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Deformable models have been widely used in image segmentation since the introduction of the snakes.
Later the introduction of level set frameworks to solve the energy minimization problem associated with
the deformable model overcame some limitations of the parametric active contours with respect to topo-
logical changes by embedding surface representations into higher dimensional functions. However, this
may also bring in more computational load so that recent advances in spatio-temporal resolutions of 3D/
4D imaging raised some challenges for real-time segmentation, especially for interventional imaging. In
this context, a novel segmentation framework, Surface Function Actives (SFA), is proposed for real-time
segmentation purpose. SFA has great advantages in terms of potential efficiency, based on its dimension-
ality reduction for the surface representation. Utilizing implicit representations with variational frame-
work also provides flexibility and benefits currently shared by level set frameworks. An application for
minimally-invasive intervention is shown to illustrate the potential applications of this framework.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation is a critical step for quantitative image
analysis. In medical imaging, image segmentation is the prerequi-
site for quantitative evaluation of morphologies and pathologies.
For example, in cardiac imaging, delineating borders of chambers
of the heart and valves are of clinical importance to quantify car-
diac function. Segmentation of the left ventricular endocardium
is required for quantitative evaluation of the LV function, such as
ejection fraction or 3D fractional shortening [1]. With recent ad-
vances in 3D and 4D imaging techniques towards real-time imag-
ing, the amount of data is becoming prohibitively overwhelming.
Manual tracing of these large data sets is tedious and impractical
in clinical setting.

In this context, automated or semi-automated segmentation
methods have been proposed and applied to medical image analy-
sis to leverage the human efforts involved in the segmentation
task. Based on the mathematical foundation of each method, seg-
mentation approaches can be roughly divided into several classes:
classification (e.g. thresholding, k-means), region growing (such as
fuzzy connectedness [2]), deformable models (e.g. snake [3], level
set [4–7]), active shape [8] and active appearance models [9],
and stochastic methods (Markov random field [10], graph cut
[11]). Hybrid methods [12] combining different existing methods
were also proposed. Among segmentation methods, deformable
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models are still widely used in medical image analysis, especially
for cardiac imaging.

The first deformable model parametric formulation was pro-
posed by Kass et al. in 1987 [3]. The idea was to digitize the object
boundary into a set of points with predefined connectivity among
the node; the contour then deforms under the combination of
internal forces (such as elasticity and inertia) and external forces
(such as image gradient force) to align with the desired object’s
boundaries. Parametric deformable models, also called snakes in
2D, have been widely applied in various segmentation tasks [13].
In 1998, Xu et al. [14] proposed the Gradient Vector Flow or GVF
as a novel driving force for the snakes. This newly designed force
overcame several drawbacks from the original snake framework
and increased the performance of the active contour. However,
there were still some limitations related to the parametric formu-
lation of active contours, such as difficulties to adapt the contour to
topological changes, especially in 3D.

In the late 1990s, Sethian et al. [15] proposed a new framework
called level set to overcome these limitations. The basic idea was to
embed the contour evolution into iso-value curves of a function
with higher dimensionality. Such functions were called level set
functions. Topological changes could be naturally handled without
additional efforts. Moreover, highly convoluted surfaces, which
were very hard to handle for parametric deformable models, could
also be easily represented. For this reason, level set formulations
have become a research focus in image segmentation in recent
years. In 2001, Chan and Vese [16] introduced their ‘‘active contour
without edges” approach. In their framework, no image gradient
information was needed as with traditional deformable models.

http://dx.doi.org/10.1016/j.jvcir.2009.06.002
mailto:Qi.Duan@nyumc.org
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


Q. Duan et al. / J. Vis. Commun. Image R. 20 (2009) 478–490 479
Instead, driving forces were derived via energy minimization of the
Mumford–Shah segmentation functional [17] for piecewise-con-
stant regions. Their method could easily deal with noisy images.
And as a result, this framework has been widely used in ultrasound
segmentation [18], brain segmentation [19], and many other appli-
cations. However, the introduction of level set functions implicitly
increased the number of parameters of the surface model, which
increases the demand for computational power. Although many
optimization modifications such as narrowbanding [20] or fast
marching schemes were proposed, generally speaking, level set
framework is still a relatively ‘‘slow” approach especially for 3D
or 4D data.

As imaging technology evolves, demands for real-time feedback
also increases, mostly for interventional imaging and minimum-
invasive surgery. Latest 3D and 4D imaging techniques and real-
time imaging techniques not only provide better appreciations of
the anatomy and function of the body, but also raise a challenge
for image segmentation in terms of computational efficiency. In
this context, a new framework called Surface Function Actives
(or SFA) is proposed in this paper to push the limits of real-time
segmentation.
2. Mathematical models

2.1. Interface representation

‘‘Deformable model” is composed of two critical parts: the
‘‘model” or the surface representation, which represents the inter-
face, and the ‘‘deformation scheme” driven by applied forces,
which fits the model to the image for desired segmentation results.
In all deformable model methods, interface representation is fun-
damental since the interface or boundary is the target object that
needs to be fitted to the image information to find the desired
boundaries. Mathematically, there are two ways to represent the
interface:

1. Explicit representation: that is representing the surface by
explicitly listing the coordinates of the boundary points (i.e.
a parametric representation). This is the representation that
original snakes [21] used. The coordinate system can use
either natural basis or other basis as well, depending on
applications;

