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Abstract—Matrix-phased array transducers for real-time 3-D ultrasound enable fast, noninvasive visualization
of cardiac ventricles. Typically, 3-D ultrasound images are semiautomatically segmented to extract the left
ventricular endocardial surface at end-diastole and end-systole. Automatic segmentation and propagation of this
surface throughout the entire cardiac cycle is a challenging and cumbersome task. If the position of the
endocardial surface is provided at one or two time frames during the cardiac cycle, automated tracking of the
surface over the remaining time frames could reduce the workload of cardiologists and optimize analysis of 3-D
ultrasound data. In this paper, we applied a region-based tracking algorithm to track the endocardial surface
between two reference frames that were manually segmented. To evaluate the tracking of the endocardium, the
method was applied to 40 open-chest dog datasets with 484 frames in total. Ventricular geometry and volumes
derived from region-based endocardial surfaces and manual tracing were quantitatively compared, showing
strong correlation between the two approaches. Statistical analysis showed that the errors from tracking were
within the range of interobserver variability of manual tracing. Moreover, our algorithm performed well on
ischemia datasets, suggesting that the method is robust-to-abnormal wall motion. In conclusion, the proposed
optical flow-based surface tracking method is very efficient and accurate, providing dynamic “interpolation” of
segmented endocardial surfaces. (E-mail: qd2002@columbia.edu) © 2009 World Federation for Ultrasound in
Medicine & Biology.

Key Words: Real-time 3-D echocardiography, Optical flow, Speckle tracking, Quantitative evaluation, Open-chest

ultrasound, LV, Endocardium.
INTRODUCTION

Cardiac screening using ultrasound is beneficial because
it provides the highest temporal resolution but is limited
to two dimensions in most medical centers. Development
of 3-D echocardiography began in the late 1980s with the
introduction of off-line 3-D medical ultrasound imaging
systems. Many review articles have been published over
the past decade assessing the progress and limitations of
3-D ultrasound technology for clinical screening (Be-
lohlavek et al. 1993; Fenster and Downey 2000; Ofili and
Nanda 1994; Rankin et al. 1993). These articles reflect
the diversity of 3-D systems developed for both image
acquisition and reconstruction. Although 2-D transducers
can be configured to assemble a 3-D image from a series
of planar views, for truly real-time acquisition, only
Address correspondence to: Qi Duan, ET351, 1210 Amsterdam
Avenue, New York, NY, 10025. E-mail: qd2002@columbia.edu
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matrix phased array transducers can scan true 3-D vol-
umes with stationary transducers (Ramm and Smith
1990). There are few alternative technologies that also
enable real-time acquisition based on vibrating or fast
rotating transducers (Canals et al. 1999; Voormolen et al.
2006). Real-time 3-D ultrasound technology is an im-
provement over former generations of 3-D systems be-
cause volumetric data can be acquired rapidly (20 to 25
frames per second), enabling cardiologists to visualize
moving cardiac structures from any given plane in real-
time. A first generation of real-time 3-D ultrasound
(RT3D) scanners was introduced in the early 1990s by
Volumetrics

©

(Ramm and Smith 1990), but low spatial
resolution over the whole cardiac volume prevented the
technology from meeting its initial expectation and
reaching its full potential. A new generation of RT3D
transducers was introduced by Philips Medical Systems
(Best, The Netherlands) in the 2000s with the SONOS

7500, and most recently the iE33 ultrasound system,
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which can acquire a fully-sampled cardiac volume in
four cardiac cycles. Four sector acquisitions are per-
formed with each scan, acquiring 1/4 of the cardiac
volume. These sectors are spatially aggregated to gener-
ate one ultrasound volume over one cardiac cycle. This
technical design enabled dramatically increased spatial
resolution and image quality. The latest research upgrade
of iE33 also enables a true real-time model, which pro-
vides 4-D ultrasound streaming data without any spatial
compounding (Duan et al. 2007b).

