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ABSTRACT

In tomographic medical devices such as SPECT or PET
cameras, image reconstruction is an unstable inverse prob-
lem, due to the presence of additive noise. A new family
of regularization methods for reconstruction, based on a
thresholding procedure in wavelet and wavelet packet de-
compositions, is studied. This approach is based on the fact
that the decompositions provide a near-diagonalization of
the inverse Radon transform and of the prior information
on medical images. Corresponding algorithms have been
developed for both 2-D and full 3-D reconstruction. These
procedures are fast, non-iterative, flexible, and their perfor-
mances outperform Filtered Back-Projection and iterative
procedures such as OS-EM.

1. INTRODUCTION

We are interested in the problem of tomographic recon-
struction of images from transmission data, which we call
tomographic projections orsinograms. Although the work
presented here has a wide range of applications for vari-
ous tomographic devices, we will focus on medical images
with SPECT and PET cameras.

A section of the object observed by the tomographic
device is represented by a 2-D discrete imagef [n1, n2].
An estimation off must be computed with a tomographic
reconstruction procedure from the sinograms produced by
tomographic devices, denotedY [t, θ], and defined as:

Y [t, θ] = R(f [n1, n2]) + W [t, θ] (1)

where{f [n1, n2]}0≤n1≤N1−1, 0≤n2≤N2−1 is the observed
image,W is an additive noise, andR is the discrete Radon
transform which models the tomographic projection pro-
cess. The discrete Radon transform is derived from its con-
tinuous versionRc, which is equivalent to the X-ray trans-
form in two dimensions and is defined as [1]

(Rcfc)(t, θ) =
∫

R

∫

R
fc(x1, x2)δ(x1 cos θ+x2 sin θ−t)dx1dx2.

(2)

wherefc(x1, x2) ∈ L2(R2), δ is the Dirac mass,θ ∈
[0, 2π), and t ∈ R. There are several different ways to
define the discrete Radon transform based on the continu-
ous Radon transform [2]. Typically, a line integral along
x1 cos θ + x2 sin θ = t is approximated by a summation
of the pixel values inside the stript − 1/2 ≤ n1 cos θ +
n2 sin θ < t + 1/2.

The noiseW is usually modelled as a Poisson, or some-
times Gaussian noise. However, since the tomographic
projectionsY are often processed to incorporate various
corrections, such as attenuation correction, scatter correc-
tion, resolution correction or geometric correction, the re-
sulting noise is also distorted and does not always com-
ply with such prior models. The present approach can be
adapted to different types of noise, including the case when
there is no available statistical model for the noise.

A tomographic reconstruction procedure must incorpo-
rate the following steps: abackprojectionmay be viewed
as the application of a discretized inverse Radon transform
R−1 on the tomographic projectionsY . This can be di-
rectly computed with a radial interpolation and a decon-
volution to amplify the high frequency components of the
tomographic projectionsY in the direction oft. This de-
convolution comes from the fact that the Radon transform
is a smoothing transform. Consequently, backprojecting
in the presence of additive noise is anill-posed inverse
problem: numerically speaking, a direct computation of
R−1Y = f + Z is contaminated by a large additive noise
Z = R−1W , which means that aregularizationhas to be
incorporated in the reconstruction procedure.

Current approaches for regularization in tomographic
reconstruction can be summarized as follows:

1. Filtered Back-Projection (FBP) are linear filtering
techniques in the Fourier space. FBP suffers from
performance limitations due to the fact that the si-
nusoids of the Fourier basis are not adapted to rep-
resent spatially inhomogeneous data as found in med-
ical images.

2. Iterative statistical model-based techniques are de-
signed to implement Expectation-Maximization (EM)
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and Maximum A Posteriori (MAP) estimators [3,
4]. In some cases, these approaches can provide an
improvement over FBP, but these estimators suffer
from the following drawbacks:

• Computation time.Almost all the correspond-
ing algorithms are too computer-intensive for
clinical applications, with the exception of OS-
EM [5] (an accelerated implementation of an
EM estimator). In MAP methods, useful pri-
ors usually give local maxima, and the com-
putational cost of relaxation methods is pro-
hibitive.