2. Implicit representation: that is representing the surface by
embedding the boundary as the iso-value curves of some func-
tion f called the representation function. Level set functions [4–7]
are a good example to embed the interface as the zero level set
of a distance function.
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Fig. 1. Illustration of interface representation by three difference frameworks: (a) explici
set; and (c) surface function.
2.2. Surface functions

Most of the recent efforts in segmentation based on implicit
interface representation were focused on the level set framework,
given its advantages for topological changes and feasibility to rep-
resent convoluted surfaces. As mentioned above, level set func-
tions add one extra dimension beyond the dimensionality of the
image data. For example, to represent a surface in 3D space, the le-
vel set function corresponding to the surface will be 4D. For com-
parison, original parametric deformable models only required a list
of point coordinates in 3D. For level set, this extra dimension
brings various benefits as well as additional computation load,
which may degrade computational efficiency.

By looking the opposite way of level set frameworks, it is very
natural to think of dimensionality reduction in surface representa-
tion to reduce the computational complexity. Using terminology of
interface representation, we are looking for a representation func-
tion which has fewer dimensions than the image data, i.e. using a
2D function to represent a 3D surface in space. We call such func-
tion a surface function.

Mathematically, in N dimensional space, we can define a surface
function g : RN�1 ! R as a special set of functions representing one
of the coordinates constrained by the others. Without losing gener-
ality, we can assume that this special coordinate is x0 and the other
coordinates are x1 to xN-1. That is:

x0 ¼ gðx1; . . . xN�1Þ ð1Þ

The corresponding representation function f is defined as:

f ¼ x0 � gðx1; . . . xN�1Þ: ð2Þ

So that the corresponding boundary is the zero-value curve of the
function f, i.e. f ð~XÞ ¼ 0; ~X ¼ ðx0; x1; . . . xN�1Þ.

For example, in 2D to represent a straight line with slope = 1
and passing through the origin (0, 0), there can be three different
representations:

1. Explicit representation: such as the list of points f. . . ð�1;�1Þ;
ð0;0Þ; ð1;1Þ; . . .g;

2. Level set: such as the zero level set of Uðx; y; tÞ ¼ 1ffiffi
2
p ðx� yÞ, note

that U is a signed distance function, and it is defined on the
whole x–y plane instead of just on the boundary;

3. Surface function: such as y = x.

Fig. 1 illustrates each representation. Note that since these three
surface representations encode the same surface, there are some
similarities between them. The corresponding representation func-
tion for the level set framework is f ¼ 1ffiffi

2
p ðx� yÞ ¼ 0; the correspond-

ing representation function for surface function representation is
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f = y � x = 0. It is obvious that both functions have the same roots,
with the fact that the coordinates used in the explicit representation
are digitized version of these roots. And geometrically, these roots
form the surface we are trying to represent: a straight line with
slope = 1 and passing through (0, 0). In other words, explicit repre-
sentations, level set distance functions, and surface functions are
just three different equivalent forms of the actual interface function
f for the targeting surface.

In this example, however, besides similarity and equivalence, it
is more interesting to notice their differences: the explicit repre-
sentation is a set of coordinates defined on the 2D x–y plane; the
level set function is an R2 ! R distance function defined on the
whole 2D x–y plane; the surface function is an R! R function de-
fined only on a 1D x-axis. As a 1D function, surface function repre-
sentation has the advantage in efficiency compared with the other
two common representations. From the example, we can see that
interface representation based on surface function has less dimen-
sionality than both other methods; compared with explicit repre-
sentation, surface function can utilize function expression or
function basis to efficiently represent the interface. Given the fact
that most anatomical surfaces are smooth [22], anatomical sur-
faces can be efficiently and accurately represented by the surface
function framework, which simplifies the downstream mathemat-
ical computation such as energy minimizations during image
segmentation.

2.3. Driving forces

Similar to other deformable models, we adopted a variational
framework in deriving the driving forces. For example, we can
use the Mumford–Shah segmentation energy functional:

Eðf ;~CÞ ¼ b
Z

X
ðf � gÞ2dV þ a

Z
Xn~C
jrf j2dV þ c

I
~C

ds; ð3Þ

in which~C denotes the smoothed and closed segmented interface, g
represents the observed image data, f is a piecewise smoothed
approximation of g with discontinuities only along~C, and X denotes
the image domain. The first integral enforces similarity between f
and g, which is equivalent to homogeneity constraint if f is piece-
wise smoothed; the second integral controls the smoothness of f;
and the last integral is limits the length of the segmented boundary,
which, acts as internal elasticity constraint to prevent leaking at
attachment to weak boundaries.

Given the flexibility of variational frameworks, other segmenta-
tion energy functionals can be also easily adopted.

In general, deformable models usually utilize iterative methods
to find the optimal solution for the associated energy minimization
framework via curve evolution, which requires an additional vari-
able as an artificial time step added into the functions. In this case,
curve evolution with explicit representation with K node points be-
comes an N � K variable minimization problem since the evolving
curve is represented by
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with N � K evolving variables.
Curve evolution with level set becomes an (N + 1)-variate func-

tional minimization problem since the evolving curve is repre-
sented by

/ð~X; tÞ ¼ /ðx0; x1; . . . xN�1; tÞ; ð5Þ
which has to be solved for every point on the entire image domain
or within the narrowband.

