inpu t s  (El). The  effect ive  

i n p u t  is the  n u m b e r  o f  i npu t s  r ema in ing  af ter  appl ica-  

t ion  o f  s ingular  va lue  d e c o m p o s i t i o n  to  t he  da ta  to de- 

t e rmine  l inear  i n d e p e n d e n c e .  The  effect ive  p a r a m e t e r  

is r e l a t ed  to  the  n u m b e r  of  ad jus tab le  w e i g h t s  in the  

n e t w o r k  and  is ca l cu la t ed  as fol lows:  EI × EO + H × 

(EI + EO) + H + EO. An O c c a m  fac to r  g rea te r  t han  3 is 

be l i eved  to  be  r e q u i r e d  to avoid  overf i t t ing  o f  the  train- 

TABLE 1 : Results of LOSRAAM Clustering of Wavelet Coeffi- 
cients 

Vector State 

Cluster Standard 
No. Population* Centroid t Deviation t 

0 42,384 0.309,-0.418 0.100, 0.081 
1 12,661 -0.074,-0.270 0.090,0.081 
2 32,401 -0.531, -0.045 0.093, 0.064 
3 55,648 0.372, 0.185 0.117, 0.085 
4 6,409 -0.006, 0.005 0.087, 0.051 
5 25,338 -0.022,0.248 0.096,0.065 

*Number of wavelet coefficients falling within the cluster. 
The centroid of the cluster is expressed as a two-dimensional 

vector. 
Standard deviations of the centroids along each of the unit 

axes. 

ing data.  Our  n e t w o r k s  have  an O c c a m  fac tor  app rox i -  

ma te ly  equa l  to  8.0 and  5.5 for  t he  first and  s e c o n d  ex- 

pe r imen t s ,  r espec t ive ly .  

The  five o u t p u t  uni ts  w e r e  d iv ided  into  t w o  groups ,  

t he  first con ta in ing  t w o  ca tegor i za t ion  uni ts  (mass  and  

no  mass)  and  the  s e c o n d  con ta in ing  t h r e e  h in t  uni ts  

[45, 46] tha t  i nd i ca t ed  the  loca t ion  of  a mass,  if any. 

Dur ing  t ra ining,  t he  mass  and  no-mass  ou tpu t s  w e r e  ini- 

t ial ly t a r g e t e d  at e i the r  on  (+1)  o r  off  ( -1 ) ,  d e p e n d i n g  

on  the  p r e s e n c e  o f  a mass.  The  o u t p u t  f rom these  t w o  

n o d e s  fo rm a two-d imens iona l  v e c t o r  tha t  w e  config-  

u r e d  to  a l l ow v e c t o r  bes t -ma tch  cr i ter ia  for  t he  net-  

w o r k ' s  dec is ion .  The  d i r ec t ion  cos ine  was  ca lcu la t ed  

for  e ach  o u t p u t  vec tor .  The  n e t w o r k ' s  p r e d i c t i o n  was  

t hen  classif ied a c c o r d i n g  to  the  ideal  c lass i f icat ion vec- 

to r  w i t h  w h i c h  the  o u t p u t  v e c t o r  had  the  larges t  direc-  

t ion  cos ine .  This  m e t h o d ,  w h i c h  uses  t w o  n o d e s  and  

h e n c e  a two-d imens iona l  vec tor ,  avoids  the  p r o b l e m  of  

a pos s ib l e  zero  v e c t o r  for  w h i c h  i n t e rp re t a t i on  is diffi- 

cult .  

The  loca t ion  da ta  in t he  h in t  uni ts  o f  t he  o u t p u t  

layer  w e r e  used  solely as targets  dur ing  n e t w o r k  train- 

ing. These  ta rge ts  p r o v i d e d  addi t iona l  cons t ra in t s  so 

tha t  t ra in ing was  g u i d e d  p r o p e r l y  in  classifying images.  