Clinical evaluation of 3-D ultrasound data for as-
sessment of cardiac function is performed via visualiza-
tion using selected 2-D projection planes. Inspection of
3-D datasets with 2-D visualization tools is time-de-
manding, motivating the development of computational
tools for quantitative analysis of ventricular function. It
has been shown that abnormal ventricular wall motion
can be detected accurately on RT3D data, with quanti-
tative four-dimensional analysis of the endocardial sur-
face and computation of local fractional shortening (Herz
et al. 2005; Ingrassia et al. 2007). Monaghan’s group has
also shown that endocardial surface data derived from
RT3D ultrasound is valuable in accessing dyssynchrony
(Horstman et al. 2007; Kapetanakis et al. 2005). These
preliminary studies confirmed that RT3D ultrasound pro-
vides unique and valuable quantitative information about
cardiac motion based on manually or semiautomatically
traced endocardial contours. To facilitate the segmenta-
tion process over the entire cardiac cycle, we evaluated
the use of region-based tracking between segmented
frames to alleviate the manual tracing task. In previous
research on motion tracking with ultrasound data, inten-
sity-based optical flow (OF) tracking methods described
previously (Bardinet et al. 1996; Boukerroui et al. 2003;
Mikic et al. 1998; Paragios 2003; Tsuruoka et al. 1996;
Yu et al. 2003) combined local intensity correlation with
specific regularizing constraints (e.g., continuity of the
displacements). The presence of speckle noise in ultra-
sound prevents the use of gradient-based methods; how-
ever relatively large region-matching methods are robust
to the presence of noise. In this study, we propose a
surface tracking application using a 4-D correlation-
based tracking method on 3-D volumetric ultrasound
intensity data.

This study aimed to address the following ques-
tions, focusing on the left ventricle (LV):

1. Can the proposed method track the endocardial sur-
face between end-diastole (ED) and end-systole (ES)
with reliable positioning accuracy?

2. How does dynamic information derived from tracking
on RT3D ultrasound compare with information ob-

tained from a single segmentation method?
3. Can the proposed method be used as a dynamic in-
terpolation tool for tracking the endocardial surface?

METHODS

Region-based tracking using correlation metric
When Horn and Schunck (1981) proposed the term

“optical flow,” it was defined as “the distribution of
apparent velocities of movement of brightness patterns in
an image.” In other words, the original optical flow
definition was referring to a velocity field or displace-
ment field of the motion of pixel patterns in an image.
Optical flow tracking involves the computation of such
fields on deforming objects in an image, based on the
assumption that the intensity of the object remains con-
stant over time. In this context, object motion is charac-
terized by a flow of pixels with constant intensity. There
are two widely used families of OF computation tech-
niques (Barron et al. 1994): (i) differential techniques
(Cremers et al. 2007; Frangi et al. 2001; Horn and
Schunck 1981; Lucas and Kanade 1981a; Nagel 1983;
Yilmaz et al. 2006) that compute velocity from spatio-
temporal derivatives of pixel intensities based on the
“optical flow constraint” equation: Ixvx � Iyvy � Izvz

� It � 0 with spatial-temporal gradients I* of image I and
spatial components of optical flow vector v* (Black and
Anandan 1996; Horn and Schunck 1981b; Lucas and
Kanade 1981b); and (ii) region-based matching tech-
niques (Anandan 1989; Singh 1990), which compute OF
by identifying local displacements that correlate best
between two consecutive image frames. Because the first
two pilot studies on optical flow estimation (Horn and
Schunck 1981; Lucas and Kanade 1981b) were focused
on differential techniques, differential OF accounts for a
large portion of OF-based applications (Ledesma-Car-
bayo et al. 2005; Suhling et al. 2005; Veronesi et al.
2006). Compared with differential OF approaches, re-
gion-based methods use similarity measures, such as
summed-squared differences or cross-correlation coeffi-
cients that are less sensitive to noise, fast motion and
potential occlusions and discontinuities (Anandan 1989;
Bleyer et al. 2005; Convertino 1997; Linguraru et al.
2006; Revell et al. 2004; Singh 1990; Wang et al. 2007;
Xiao et al. 2005), while assuming that displacements in
small neighborhoods are similar. Given the relatively
high noise corrupting 3-D ultrasound volume series, we
adopted a region-based tracking approach to estimate
myocardial surface displacements between two consec-
utive frames. Specifically, we used a correlation metric-
based tracking method.