Curve evolution with Surface Function Actives becomes an N-
variate functional minimization problem since the evolving curve
can be represented by

x0ðtÞ ¼ f ðx1; x2; . . . xN�1; tÞ: ð6Þ

The advantage in dimensionality reduction for Surface Function Ac-
tives over level set framework is evident.

The advantage of SFA over explicit expression is in two aspects.
First, in explicit representation, for each node point, there are N
evolving variables, whereas in surface function representation,
there is only one variable for each corresponding points. This will
become more evident if we digitize Eq. (6) and reformulate in a
similar form as in Eq. (4):
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Although the memory usage of Eq. (7) is the same as Eq. (4), the
curve evolution of Eq. (7) has N � 1 less dimensionality than Eq.
(4), which usually leads to faster and more stable convergence. Gen-
erally speaking, the more parameters to be optimized, the larger
possibility that local minimums and saddle points exist, especially
with presence of noise. Of course it is not necessarily true for every
case that 1D optimization is more stable than N-D; they could be
equivalent. But even for that, the searching space for 1D case is
much smaller than the N-D one, which leads to faster convergence.

Another aspect is that Eq. (6) can be represented via function
basis, such as cubic Hermite functions, in which case only a few
weighting parameters rather than a lot of digitized node points
have to be stored and iterated on. This can further improve the
accuracy, efficiency, and numerical stability.

2.4. Comparison with other deformable models

Although as mentioned above, the interface functions for the
three deformable models are equivalent in terms of surface repre-
sentation, different ways to approach interface formulation pro-
vide different benefits and limitations.

Parametric active contours with explicit representations pro-
vide relative simple representations through interface point coor-
dinates and do not add additional dimensionality to the
optimization problem. However, it cannot easily handle topologi-
cal changes, and usually requires some prior knowledge about
the target topology for proper initialization. It is also not trivial
to determine whether an arbitrary pixel is inside or outside the
segmented objects. Moreover, in order to compare to other seg-
mentation results such as manual tracing, it is usually not very
easy to directly compute quantitative metrics such as surface dis-
tances since it requires pairing of closest points.

The level set framework based on implicit representations via
distance functions can automatically deal with topological changes
and allows easy determination of whether a point is inside the ob-
ject or not by simply looking at the sign of the level set function at
the point location. However, the level set formulation implicitly
introduces a new dimension, i.e. the value of the level set function,
for each voxel in the whole image data space, whereas the other
two models only focus on the interface itself. This type of formula-
tion implicitly increases the dimensionality of the variational prob-
lem and thus increases the computational cost of the optimization
process. Even though a narrowband approach can improve the effi-
ciency by focusing only around the interface, it still requires more
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voxel information than the other two formulations. In terms of seg-
mentation comparison, if the level set function is the signed dis-
tance function, it is very easy to compute the distance between
surfaces, although in most of implementations, level set functions
after few iterations do not necessarily remain as signed distance
functions, especially for those using narrowband approaches.

Surface Function Actives is a kind of marriage of the previously
discussed models: it focuses only on the interface as the explicit
representation, while being formulated as an implicit representa-
tion like the level set framework. It has advantage on dimensional-
ity reduction in surface representation compared with level set. It
can utilize function basis to avoid memory-inefficient boundary
point digitizing. Even if a digitized form has to be used and the sur-
face representation is similar to explicit expression, Surface Func-
tion Actives still has faster convergence when compared with
parametric deformable model. This dimensionality reduction gives
SFA advantages in efficiency in both aspects of the deformable
model (i.e. surface modeling and deformation scheme). Further
more, with an implicit representation, it is straightforward to
determine whether a point is inside the contour by simply compar-
ing the value of the surface function for that point with the value of
the surface function on the boundary. In addition, surface functions
enable immediate quantitative evaluation of the segmentation re-
sults via surface comparisons and differences in surface function
values. However, similar to parametric active contours, it is not
trivial to deal with topological changes.

2.5. Further extension in flexibility

Beside the advantage brought by dimensionality reduction, SFA
framework is also benefited from basis representation. By utilizing
coordinate basis other than Cartesian coordinates, SFA can not only
easily dealt with enclosed shape as heart, liver and various tumors,
but also easily incorporate shape prior information. By utilizing
function basis other than natural basis, SFA can not only efficiently
represent convoluted surfaces, but also naturally enforce prior
knowledge on surface smoothness.

By using the concept of piecewise function, SFA can be extended
with combination of finite element patches to capture much more
complex shape, like left ventricle. By incorporating repositioning
and reorientation, the capture range of SFA can be largely in-
creased, giving less dependence on initialization.

A sample application illustrating all these flexibility extensions
in the context of real-time cardiac segmentation was provided la-
ter in the paper. But first, some basic idea of SFA was illustrated on
synthetic images using Cartesian coordinate system.
Fig. 2. (a) Synthetic image composed of two regions with normal distributions with
the same mean values but different standard deviations; (b) corresponding binary
images indicating the ground truth segmentation. The blue region has a standard
deviation of 5 and the red one has a value of 10 in the original image. The interface
is a sine function.
3. Experimental results on synthetic image

To illustrate the performance and some advantages of the pro-
posed Surface Function Actives (SFA), several segmentation exam-
ples are presented in this section on a synthetic image. This section
specifically focuses on two implicit representation methods: the
proposed SFA method and the level set representation. Both seg-
mentation frameworks use variational formulae and interface
functions. A fair head-to-head comparison is possible by setting
identical segmentation energy functional and numerical schemes
for both methods.