Because  this  l oca t ion  in fo rma t ion  was  n o t  p r o v i d e d  as 

i npu t  data,  t he  t h r e e  h in t  uni ts  and  the  w e igh t s  con-  

nec t ing  t h e m  to t he  o t h e r  layers  m a y  be  d i s ca rded  af ter  

t ra in ing w i t h o u t  any  effect  on  the  p e r f o r m a n c e  o f  t he  

n e t w o r k .  In  addi t ion ,  w h e n  u n k n o w n s  f rom the  tes t  set  

are  p r e s e n t e d  to  t he  n e t w o r k ,  t he se  t h r e e  uni ts  ob ta in  

d i sc re te  va lues  for  e ach  tes t  case  p r e s e n t e d  and  so po-  

ten t ia l ly  m a y  be  u sed  to  local ize  lesions.  A l though  le- 
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FIGURE 5. Map of current ANN architecture 
shows three layers: input, hidden, and out- 
put. These layers contain six, four, and five 
units, respectively. Three of the output units 
are hint units and two are classifiers (ie, 
mass and no mass). The input layer is con- 
nected in a forward direction to the hidden 
and output layers, whereas the hidden layer 
is connected only to the output layer, 

sion localization is therefore possible with this design, 

this experiment was not designed to evaluate this fea- 

ture of the networks and so the hint nnits were dis- 

carded in the network testing phase. 

The first hint unit distinguished between the upper  

and lower half of  the breast, the second unit distin- 

guished between the outer and inner half of the breast, 

and the third unit specified a subareolar versus a cen- 

tral location. The only valid combinations were upper  

outer, upper  inner, lower outer, lower inner, subar- 

eolar, and central. For the purpose of training, hint 

units not relevant to the location designation were ini- 

tially targeted at zero, whereas relevant hint units were 

targeted at either on (+1) or off (-1). For no-mass cases, 

all three units were targeted to zero and did not con- 

tribute to weight updates during training. In our experi- 

ence, hints have proved to be an invaluable aid to train- 

ing because they serve to constrain the number of pos- 

sible solutions the ANN can achieve. The units of the 
layers of the FFNNs were totally connected with 

weights to the units of any layer forward in the net- 

work architecture (Fig 5). This means that the input 

layer was connected to both the output  layer and the 
hidden layer, whereas the hidden layer was connected 

only to the output  layer. ANNs with only one layer of 

weights are called perceptrons [47] and are capable of 

solutions only in the form of hyperplanes that divide 

the input space into linearly separable regions [48, 49]. 

Even highly nonlinear problems, such as the interpreta- 

tion of mammograms, have some linearly separable ele- 

TABLE 2: Distr ibution of Feature Vectors among Clus- 
ters according to Mass and No-Mass Images 

Cluster No. 

Mammogram 0 1 2 3 Total 

Mass 26 14 18 0 58 
No-mass 25 16 10 1 52 

Total 51 30 28 1 110 

TABLE 3: FFNN Prediction of Mass on Test Set Cases from 
Experiment 1 

Threshold No. of Votes Required 
to Diagnose a Mass* 

Run 
No. 5 6 7 8 9 10 11 12 

1 
2 
3 
4 

Average sensi- 
tivity (%) 

Presence of Mass Correctly Predicted Out of 
8 Possible Cases with Masses 

6 6 6 6 6 5 5 5 
5 5 5 5 5 5 5 5 
7 6 6 6 6 5 5 5 
6 6 6 6 6 6 6 5 

75 72 72 72 72 66 66 63 

Absence of Mass Correctly Predicted Out of 
5 Possible Cases with Masses 

1 2 2 2 2 3 3 3 3 
2 2 2 2 2 2 2 2 2 
3 2 2 2 2 3 4 5 5 
4 2 2 2 2 2 2 2 4 

Average speci- 
ficity (%) 40 40 40 40 40 55 60 70 

*Total number of votes was 18 (nine networks with two images 
per case). 

ments. This architecture, by connecting inputs directly 

to outputs, provides these linear components  with di- 

rect representation in the overall solution. 