• Theoretical understanding and justification.
EM estimators lack theoretical foundations to
understand and characterize the estimation er-
ror. Some MAP estimators are in some cases
better understood, yet no optimality for a re-
alistic model has been established.

• Convergence.EM estimators are ill-conditioned,
in the sense that the corresponding iterative
algorithms have to be stopped after a limited
number of iterations. Beyond this critical num-
ber, the noise is magnified, and EM and OS-
EM converge to a non-ML (Maximum Like-
lihood) solution.

This study aims to adress these limitations by building a
family of estimation procedures which provide better nu-
merical results, both metrically and perceptually, with a
sound theoretical basis and for which the estimation error is
understood and characterized. The estimators should also
be implemented with fast and flexible algorithms.

2. THRESHOLDING ESTIMATORS

The estimation problem in (1) is also equivalent to the de-
noising problem

X = f + Z (3)

whereX = R−1Y andZ = R−1W . If the noiseZ was
white, Donoho and Johnstone have established [6] that a
thresholding estimator in a properly selected vector family
B = {gn1,n2 , g

∗
n1,n2

}0≤n1≤N1−1, 0≤n2≤N2−1, typically a
wavelet basis, would be optimal to recover spatially inho-
mogeneous data as found in medical images. A threshold-
ing estimatorF̃ of f in B is defined as

F̃ =
∑

n1,n2

ρn1,n2 (〈X, gn1,n2〉) g∗n1,n2
, (4)

whereρn1,n2 is a thresholding operator. In our situation,
the choice ofB does not only depend on the prior informa-
tion on the objectf , but also on the noiseZ, whose behav-
ior is very specific due to the fact that a backprojection has
been applied on it.

The assumption underlying thresholding estimators is
that each coefficient in the decompositionB can be esti-
mated independently without a loss of performance. As
a consequence, such estimators are efficient if the coeffi-
cients of the noise and of the object to be recovered are
indeed nearly independent inB. This means thatB must
provide a near-diagonalization of the noiseZ and of the
prior information on the imagef .

The imagef is a spatially inhomogeneous, piece-wise
regular signal, which is compactly represented in a wavelet
decomposition. To obtain a diagonal representation of the
noiseZ, we want to find a decomposition in which the in-
verse Radon transform is nearly diagonal. Since the inverse
Radon transform is a Calderon-Zygmund operator [7], it is
also nearly-diagonal in a wavelet basis.

These two properties of wavelet bases led Donoho [8]
to suggest the use of thresholding estimators in wavelet
bases for several linear inverse problems, including the in-
version of the Radon transform. Donoho established the
aymptotic optimality (minimax sense) of this approach, called
Wavelet-Vaguelette Decomposition (WVD), and its supe-
riority with respect to other approaches such as Filtered
BackProjection. However, the WVD as studied by Donoho
is a theoretical concept developped for continuous mod-
els, based on the assumption that the additive noiseW is
Gaussian white, and, despite numerical implementations
and refinements by other researchers[9, 10], this technique
is not as such adapted to the tomographic reconstruction of
real medical images. In the meanwhile, Kalifa and Mallat
[11] generalized Donoho’s approach to adapt it to different
types of decompositions, not restricted to wavelet bases.

Wavelet packet bases are other decompositions which
can provide a compact representation of the observed im-
agef , and since a wavelet packet transform provides a
more accurate segmentation of the frequency domain than
a wavelet transform, this improves the near-diagonalization
of the noiseZ. Besides, a wavelet packet basis can be adap-
tively chosen from a dictionary of different wavelet packet
bases. We shall see in the next section that this enables us
to optimize the choice of the wavelet packet transform to
the specific type of observed image and to the nature of the
backprojected noiseZ.

3. CHOICE OF WAVELET PACKET
DECOMPOSITION

Suppose we have a dictionary{Bγ}γ of orthogonal wavelet
packet bases. The empirical best basisBγ1 for estimatingf
is obtained by minimizing an estimation of the final estima-
tion error (risk), using the best basis algorithm of Coifman
and Wickerhauser [12]. For example, the final estimation
error can be estimated with a Stein Unbiased Risk Estima-
tor (SURE) [13]. Another possibility is to take advantage
of the fact that phantom images are usually available in to-



mography to model the observed images, and can be used
as reference images to minimize the ideal projection risk,
as defined in [6].