3.1. Synthetic image

To illustrate the flexibility of the proposed SFA framework, in-
stead of using an example on common piecewise smooth images,
in this section, both SFA and level set approach were challenged
with textured regions segmentation.
The synthetic image, as shown in Fig. 2a, was composed of two
parts. Pixel intensities for each part were randomly sampled from
normal distributions with identical mean values and different
standard deviations. The corresponding ground-true binary image
is shown in Fig. 2b. The blue region had a standard deviation of 5
and the red region had a value of 10. The interface between the re-
gions was a sine function. The dimension of the image was 65 by
65 pixels.

3.2. SFA using numerical solution

Usually in image segmentation, especially for the level set
framework, it is not easy to find a closed form interface function.
Instead, a numerical solution or approximation of the interface
function is computed via iterative numerical energy minimization.
With the level set functions, this requires computation values of
the level set function at each pixel (or on a narrowband near the
interface). With SFA, we only need to compute the surface function
values at each pixel on the interface.

Given the texture-based segmentation problem presented in
Fig. 2, the following energy functional was selected:

E¼
Z

X
ðrðx;yÞ� d1Þ2Hðx;yÞdxdyþ

Z
X
ðrðx;yÞ� d2Þ2ð1�Hðx;yÞÞdxdy

ð8Þ

where X is the image domain, r(x, y) is a standard deviation esti-
mator for pixel (x, y) within a small neighborhood, and H is the
Heaviside function, which equals 1 inside the current interface
and 0 outside. The parameters d1 and d2 are computed as the aver-
age standard deviations inside and outside the current interface,
respectively. The optimal segmentation will partition the image
into two regions, with relative homogeneous distributions of the
standard deviations within each region. This approach is equivalent
to segmenting a representation of local standard deviations r(x, y)
values of the image, knowing that for normal distributions
N(l, r), average standard deviations converge to the scale parame-
ter r. The Chan-Vese level set numerical schemes described in [6]
were used for the level set implementation. For simplification, no
curvature constraints were used.

Both methods were initialized as a straight line at the center of
the image, as shown in Fig. 3a. The ground truth boundary is
shown in green on the same figure. Corresponding surface func-
tions for SFA was just a 1D constant function as y(x) = 0,
�32 6 x 6 32, whereas the corresponding level set function was a
plane with slope 1 as shown in Fig. 3b.
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Fig. 3. (a) Initialization of the deformable model as in red and the ground truth interface in green; (b) corresponding signed distance function for the level set initialization.
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Both methods were implemented in Matlab�. All computations
were executed on a 2.4 GHz 64-bit AMD server, running Red Hat
Linux Enterprise AS. For each pixel, a 7 � 7 neighborhood was used
to compute the local standard deviations. An artificial time step
was set to 5 for both methods. Stability of the surface was consid-
ered as the convergence criterion.

In order to quantitatively evaluate the segmentation result for
each method, true positive (TP) fraction ratio and false positive
(FP) fraction ratio were computed. In addition, root-mean squared
error in distances from the interfaces to the ground truth was
estimated.

It took eight iterations (0.38 s) for the SFA to converge, each
iteration taking about 47.5 ms. Final segmentation result is shown
in Fig. 4a, with red line indicating the automatic segmentation and
green line indicating the ground truth. The TP fraction ration was
99.7%, whereas the FP ration was 3.8%. RMS error of the distance
to the ground truth was 1.56 pixels.

For comparison, it took 36 iterations (3.43 s) for the level set ap-
proach to converge, each iteration taking about 95.3 ms. Final seg-
mentation result is shown in Fig. 4b, with the red line indicating
the automatic segmentation and green line indicating the ground
truth. The TP fraction ration was 99.6%, whereas the false positive
fraction ration was 4.0%. The RMS error of the distance to the
ground truth was 2.15 pixels.

From this experiment, the SFA framework clearly demonstrates
advantages in computational efficiency when compared to the le-
vel set framework, with not only a shorter time per iteration, but
also fewer iterations. This is mainly due to the fact that the level
Fig. 4. Final segmentation (red line) compared to the ground truth (green line) for
(a) Surface Function Actives and (b) Chan-Vese level set with identical segmenta-
tion energy functionals and numerical schemes.
set function has to be updated over the entire image domain
whereas the SFA is only updated at the interface. Quantitative seg-
mentation comparison yielded comparable segmentation perfor-
mance for both methods, SFA having slightly better performance.

To test the ability of the proposed SFA framework under differ-
ent and more challenging initialization setups, another initializa-
tion on the left-most boundary was tested as well for both
methods. The initialization and final results from both methods
are shown in Fig. 5.

Both methods spent much more time to reach the final results.
It took 25 iterations for the SFA and 75 iterations for the level set
method to converge. Segmentation by SFA yielded a TP of 99.81%
and a FP of 4.03%. Segmentation by the level set framework gener-
ated a TP of 99.91% and a FP of 6.58%. RMS errors were 1.61 pixels
for SFA and 2.80 pixels for the level set. Both methods had slightly
poorer performance compared with the results using closer initial-
ization. However, the SFA framework still exhibited advantages in
efficiency and slightly better performance.