Given two datasets from consecutive time frames:
�I�x,t�, I�x,t � �t��, the displacement vector �x for pixels

in a small neighborhood � around each pixel x is esti-
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mated by maximizing the cross-correlation coefficient as
follows:

r �

�
x��

�I�x, t�I(x��x,t��t)�

��
x��

I2(x, t)�
x��

I2(x � �x, t � �t)
. (1)

In this study, correlation-based tracking was per-
formed in 3-D to estimate the displacement of selected
voxels between two consecutive ultrasound volumes in
the cardiac cycle. The search window � was centered
around every (5 � 5 � 5) pixel volume and was set to
size (7 � 7 � 7) for a voxel size of 0.6 � 0.6 � 0.6 mm.
Regularization of the displacement field was enforced
via local averaging of the vector values. A priori infor-
mation on high contrast between the myocardium and the
blood was incorporated in the tracking process to avoid
tracking in blood region and minimize erroneous track-
ing positions, falling away from the endocardial surfaces.
Preprocessing of the RT3D data with a speckle-specific
anisotropic diffusion filter previously designed by our
group (Duan et al. 2004) was applied before the tracking.

Preprocessing
Because noise in the data will degrade the perfor-

mance in motion-tracking algorithms (Bachner et al.
2007; Yu et al. 2006), all datasets were presmoothed
with edge-preserving anisotropic diffusion as developed
in Duan et al. (2004). Anisotropic diffusion methods
apply the following heat-diffusion dynamic equation to
the gray levels of a given 3-D image dataset I (x,y,z,t):

�I

�t
� div(c(x, y, z, t)�I), (2)

where c (x, y, z, t) is the diffusion parameter, div denotes
the divergence operator and �I is the gradient of the
image intensity.

In the original work of Perona and Malik (1987,
1990), the concept of anisotropic diffusion was intro-
duced with the selection of a variable diffusion parame-
ter, which is a decreasing function g of the gradient of the
image data:

c(x, y, z, t) � g(��I(x, y, z, t)�), (3)

We used the diffusion function proposed by Weick-
ert et al. (1998) defined as:

g(x, 	) �� 1 x 
 0

1 � e
3.315

(x ⁄ 	)4 x � 0
. (4)

The parameter 	 serves as a gradient threshold,
defining edge points xk at locations where |�Ixk

| � 	. This

bell-shaped diffusion function acts as an edge-enhancing
filter, with high diffusion values in smooth areas and low
values at edge points. The structure of the diffusion
tensor with separate weights for each dimension enables
to control the direction of the diffusion process, with
flows parallel to edge contours.

In the case of noisy textured data, as ultrasound data
with speckle noise, as the diffusion process evolves, the
characteristics of the image data change and the gradient
threshold parameter value should therefore be modified.
It was reported in a paper by Montagnat et al. (2003) that
values of significant edges decrease as homogeneous
regions in the ultrasound data are filtered. Therefore,
they chose to decrease the threshold gradient over time.
Values were selected as a fraction of the cumulative
histograms of the data gradients that were recomputed at
each iteration of the diffusion process. In the proposed
method, a linear model was used to control the gradient
weight:

	(t) � 	0 � at, (5)

with 	0 representing an initial gradient value, a the slope
parameter and t the time iteration index. Parameters were
set empirically for the datasets processed. In our previous
algorithm using Volumetrics
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data (Duan et al. 2004), a
linearly increasing scheme was used to suppress the
granularity in the acquired images, whereas with the data
acquired by the iE33 imaging system, such an aggressive
diffusion process was not needed. In this paper, a de-
creasing scheme was used with 	0 � 20 and a�-1.
Sample cross-section views after denoising are shown in
Fig. 1d–f.

Three-dimensional ultrasound datasets
The OF tracking approach was tested on 40 data-

sets, with 484 frames in total acquired with an iE33 3-D
ultrasound machine. These data were obtained as part of
a separate study under a protocol approved by Columbia
University’s Institutional Animal Care and Use Commit-
tee. Four coronary artery occlusions were performed on
five anesthetized, open-chest dogs (20 occlusions total).
Three-dimensional echocardiograms were acquired at
baseline and 60–90 s after temporary ligation of the left
anterior descending (LAD) and left circumflex (LCx)
coronary arteries at the proximal and distal levels. These
datasets were obtained by positioning the transducer
directly on the apex of the heart, providing high image
quality in a small field-of-view. Spatial resolution of the
analyzed data was about (0.6 mm)3, and 10–14 frames
were acquired during each cardiac cycle depending on
the heart rate, under an acquisition frame rate of 20–25
frames per second. Cross-sectional views from one of the
open-chest baseline datasets at end-diastole (ED) are

shown in Fig. 1a–c. The data acquisition was gated by
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electrocardiogram (ECG) and the ED frame was the first
frame for all 4-D data series.