In both cases, a numerical model of the noiseZ is com-
puted. Depending on the fact that the original noiseW is
modelled as Gaussian or Poisson noise, or not modelled by
a statistical prior, different procedures can be used. The nu-
merical model of the noiseZ is taken as input when com-
puting the choice of the best basis, which is specifically
adapted not only to the nature of the data but also to the
nature of the noiseZ. This adaptive approach enables us to
improve greatly the performance of the decomposition, as
compared to a classical wavelet basis.

4. RECONSTRUCTION ALGORITHM AND
NUMERICAL RESULTS

The tomographic reconstruction algorithm is decomposed
in the following steps:

1. Backprojection without regularization of the tomo-
graphic projectionsY to obtain the backprojected
imageX = f + Z.

2. (Optional) Computation of the best wavelet packet
basisBγ1 optimized for the specific image to be re-
stored. The best basis can be recomputed for each
image, or can have been computed once and stored
in advance, to save computation time. However the
computation time of the best basis algorithm is very
short.

3. Wavelet packet transform of the backprojected im-
ageX in the best basisBγ1 to obtain the wavelet
packet coefficients{〈X, gn1,n2〉}n1,n2 .

4. Thresholding on the wavelet packet coefficients.
5. Inverse wavelet packet transform of the thresholded

coefficients to obtain the estimated imageF̃ .

The wavelet packet transform and its inverse are computed
with fast filter bank algorithms of complexityO(N) for
signals ofN samples[14].

Figure 1 compares preliminary numerical results com-
puted on SPECT clinical data, using an OS-EM reconstruc-
tion, a Filtered Back-Projection and a wavelet-packet based
reconstruction. The OS-EM reconstructed image is very
smooth because the OS-EM algorithm has to be stopped
after a limited number of iterations, otherwise the noise is
strongly amplified and the algorithm converges to a very
noisy reconstructed image. On the other hand, the FBP-
reconstructed image is corrupted by a significant noise and
artifacts, which cannot be reduced unless the reconstructed
image becomes extremely smoothed. With the wavelet packet
reconstruction algorithms, the amount of smoothness of a
reconstructed image can be controlled precisely, while the
noise is reduced significantly as compared to an image re-
constructed with FBP or OS-EM. Besides, wavelet packet

reconstruction methods are adapted to a broader range of
images (different objects, low or high count) than OS-EM
and FBP. The superiority of the wavelet-packet based re-
construction method over FBP and OS-EM is currently be-
ing established through ROC studies on various SPECT
and PET data.

5. EXTENSION TO 3-D RECONSTRUCTION

So far, the wavelet packet reconstruction has been presented
for 2-D reconstruction of slices. We now consider that we
have a series of tomographic projections ofN3 translated
2-D slices of the observed object, i.e., that we have 3D
data. When necessary, the tomographic projections have
been transformed via rebinning techniques in order to ob-
tain tomographic projections of 2-D slices: this approach is
not necessary for SPECT images, but is increasingly com-
mon in 3-D PET imaging. It is useful to take advantage
of the correlations of the signal in the transaxial direction
to obtain a better discrimination between the information
and the noise. In this case, a regularization is computed on
the whole 3-D data, but the backprojections are still com-
puted slice by slice, since the Radon transform is still only
a bidimensional operator.

The 3-D thresholding reconstruction algorithm is sum-
marized as follows. Details will be provided at the confer-
ence.

• Each 2-D slice is reconstructed and partly regular-
ized using the wavelet packet reconstruction algo-
rithm. The regularization is mild in order to preserve
as much information as possible.

• The remaining noise (after the 2-D regularization) is
nearly diagonalized in a wavelet decomposition. To
take fully advantage of the 3-D information in the
data, a 3-D dyadic wavelet transform is applied on
the 3-D data, with wavelets adaptively oriented per-
pendicularly to the singularities of the signal. This
directional selectivity enables us to maximize the cor-
relation between the vectors of the wavelet family
and the information of the signal. The efficiency of
noise removal is thus greatly improved.
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Fig. 1. SPECT image reconstructed with (a) OS-EM (b)
Filtered BackProjection (c) thresholding in the wavelet
packet basis.
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