It has to be noted that in numerical solution, SFA was operating
in a ‘‘downgraded” form which is similar to the parametric deform-
able model. But it still has the advantage in efficiency over para-
metric deformable model since only one variable per node is
evolving, rather than N variables per node for the explicit
representation.

3.3. SFA using analytical solution or function basis

Another advantage of the SFA framework is to provide closed
form solution or approximation for the interface, which, as indi-
cated in the method section, can bring additional gain in efficiency.
Since the surface function is a (N � 1)-D function for N-D image
data, we can choose arbitrary bases (natural bases or other bases)
in the function space to express the surface function. Especially
when some prior knowledge about the interface properties is
known, proper choice of basis functions can not only seamlessly
incorporate such prior knowledge, but also further increase the
efficiency of the SFA framework. Moreover, having an analytical
form of the interface can provide additional benefits like analytical
differentiation in a downstream analysis.

To illustrate this point, assuming that by looking at the original
image data, we decided to use the following sine function to de-
scribe the interface.

yðxÞ ¼ a sinðxÞ þ b ð9Þ

the problem was then converted to the identification of the optimal
parameters (a, b) that minimize the segmentation functional. Since
there were only two parameters to be optimized, only a few pixels



Fig. 5. (a) Initialization of the deformable model, in red, at left-most of the image with the ground-true interface in green; Corresponding final segmentation (red line)
compared to the ground truth (green line) for (b) Surface Function Actives and (c) Chan-Vese level set under identical segmentation energy functional and numerical schemes.

Fig. 7. Final segmentation (red line) compared to the ground truth (green line) for
the SFA using cubic polynomials as the surface approximation.
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were needed during each iteration. In this example, we worked
with 9 pixels on the boundary to ensure the overcompleteness of
the estimation, compared to all pixels on the boundary as in the
numerical solution scenario. This formulation reduces computa-
tional cost by utilizing prior knowledge on the shape of the inter-
face. Close and far-away initializations were tested. Final
segmentation results are shown in Fig. 6.

It took the SFA 10 iterations to converge under close initializa-
tion. Each iteration took 21 ms. The TP ratio was 100%; the FP ratio
was 3.79%. The RMS error was 1.26 pixels. Under far-away initial-
ization, it took the SFA 25 iterations to converge. Each iteration
took 17 ms. The TP ratio was 100%; the FP ratio was 4.50%. The
RMS error was 1.40 pixels.

The presented results showed that by utilizing prior knowledge,
both efficiency and accuracy could be improved under the same
initialization setups and numerical schemes. Besides, the use of a
closed form function provides a continuous expression of the inter-
face which may be of great benefit for downstream analysis.

In real applications, it can be difficult to identify an accurate
surface function. In this context, an approximation function or
approximation basis functions can be used. In the same example,
when we used cubic polynomials to approximate the interface, it
took longer time, 3.59 s, to converge, with corresponding RMS er-
rors of 1.66 pixels. The final segmentation result is shown in Fig. 7.

4. Sample applications

Static X-ray computed tomography (CT) volumes are often used
as anatomic roadmaps during catheter-based cardiac interventions
performed under X-ray fluoroscopy guidance. These CT volumes
provide a high-resolution depiction of soft-tissue structures, but
Fig. 6. Final segmentation (red line) compared to the ground truth (green line) for
SFA under (a) close initialization and (b) far-away initialization.
at only a single time within the cardiac and respiratory cycles.
Combining these static CT roadmaps with segmented myocardial
borders extracted from 4D ultrasound (US) data provides intra-
operative access to real-time dynamic information about the car-
diac anatomy. In this work, using a customized segmentation
method based on a 3D Surface Function Actives, endocardial bor-
ders of the left ventricle were extracted from US image volumes
(4D data sets) at a frame rate of approximately five frames per sec-
ond. Coordinate systems for the CT and US modalities were regis-
tered using rigid body registration at end diastole based on
manually selected landmark points, and the segmented endocar-
dial surfaces were overlaid onto the CT volume. The RMS fiducial
registration error was 3.80 mm. The accuracy of the segmentation
was quantitatively evaluated on phantom and human volunteer
studies via comparison with manual tracings on nine randomly se-
lected frames using a finite element model (US image resolutions
of the phantom and volunteer data were 1.3 � 1.1 � 1.3 and
0.70 � 0.82 � 0.77 mm, respectively). This comparison yielded a
RMS error of 3.70 ± 2.5 mm (approximately 3 pixels) in the phan-
tom study and 2.58 ± 1.58 mm (approximately 3 pixels) in the clin-
ical study. The combination of static anatomical roadmap volumes
and dynamic intra-operative anatomic information can enable bet-
ter guidance and feedback for image-guided minimally invasive
cardiac interventions, given the fact that only 75 ms was needed
for each clinical 3D image.