Segmentation
The endocardial surface of the LV was semiauto-

matically segmented using TomTec
©

software (TomTec
Inc., Munich, Germany). Manual editing of the endocar-
dial surface was required. An experienced user per-
formed manual tracing of all time frames on all datasets,
on rotating B-scan views (long-axis views rotating
around the central axis of the ventricle) and C-scan views
(short-axis views at different depths).

Defining a “gold standard” for evaluating the per-
formance of tracking is a challenging task. To evaluate
segmentation or boundary extraction methods on clinical
data are difficult in general because no ground truth can
be perfectly defined. As a result, under such circum-
stances, segmentations from experienced users are typi-
cally regarded as the “ground truth.” To take manual
tracing variability into account, discrepancy of segmen-
tation methods are usually compared with interobserver
variability (Brandt et al. 1999; Heijman et al. 2008;
Juergens et al. 2008; Pednekar et al. 2003; van Geuns et
al. 2006), viewing the computer-based method as another
“observer.” If the discrepancy is comparable to interob-
server variability, then it is safe to consider that the
proposed method is acceptable because the error in the
method has fallen within the variance of the ground truth.
Following the same rationale, two additional trained
cardiologists traced a subset of the data to measure
interobserver variability. We hypothesized that region-
based tracking of the endocardial surface from RT3D

Fig. 1. Cross-sectional views at ED for one of the dataset
(a, d) Axial; (b, e) eleva
ultrasound data could achieve comparable accuracy to
human observers’ variability. In other words, we ex-
pected that surface discrepancy between a tracked sur-
face and the corresponding manual tracing should be
similar to the difference between two surfaces traced by
two different trained users (or cardiologists), i.e., the
interobserver variability.

Tracking with region-based technique
Tracking of the endocardial surface was applied

after initialization with manually traced ED data. Starting
with a set of endocardial surface data (about 650 data
points, roughly 1.5 mm apart) defined at ED, the tracking
algorithm was used to track the surface in time through-
out the entire cardiac cycle. The proposed method was
not being applied as a segmentation tool, but used as a
surface-tracking tool for a given segmentation method.
No additional reinitialization or forward-and-backward
tracking as proposed in Duan et al. (2005b) was needed
because of high image quality provided by the open-
chest acquisition setup.

Evaluation
We evaluated tracking accuracy by quantitatively

comparing the dynamic ventricular geometry to the man-
ually segmented surfaces. Segmentation results were typ-
ically compared using global measurements such as vol-
ume or mean-square errors. To provide regional compar-
isons, we proposed a novel comparison method based on
a parameterization of the endocardial surface in prolate
spheroidal coordinates (Ingrassia et al. 2003), which has
been used previously for comparison of ventricular ge-
ometry from two 3-D ultrasound machines (Angelini et

) Original data and (d–f) the data after diffusion process.
nd (c, f) azimuth views.
s. (a–c
al. 2002). The endocardial surfaces were registered
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through time using three manually selected anatomical
landmarks: the center of the mitral orifice, the endocar-
dial apex and the equatorial midseptum point. The sur-
face data were fitted in prolate spheroidal coordinates
�	,,��, projecting the radial coordinate 	 to a 64-ele-
ment surface mesh with bicubic Hermite interpolation,
yielding a realistic 3-D endocardial surface. The fitting
process was performed using a custom finite element
algorithm.

Fitted nodal values and spatial derivatives of the
radial coordinate, 	, were then used to map relative
differences between the two compared surfaces (seg
from manual tracing and RT from region-based tracking),
� � (	seg � 	RT) / 	seg using our custom software.
Hammer mapping was used to preserve relative areas of
the flattened endocardial surfaces (Hunter and Smaill
1988).

rms errors (RMSE) of the difference in 	, across the
entire endocardial surface were computed for every time
frame, between algorithm-tracked and the manual seg-
mentation results. Because RMSE is actually the normal-
ized distance between two surfaces, it could provide a
fairer comparison than conventional point-to-surface
metrics under clinical settings. Furthermore, it can be
shown that multiplying the focus length of the model
with the RMSE measurements will provide an upper
bound of the point-wise errors. In other words, RMSE is
a more conservative, efficient and clinically relevant