F F N N  T r a i n i n g  

Our approach to training neural networks for a vari- 

ety of applications is described elsewhere [50]. FFNN 

training was performed by using the conjugate gradient 
method modified for use with a self-scaling error func- 

tion, optimized to reduce the number  of derivative 

computations, and monitored for restart conditions 

with a technique described by Powell [51]. A more 

thorough discussion of our training methods is pro- 

vided elsewhere [46]. 
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TABLE 4: FFNN Prediction of Mass on Test Set Cases from 
Experiment 2 

Threshold No. of Votes Required 
to Diagnose a Mass* 

Run 
No. 8 9 10 11 12 

Presence of Mass Correctly Predicted Out of 
4 Possible Cases with Masses 

1 4 6 6 6 6 
2 3 5 5 5 5 
3 4 6 6 6 6 
4 2 6 6 6 6 
5 3 2 1 1 0 
6 4 4 4 4 3 

Average sensi- 
tivity (%) 83 79 71 71 63 

Absence of Mass Correctly Predicted Out of 
3 Possible Cases without Mass 

1 2 2 2 2 3 
2 2 2 2 2 2 
3 2 2 2 2 3 
4 2 2 2 2 2 
5 0 0 1 1 1 
6 2 2 2 2 2 

Average speci- 
ficity (%) 39 50 56 67 67 

*Total number of votes was 18 (nine networks with two images 
per case). 

Two separate exper iments  were  performed.  In the 

first, a test  set containing 26 images (13 cases, eight 

wi th  mass and five wi thout)  was created. In each case, 

the remaining images were  used for training. Before 

training, we  used cluster analysis wi th  a sensitivity fac- 

tor  of 0.5 to analyze the feature vectors represent ing 

the images [42]. This analysis showed that the images 

were  conta ined wi th in  four distinct and separate 

classes (109 images were  within three classes and one 

image was in the fourth) (Table 2). We const ructed  the 

test sets from among the 55 cases by using the follow- 

ing technique.  Image pairs that  made up an individual 

case were  segregated according to their  classification 

pairing. This y ie lded six classification pairs. Cases were  

selected at random from classification pair  groups. This 

technique ensured equal representa t ion of the classifi- 

cations among the test set groups. The test sets for the 

two exper iments  did not  enter  into the training process  

in any way and were  used solely for unbiased testing of 

the networks  generated during training. 

Those cases not  selected for the test set in each ex- 

per iment  were  used for training. In each exper iment  

ne twork  training was repeated  nine times, each time 

wi th  initial randomizat ion of the ne twork  input  values. 

This process  yie lded nine distinct ANNs. Training was 

terminated when  the per formance  of the ne twork  was 

opt imized for bo th  the mass and no-mass images in the 

training set (ie, no bet ter  predic t ion  of cases could be 

obtained).  Although this me thod  of determining 

comple t ion  of ne twork  training may have created net- 

works  that were  not  opt imal  in terms of their  ability to 

generalize, it el iminated the int roduct ion of training 

bias. 

The resulting collect ion of nine networks  was then 

given the test set images for analysis. Each ne twork  

p roduced  one vote pe r  image as to the presence  or ab- 

sence of a mass. Thus, each case received 18 votes. The 

accuracy of the networks  at various voting thresholds 

was examined.  The first exper iment  was repea ted  four 

t imes and the second exper iment  was repea ted  six 

times, and a n e w  random test set was selected each 

time. These exper iments  were  designed to measure the 

stability of the ne twork  predict ions  by using different- 

sized test sets. 

R E S U L T S  

Analysis of mass and no-mass images failed to reveal 

discrete separat ion of the two according to clusters at 

ei ther the LOSRAAM or the feature vector  level of data 

processing.  Both mass and no-mass images were  ap- 

proximate ly  equally distr ibuted among three of the four 

feature vector  states (Table 2). The fourth cluster con- 

tained a feature vector  from only a single image. No sta- 

tistically significant bias was found in this distr ibution 

to suggest that any one cluster correlated with  images 

wi th  masses or images wi thout  masses (P = .3734, Zz 

test). This finding is consistent  wi th  the nonlineari ty of 

the p rob lem of mass detect ion and suggests that image 

data cannot  be separated into simpler  elements.  

Tables 3 and 4 show the predic t ions  of the nine net- 

works  from each exper iment  on the test set cases at dif- 

ferent  voting thresholds for each separate run of the ex- 

periments.  The two images corresponding to the two 

views from the same breast  for each test set case are 

shown together.  The tables are divided horizontally, 

showing the number  of correct  predict ions  for mass 

cases in the top half and the number  of correct  predic- 

tions for the no-mass cases in the bo t tom haft. 