4.1. Introduction

In cardiovascular minimally invasive interventional procedures
such as catheter-based radiofrequency ablation [23], pre-proce-
dural roadmaps can be valuable for surgical planning and
intra-procedural guidance by complementing the intra-procedural
imaging modality. Though multiple imaging modalities have been
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proposed for acquiring such roadmaps, cardiovascular X-ray com-
puted tomography (CT) is widely used since it can provide 3D high-
resolution depiction of soft-tissues [24] not usually attainable with
intra-procedural imaging modalities. The utility of pre-procedural
roadmaps is usually limited in that they are static volumes ac-
quired at a single time point within cardiac and respiratory cycles,
whereas during the interventional procedure, the geometry and
position of the heart changes over time due to cardiac motion
and breathing. Several modalities, such as X-ray fluoroscopy [25],
interventional magnetic resonance imaging (iMRI) [26], and 2D/
3D ultrasound (US) have been used for intra-procedural imaging
to acquire dynamic information about the targeted tissues, though
each modality has its own limitation. For example, X-ray based
methods do not depict soft-tissue structures well, are limited to
2D projection perspectives, and introduce additional ionizing radi-
ation to the patient and the operators; MR-based methods require
an MR-compatible operating room and instruments. On the other
hand, real-time 3D (RT3D) US is used for intra-procedural live
monitoring since it is portable, does not generate ionizing radia-
tion, and does not require any special operating environments.

Development of RT3D echocardiography started in the late
1990s by Volumetrics� [27] based on matrix phased arrays trans-
ducers. Current systems can acquire roughly one quadrant of the
heart in a single 3D field-of-view in real-time, or can stitch to-
gether acquisitions over four cardiac cycles for a fully sampled car-
diac volume. This quadrant-wise acquisition design enables a
dramatic increase in spatial resolution and image quality com-
pared to those reconstructed 3D ultrasound from 2D B-mode slices,
which makes such 3D ultrasound techniques increasingly attrac-
tive for daily cardiac clinical diagnosis. Since RT3D ultrasound ac-
quires volumetric ultrasound sequences with fairly high temporal
resolution (about 20 frames per seconds per quadrant) and a sta-
tionary transducer, complex 3D cardiac motion can be captured
with high fidelity. RT3D US data from one quadrant can roughly
cover the left ventricle and can be recorded in true real-time fash-
ion, with a temporal resolution of about 20 frames per second. This
dynamic 3D imaging modality provides new opportunities for non-
invasive monitoring of intra-operative tissue dynamics and func-
tional information.

The purpose of this work was to explore the feasibility of aug-
menting static cardiac CT roadmaps with segmented myocardial
borders extracted from RT3D US streams. Emphasis was placed
on the integration of information based on the inherent strengths
of each imaging modality. CT provides a static high-resolution
depiction of cardiac soft-tissue structures; RT3D US provides in-
tra-operative access to real-time dynamic information about the
myocardium without exposing the patient to additional ionizing
radiations. Integration and fusion of image data and information
from multiple modalities is a critical enabling technology that will
Fig. 8. (a) A photograph of the multi-modality phantom under experimental settings; thr
volume taken from the 4D ultrasound stream.
improve the quality of intra-operative guidance for many mini-
mally invasive cardiac interventions.

4.2. Methods

There are different ways of incorporating information from
streamed US data into a CT roadmap. One direct way is to overlay
ultrasound images onto the CT volume. However, even though the
multi-modality registration step and the volume rendering step
can be implemented with real-time performance, overlaying all
of the image data from the high speed volumetric streaming ultra-
sound on top of the CT volume can be overwhelming to the oper-
ators. In this work, we extracted the relevant dynamic cardiac
information by online segmentation of the endocardial borders
from RT3D US images; the extracted endocardium was overlaid
on the static CT roadmap in real-time to augment the intra-proce-
dural display. This work involves multi-modality registration and
online segmentation of RT3D US image data. In the following sec-
tions, the hardware and imaging systems will be introduced; the
registration framework will be detailed; and finally, the design
and performance of a real-time segmentation method will be
analyzed.

5. Hardware and Imaging

A multi-modality imaging phantom was constructed by Philips
Research North America to facilitate technology development and
validation. The custom-built phantom was tuned for realistic soft-
tissue contrast under both CT and US imaging and mimics the
geometry of a human heart (Fig. 8a).

X-ray CT imaging was performed on a Philips Brilliance 16 slice
CT scanner. The CT image data was acquired with a spatial resolu-
tion of 0.59 � 0.59 � 1 mm and field-of-view of 300 � 300 �
200 mm. This CT volume was used as the static pre-procedural
roadmap (Fig. 8b). Ultrasound imaging was performed on a Philips
iE33 system, using the X3-1 3D imaging probe (Fig. 8c). For devel-
opment purposes, RT3D US data sets were saved to disk for re-
peated use. In our segmentation experiments, streaming of the
data was simulated by loading a single 3D frame at a specific time
from the disk and applying our processing steps before loading the
next 3D frame. During US scanning, the cardiac phantom was man-
ually deformed to simulate cardiac motion. The spatial resolution
of the RT3D US image data of the phantom was 1.3 � 1.1 �
1.3 mm. The temporal resolution was 18 fps.

Cardiac US image data was collected on two human volunteers.
The clinical protocols were approved by the institutional review
board and informed consent was secured. The RT3D US images
were acquired with the same hardware that was used in the
phantom experiments and with a spatial resolution of 0.70 �
ee orthogonal planes through (b) the corresponding CT roadmap and (c) one sample
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0.82 � 0.77 mm, and a temporal resolution of 23 fps. CT imaging
was not performed on the human volunteers.