Fig. 2. (a-c) Example results fom one dataset. (a) Root-m
cardiac cycle; (b) LV volumes from manual tracing (sol
and (c) relative difference maps between OF and manual

(i.e., 0.
version of the conventional metrics. Ventricular volumes
were also computed for the manually segmented and the
automatically tracked endocardial surfaces. Finally, rel-
ative 	 difference maps were generated at end systole
(ES), providing a direct quantitative comparison of ven-
tricular geometry. These maps were visualized with iso-
contour lines, representing the fractional difference in 	
position between the two surfaces.

RESULTS

Overall performance
As mentioned in the previous section, the regional-

based tracking algorithm was initialized by manual trac-
ing of the first frame (ED frame) for each of the 40
datasets. Then the endocardium was automatically
tracked throughout the entire cardiac cycle, which pro-
vided 444 frames in total, where endocardial surface
from both manual tracing and automated tracking were
available. A sample result from one dataset is shown in
Fig. 2. The time course of RMSE for this dataset is
graphed in Fig. 2a, which shows small absolute errors
(�0.07 � 7%) despite error accumulation, as previously
observed in Duan et al. (2005b). Time courses of the LV
volumes estimated from manual tracing (solid line) and
tracking (dashed line) are shown in Fig. 2b. These two
measures were very close, especially during the systolic
phase, except for the last two to three frames where
accumulated errors became larger. Hammer mapping of

uare error (RMSE) of absolute differences in 	 over one
) and OF tracking (dashed line) over one cardiac cycle;

surfaces at ES, showing most of the surface under 10%
erence.
ean-sq
id line
tracing
the percent relative surface discrepancy at ES is shown in
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Fig. 2c. For this dataset, 96.7% of the entire endocardial
surface generated from algorithm tracking had �10%
difference when compared with the manually traced sur-
face.

Across all 444 frames, the mean value of the RMSE
was 0.05, with a standard deviation of 0.023540. The
maximum RMSE value was 0.14. Regarding volume
measurements, the mean difference in estimated volume
for all 444 frames was 3.93 mL, with a standard devia-
tion of 2.54 mL. The maximum difference in volume
estimation was 13.59 mL. There was a strong correlation
between volume measurements from region-based track-
ing and manual tracing, with a correlation coefficient r �
0.93 (r2 � 0.86) and a slope of 0.79, with a bias of 9.8
mL. The regression plot and corresponding Bland-Alt-
man plot are shown in Fig. 3a and b. Average computa-
tional time for tracking each frame was 9 s, with a
standard deviation of 0.12 s and a maximum value of
9.2 s. All computations were implemented in C program-
ming language and executed on a 2.4-GHz 64-bit AMD
single processor server, running Red Hat Linux Enter-

Fig. 3. Volume comparisons between manual tracing
regression plot (a) and Bland-Altman statistical analysis
(c) and Bland-Altman statistical analysis (d); and (e, f)
Bland-Altman statistical analysis (f). Each blue circle rep

mean value and the two red dashed
prise AS.
Comparison to interobserver variability
Because it is difficult to define an absolute “gold

standard” for the position of the endocardium, we used
an alternate approach to validate our method. Our hy-
pothesis is that region-based tracking of the endocardium
from RT3D ultrasound can achieve comparable accuracy
to human observer variability. We tested whether the
difference between an algorithm-tracked surface and the
corresponding manual tracing was comparable to the
difference between two surfaces traced by separate ex-
perienced users, i.e., interobserver variability.

To quantify interobserver variability, 12 datasets
were randomly selected from the total 40 datasets. The
ED frame for each dataset was traced by two cardiolo-
gists using separate customized software. All traced sur-
faces were reconstructed using the methods described
above, and differences in surface positions and LV vol-
umes were measured at ED. The reference tracings were
similar to those used in the previous section.

On all 12 datasets, the mean value of the RMSE
between the two cardiologists was 0.15, with a standard

gion-based tracking. (a, b) Overall performance with
, d) performance on normal group with regression plot
mance on ischemia group with regression plot (e) and
s a single data point, the center black line represents the
represent 95% confidence interval.
and re
(b); (c
perfor
resent
deviation of 0.14. The maximum RMSE value was 0.59.
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The mean difference in estimated volumes for all frames
was 11.83 mL, with a standard deviation of 9.64 mL. The
maximum difference in volume estimation was
27.84 mL.