We evaluated the predict ions  from the first experi-  
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ment (Table 3) for the likelihood that the FFNNs are 

making their predictions on the basis of relevant infor- 

mation content  on the two-view mammograms. We cal- 

culated the Z 2 for the network's  predictions of a mass 

when  a mass was actually present and when  a mass was 

not present (Tables 5, 6). Results of the Z2 test show 

that when  a mass is present on the mammogram, the 
networks predict its presence statistically significantly 

more often than would be expected by random chance 
(P < .01). Conversely, if no mass is present, the predic- 

tion of the presence of a mass is random (P = .6869). 

These findings indicate that the networks are evaluat- 

ing image content that is directly related to the pres- 

ence of a mass. 

D I S C U S S I O N  

Our preliminary results show that, even with small 

data sets, a moderate degree of sensitivity (79%) can be 

obtained over repeated experiments while maintaining 

a reasonable level of specificity (50%) (Tables 3, 4). Re- 
peated experiments with two separate-sized test sets 

show that results are consistent and therefore repro- 

ducible. Although the difference was not statistically 

significant, the networks trained on the larger training 
set appeared to perform slightly better overall than the 

networks trained on the smaller training set. There ap- 

pears to be more variance among the predictions of the 

former than the latter, however. The exact reason for 
this is not apparent from these data. 

The ultimate goal of computer-aided mammogram di- 

agnosis is to develop a prescreening tool that (a) re- 

duces the number  of normal mammograms that a radi- 

ologist must read and (b) directs the radiologist's atten- 
tion to specific areas Of suspicion. The first part of 

these goals requires that sensitivity be maximized. Al- 

though the sensitivity of combined wavelet-ANN ap- 
proach is not currently adequate for this purpose, the 

use of a postprocessing voting scheme with multiple 

networks allows the sensitivity and specificity of the 

system to be adjusted to the clinical indication. Thus, in 

the case of tumor screening, voting thresholds can be 
chosen at the highest vote threshold that allows near- 

perfect sensitivity. 

Creation of a clinically useful automated prescreen- 

ing device will require a system (not necessarily based 

on ANNs) that can detect all mammographic manifesta- 

tions of malignancy (eg, masses and clustered microcal- 

cifications). Nishikawa et al [38] have suggested that 

TABLE 5: FFNN Prediction of the Presence of a Mass from 
Paired Orthogonal Mammographic Views When a Mass Is 
Present 

Paired Prediction* Observed Expected f i t  

PP 133 116 2.49 
PN 100 134 8.63 
NN 55 36 7.61 

*N = no mass, P = mass. 
t Total = 18.73 (2dr. P <  .01). 

strategies for computer-aided diagnosis of mammo- 

graphic lesions combine separate algorithms to evalu- 

ate each of these two harbingers of malignancy. With 

use of wavelet-ANN technology, two separate net- 

works could be used to prescreen mammograms- -one  

to screen for masses and the other for clustered micro- 

calcifications. 

Although specificity is somewhat less important to 

such a device, its optimization cannot be considered a 

secondary issue. The minimum acceptable level of 

specificity will be determined on the basis of the clinical 

situation and the number  of linked networks. Assuming 

that each network screens the target mammograms en- 

tirely independently of the others in the system, their 

ability to reduce work flow is exponentially related to 

their individual specificities. In the case of two net- 

works, one screening for masses and the other for clus- 

tered microcalcifications, individual network specifici- 

ties must be substantially better than 50%. Otherwise, in 

a worst  case scenario, there could very well be no real 

reduction in the number  of mammograms viewed by the 

radiologist. Hence, our current specificities are not suffi- 

cient to support clinical use. 