6. Registration

The CT coordinate system was chosen as the reference coordi-
nate system, and the ultrasound data was registered to it. In this
initial work, the ultrasound probe was left in a fixed position rela-
tive to the cardiac anatomy, so that a one-time coordinate registra-
tion was sufficient.

XCT ¼ RCT
USXUS ð10Þ

Eq. (10) describes the relationship between the CT and US coordi-
nate systems. XUS refers to image coordinates in the US data space.
When multiplied by the registration matrix, RCT

US, US coordinates are
transformed to corresponding image coordinates in CT data space,
XCT. The registration matrix, RCT

US, describes a rigid body transform
between the two coordinate systems. Anatomical features such as
the mitral valve annulus, tip of the apex, and cross-sectional points
of the artificial coronary artery, which were visible in both imaging
modalities, were used to define the corresponding points in the CT
image and in the first frame of the ultrasound image data. The reg-
istration matrix, RCT

US, was calculated analytically using a least
squares technique for eight manually selected landmark points in
the two image datasets.

7. Segmentation

In ultrasound image analysis, including segmentation, a prepro-
cessing step is usually applied to suppress the speckle noise in the
ultrasound images [28]. However, such processing usually needs
full volume linear or non-linear processing, which may require
substantial computational power. This is acceptable for offline pro-
cesses but this requirement is incompatible with this online or
‘‘real-time” segmentation application.

In cardiac ultrasound segmentation, besides the classical meth-
ods based on thresholding [29,30] and morphological operations
[31,32], parametric active surface models [33–36], level set frame-
works [18,37], and active shape/appearance models (ASM/AAM)
[38–40] have been proposed as alternative methods. Since the gen-
eral level set implementation is relatively slow, and the requirement
of a large training database for ASM/AAM is non-realistic in the car-
diac intervention context, we chose to develop a segmentation algo-
rithm using a customized 3D Surface Function Actives [41].

7.1. Surface representation

In order to efficiently capture the shape of endocardium, instead
of using a traditional triangulated mesh with a linear surface with-
Fig. 9. Illustration of cubic Hermite surface representation: (a) a 2D surface with fin
representation that can efficiently characterize a convoluted surface as shown in color, w
in each patch, 3rd order Hermite polynomials in spherical coordi-
nate system were used as surface descriptors [33,42].

In 1D, there are four cubic Hermite basis functions Hj
iðnÞ:

H0
0ðnÞ ¼ 1� 3n2 þ 2n3

H1
0ðnÞ ¼ nðn� 1Þ2

H0
1ðnÞ ¼ n2ð3� 2nÞ

H1
1ðnÞ ¼ n2ðn� 1Þ

ð11Þ

On a 2D finite element patch, as shown in Fig. 9, there will be four
basis functions associated with each local coordinate direction (n1

or n2), which generates a total of 16 2D basis functions. Fig. 9b
shows an example of using 3rd order Hermite polynomials to rep-
resent a convoluted 3D surface in 3D space using a single 2D finite
element patch. For comparison, if linear quadrilateral patches were
used, about 100 linear patches would be required to represent the
same surface with comparable accuracy. For this reason, Hermite
polynomials are widely used in cardiac biomechanics studies for
surface representation [1,42,43]. A simple 8 � 8 finite element mod-
el (FEM) with intrinsic C1 continuity can sufficiently represent the
geometry of the endocardium [1,43]. In our implementation, this
8 � 8 convention was followed, i.e. an 8 � 8 FEM using cubic Her-
mite polynomials as surface descriptors was used to represent the
endocardium. The model was driven to segment the endocardium
with forces derived from an energy functional described in the fol-
lowing section.

7.2. Segmentation energy functional

Since it would be too computationally expensive to pre-process
or smooth the US images in our real-time application, traditional
segmentation approaches that use an image gradient based energy
minimization function are not robust enough due to the high noise
level of ultrasound images. In order to overcome this problem, we
borrowed an idea from the ‘‘active contour without edges” concept,
which was originally proposed by Chan and Vese [16] for a level set
framework.

The 3D active mesh model is deformed under external forces
derived from a minimization of the Mumford–Shah energy func-
tional [17]:

Eðf ;~CÞ ¼ b
Z

X
ðf � gÞ2dV þ a

Z
Xn~C
jrf j2dV þ c

I
~C

ds; ð12Þ

in which~C denotes the smoothed and closed segmentation, g repre-
sents the observed US data, f is a piecewise smoothed approxima-
tion to g with discontinuities only along ~C, and X denotes the
image domain. The first integral enforces the similarity between f
and g, which is equivalent to homogeneity constraint since f is
piecewise smoothed; the second integral controls the smoothness
ite element patches used in our model; (b) a single patch with cubic Hermite
hereas it takes about 100 linear quadrilateral patches to achieve similar accuracy.
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of f; and the last integral is actually the length of the segmented
boundary, which, acts as internal elasticity to prevent leaking at
weak boundaries. The external forces driving the 3D active mesh
were formulated using the same image homogeneity-based ratio-
nale proposed by Chan and Vese [16], using homogeneity measures
inside and outside regions based on the current segmentation. Spe-
cifically, the optimum segmentation, corresponding to endocar-
dium, divides the image into two relatively homogeneous regions.
In this application, these regions correspond to the blood pool and
the myocardium.