Region-based tracking provided smaller mean and
standard deviation values for both RMSE and volume
differences. Maximum RMSE and volume error values
from region-based tracking were comparable to mean
interobserver volume differences. To test the hypothesis
that the performance of region-based tracking was com-
parable to interobserver errors, RMSE values between
region-based tracking and manual tracing were com-
pared with RMSE values between two experienced us-
ers’ tracing by a two-sample t-test. Because our hypoth-
esis is that region-based tracking has comparable perfor-
mance with human expert tracing in terms of RMSE
values, the null hypothesis for the statistical test was that
RMSE values from region-based tracking had larger
mean value than mean RMSE value from a human expert
(a left-tail test), i.e., region-based tracking had worse
performance than an expert. Variances for both methods
were not assumed equal for the purpose of fairness. The
t-test with � � 0.05 yielded a result of rejecting the
null-hypothesis, with a p-value of 0.018, which indicates
that statistically, region-based tracking is unlikely to
have worse performance than manual tracing by multiple
experts.

Performance comparison on baseline versus occlusion
To test the performance of region-based tracking on

diseased cases with altered wall motion, we compared
the ability of region-based tracking to track the endocar-

Table 1. Statistics of surface discrepancies and volume
differences for the normal group and the ischemia group

Normal group Ischemia group

Mean RMSE 0.06 0.05
STD RMSE 0.03 0.02
Max RMSE 0.14 0.10
Mean volume difference (mL) 4.24 3.61
STD volume difference (mL) 2.65 2.38
Max volume difference (mL) 13.59 11.48

Table 2. Correlation measures and statistical differenc
and region-based tracking, inter-observer variability

tracking for the norm

Study Regression equation Correlation

Overall y � 0.79x 
 9.81 0.93
Interobserver y � 1.23x � 3.70 0.54
Normal y � 0.75x 
 10.48 0.91

Ischemia y � 0.78x 
 10.93 0.92
dium on baseline datasets and during regional ischemia.
It is clinically essential that computer-aided diagnostic
tools perform well on abnormal data, which is not often
addressed or tested in clinical studies evaluating the
performance of such tools.

The recorded 444 data frames were divided into two
groups: a normal group (224 frames) and an ischemia
group (220 frames). Statistics on surface discrepancies
and volume differences for each group are reported in
Table 1.

To evaluate the difference in mean values of RMSE
and volumes for each group, two-sample t-tests with � �
0.05 were performed on RMSE values and volume dif-
ferences. Abnormal data showed significantly lower
RMSE and volume differences than normal data (p �
5.97e-14 and 0.0085, respectively). An additional statis-
tical power analysis yielded 100% power for RMSE
values and 75.22% power for volume differences to
detect the difference in the discrepancy measurement
between the two groups with a two-sided t-test with type
I error level of 0.05. These results suggest that our
method may be valuable for clinical applications where
abnormal wall motion may be present.

Results of regression plots and Bland-Altman plots
for LV volume measures for the normal and ischemia
groups were plotted in Fig. 3c–f. The 95% confidence
interval is defined with a center value equal to the mean
error and width equal to 2 standard deviations of the
volume errors. These error intervals were equal to 2.55
mL 	 8.62 mL for normal group and 1.85 mL 	 7.83
mL for the ischemia group.

To best summarize the results for the volume com-
parisons between the overall manual and OF tracings, the
interobserver results and the two comparisons between
manual and OF tracings for the normal and ischemia
subgroups, five metrics for each study including regres-
sion equation, correlation, standard error of the estimate,
mean difference and limit of agreement and p-value of
the t-test, are presented in Table 2.

DISCUSSION

Based on the presented quantitative validation stud-
ies, results on comparison between OF tracking and

lume comparisons between the overall manual tracing
mparisons between manual tracing and region-based
ischemia subgroups

dard error of the estimate Mean difference p-value

3.23 10.88 0.001
12.96 15.78 0.16
3.30 10.26 0.005
es: Vo
and co
al and

Stan
3.03 9.65 0.034
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manual tracing were very encouraging. A strong corre-
lation pattern between manual tracing and region-based
tracking was found with correlation coefficients as well
as the slope and the bias values comparable to findings in
the literature (Angelini et al. 2005; Corsi et al. 2001;
Sanchez-Ortiz et al. 2002) on RT3D ultrasound segmen-
tation.