High false-positive rates with computer-aided diagno- 

sis techniques have been a problem for the detection of 

both masses and microcalcifications on digitized mam- 

mograms, in the range of two to three per image [6-11, 

37, 52]. With use of a majority voting scheme on only 

the test set images, the false-positive rate (by case) was 

50% in each experiment. This performance is marginal 

in terms of being able to reduce the number  of mammo- 

grams that must be viewed by a radiologist assuming 

similar performance for a system detecting microcalcifi- 

cations. However, we emphasize that these data are pre- 

liminary. It is likely that with larger data sets, improved 

image resolution, and more sophisticated wavelet trans- 

forms, the specificity of this technique can be improved 

substantially. 
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TABLE 6: FFNN Prediction of the Presence of a Mass from 
Paired Orthogonal Mammographic Views When No Mass Is 
Present 

Paired Prediction* Observed Expected X2t 

PP 38 34 0.47 

PN 80 88 0.73 

NN 62 58 0.28 

*N = no mass, P = mass. 
t Total = 1.48 (2df: P = .4771). 

Because of the nature of network training and assum- 

ing no overt bias in our case selection, the results with 

a small pilot data set such as this one should represent a 

lower bound of performance using our technique. A 

larger data set will allow more representative training 

sets thereby permitting better ANN training and pre- 

sumably better generalization. The larger the data set, 

the greater will be its variety. The greater the data set 

variety, the less will be the expected bias in the net- 

works from the point of view of both training and test- 

ing. Additionally, testing different wavelet transform al- 

gorithms, feature vector designs, network architectures, 

and voting schema may yet lead to further improvement 

in the performance of this architecture. Thus, this tech- 

nology must be tested and validated on a large data set 
for further validation of our current promising results. 

The complexity of data processing in our current 

methods is dictated by several factors. First, to make im- 

age data practical for ANN analysis, its magnitude must 

be greatly decreased without destroying the essential 

information contained within the image. Thus, wavelet 

transformation and stratification of the data become im- 
portant. Second, the data must be handled in such a 

way as to make analysis clinically practical and eventu- 
ally cost-effective by using available hardware. Third, 

the system must allow for the possibility of both linear 

and nonlinear information as part of the solution. Non- 
linearity in mass identification is apparent from the abil- 

ity of the FFNN to detect masses despite the lack of cor- 

relation among the four feature vector states with the 

presence of a mass on the images (Table 2). Fourth, 

data handling must be designed to allow for adjustable 

sensitivity and specificity depending on the problem 

posed. Finally, the system should show minimal vari- 

ance over a given data set. The introduction of voting 

schemes that use multiple ANNs helps address these 

last two issues. 

A major drawback of our method is its inability to 

pinpoint the suspicious region within the breast and in- 

dicate this area on the image (although it is theoreti- 

cally able to generally localize an abnormality to within 

a quadrant of the breast). Since many mammographic 

abnormalities are subtle and can be missed, even under 

rigorous conditions of evaluation, the ability of a 

screening device to direct attention to suspicious areas 

of a mammogram may increase early or subtle lesion de- 

tection and, hence, improve patient survival. Because 

of the high degrees of compression employed in our 

current techniques, mass localization on the image is 

not possible. Modification of this technique to process 

smaller areas of the images may provide an ability to lo- 

calize lesions more specifically. Indeed, this partial im- 

age processing may need to be done only when  the ini- 

tial screen of the entire image has located a suspicious 

area. This would ultimately save on processing time 
and allow a greater throughput of mammograms. 

Although preliminary, our results suggest that the 

combination of wavelet and ANN technology has prom- 

ise as a method to eventually screen mammograms for 
masses. There are a number of modifications of our ap- 

proach that may further improve both the neural 

network's  sensitivity and specificity for mass detection. 

Efforts for improvement may be directed toward im- 

proving the wavelet transform used for initial image 

analysis; changing the wavelet truncation threshold, al- 
tering the LOSRAAM architecture; changing the sensi- 

tivity factor for feature vector analysis; and improving 

the design of the FFNNs. Many of these experiments 

will require a larger data set for testing. In addition, the 

overall strategy of analysis may be modified (eg, by 

training the network on specific image abnormalities 

within the data and then testing on entire images). Fi- 

nally, testing can be improved with larger data sets by 

excluding test cases from all phases of training. We be- 

lieve that further investigation of our combined wave- 

let-ANN approach is warranted. 
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