Tracking errors were within the range of interob-
server variability, which were confirmed by statistical
tests. Although the mean values of RMSE and volume
differences from region-based tracking were smaller than
from two experienced users, it cannot be inferred that
region-based tracking had better performance. One rea-
son that the errors for the proposed method were lower
was that the region-based tracking was initialized by the
user to whom the tracing was compared. If tracking
errors were within the range of interobserver variability,
it is nonetheless safe to conclude that, when initialized
using manual tracing of the ED frame, region-based
tracking is a good alternative to tracing every time frame
in a RT3D ultrasound study.

The reason that region-based tracking performed
better in the ischemia data compared with the normal
data were probably related to the reduced motion caused
by ischemia, which made tracking easier. However, this
is an important feature compared with shape-based seg-
mentation algorithms, for which abnormal wall motion
sometimes generates abnormal shapes that would com-
plicate the segmentation process.

Minimal computational time was required for anal-
ysis, with region-based tracking requiring �2 min to
track the endocardial surface over the entire cardiac
cycle compared with the time required for manual trac-
ing by a cardiologist (1 h). This computational time is
reasonable for processing RT3D ultrasound datasets in a
clinical setting. Although measurements of fractional
shortening or ejection fraction require only ED and ES
time frames, region-based tracking may be particularly
useful for LV synchrony analysis, which requires the
segmentation of the entire cardiac cycle.

Although current RT3D ultrasound can offer 20–25
frames per second, as reported in the acquisition setup of
the data used in this paper, the actual number of frames
per cardiac cycle is limited by the heart rate as well. In
most clinical settings, RT3D ultrasound usually can pro-
vide 16–20 frames per cardiac cycle. Under animal ex-
periments, especially during some depressed situations
such as open-chest experiments, the heart rate increases
to 110–130 bpm on average so that actual frames avail-
able in one cardiac cycle become limited. Moreover,
current 3-D technology cannot reach a frame rate above
100 frames per second, as in 2-D echocardiography.
These screening constraints remain limiting factors in the

application of RT3D ultrasound for motion analysis.
However, this limitation is not an intrinsic limitation for
the region-based tracking, but rather a limitation of cur-
rent RT3D ultrasound technology. Region-based track-
ing can work with higher frame rate as well. As the
advances of RT3D ultrasound technology, the perfor-
mance of the proposed framework will also be expected
to improve given the higher temporal resolution of the
data.

As pointed out in Bland and Altman (1986), regres-
sion analysis alone is not sufficient to validate the per-
formance of novel clinical measurements such as region-
based tracking of the endocardium. For this reason, sta-
tistical analyses including t-test and power analysis were
also included in the evaluation of our method, which all
yielded consistent results.

Lastly, this study was focused on validating the
tracking ability of the region-based tracking algorithm.
The displacement field, a by-product of the tracking, also
provided novel 4-D dynamic cardiac information that
may be useful for analyzing RT3D ultrasound data. De-
tailed discussion on this extension of the method can be
found in Duan et al. (2005a, 2006, 2007a).

CONCLUSION

A correlation-based tracking method was evaluated
for its ability to track the LV endocardial surface over the
entire cardiac cycle in RT3D ultrasound after being ini-
tialized with manual segmentation of the ED frame.
Endocardial surface geometries obtained from manual
segmentation and region-based tracking were compared
at every time frame in the cardiac cycle. This geometric
comparison was mapped and results were promising,
showing that region-based tracking closely followed the
endocardial surface throughout the entire cardiac cycle
on 444 data frames. There was a strong correlation
between region-based tracking and manual tracing. Sta-
tistical analysis showed that tracking errors were within
the range of interobserver variability, with manual trac-
ing by expert cardiologists. Moreover, our algorithm
performed well both on normal and ischemia data, sug-
gesting that our method may be valuable for clinical
applications where abnormal wall motion may be
present. This study showed that region-based tracking
can accurately track the LV endocardial surface, yielding
dynamic information from RT3D ultrasound data, and
provides automated dynamic interpolation between seg-
mented endocardial surfaces.
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