The Mumford–Shah equation (Eq. (12)) was only evaluated at
discrete sampled sub-node points. To ensure that the system was
well-defined, each surface patch was super-sampled by a 4 � 4
sub-node grid. In this way, the whole surface model was over-con-
strained with continuity constraints between each adjacent surface
patch since the surface basis functions were cubic. The Mumford–
Shah equation (Eq. (12)) was minimized using a Newton Downhill
method, chosen for its computational efficiency

Hi;tþdt ¼ Hi;t � dt
@E

@Hi
; ð13Þ

with dt representing the artificial time step in numerical iterations.

7.3. Repositioning and reorientation of the surface

One common drawback of segmentation using parametric ac-
tive surface models is that the capture range of the method is usu-
ally small compared to other methods. For ultrasound
segmentation applications, the initial contour is usually required
to be positioned, usually manually, fairly close to the actual bound-
ary [13]. Automated and semi-automated methods have been pro-
posed to avoid manual intervention, using optical flow tracking
[13], the Hough transform [44], or multi-scale approaches [45].
Since temporal performance is critically important for our real-
time interventional application, a computationally more efficient
approach was needed.

In order to reduce the dependence of the segmentation result on
the initial position, after segmentation convergence for the current
frame, the interface model used for the initialization of the next
frame repositions itself so align its center and long-axis with the
centroid and the long-axis of the segmented surface. This extra step
in the initialization procedure speeds up the convergence, and keeps
the Hermite coefficients at each node as small as possible, which in-
creases the numerical stability of the optimization process.

7.4. Implementation

The segmentation software was implemented in C++ using an
ITK [46]/VTK [47] compatible framework. These open source
Fig. 10. (a) A representative ultrasound frame from 4D phantom ultrasound data set, w
applying the rigid body transformation, the segmented endocardial surface can be mappe
changes in the shape of the phantom, the segmentation is updated, and continuously p
libraries were used for rendering, visualization, and interaction
with the image data.
8. Validation

To quantitatively evaluate the segmentation’s performance,
nine 3D image volumes from a 4D phantom data set, (which con-
tained a total of 500 3D frames), and four image volumes from a
4D clinical data set, (which contained a total of 87 3D fames), were
randomly selected. The endocardial surfaces were manually traced
using a customized tracing interface implemented using Matlab�

(The MathWorks, Inc, Natick, Massachusetts); between 200 and
300 boundary points were selected for each volume. To quantita-
tively compare manual and automated segmentation results, the
output of the automatic segmentation for the selected frames, i.e.
after convergence of the FEM surface, was fitted to the correspond-
ing manual tracing point cloud via updating of the Hermite param-
eters at each node. The endocardial surfaces, identified by manual
tracing and automated segmentation were therefore efficiently
represented by two sets of Hermite parameters at each node of a
single finite element surface model, which enabled point-wise
quantitative surface comparison. In this study, surface distance at
each corresponding node point from the FEM for each surface
was used as the criterion for surface discrepancy. A similar ap-
proach for segmentation comparison can be found in previous
studies [48].
9. Results

9.1. Results on phantom data

The CT and US coordinate systems were rigidly registered using
eight manually selected landmarks, and the RMS fiducial registra-
tion error was 3.80 mm.

The segmentation algorithm was applied to each ultrasound
frame (500 in total) in the sequence, requiring 4.12 ± 0.73
(mean ± stdev) iterations per frame to converge on the endocardial
border. The processing for each image frame took 150–200 ms on a
Pentium 4 (2.80GHz desktop with 1.00 GB RAM running Microsoft
Windows XP), enabling a 5 frame/second application update. The
actual time required for the segmentation was 50 ± 8 ms; the
remaining roughly 130 ms were required for data loading from
the hard disk and rendering.

Fig. 10(a) shows a snapshot of the endocardial surface segmen-
tation (red surface) overlaid with the ultrasound image data. After
applying the rigid body transformation, the segmented endocardial
surface can be mapped onto the pre-procedural CT dataset shown
in (b) using the transform RCT

US. As the ultrasound images capture
ith the endocardial surface (red) being segmented at 5 frames per second. (b) after
d onto the pre-procedural CT dataset. (c) As the ultrasound images capture dynamic

rojected into the static CT dataset.



Fig. 11. Comparison of the segmentation of the phantom endocardial surface: automated method (red) and manual tracing (green) for one US frame at three different view
angles.
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dynamic changes in the shape of the phantom, the segmentation is
updated, and continuously projected into the static CT dataset
(Fig. 10c). Quantitative evaluation of the automatic segmentation
compared to manual tracings, as described in Section 2.4, yielded
an RMS error of 3.70 ± 2.5 mm which represents less than 3 pixels.
Sample comparison frames are shown in Fig. 11, where the red sur-
face displays the endocardial surface segmented by our automatic
segmentation method and the green surface displays the endocar-
dial surface from manual tracing.

9.2. Results on clinical data

The segmentation algorithm was also tested on each frame of
a clinical patient data set (87 frames in total). The clinical data set
had better image resolution than the phantom data. Quantitative
evaluation of the segmentation via comparison with manual trac-
ings, as described above, yielded a RMS error of 2.58 ± 1.58 mm
which corresponds to approximately 3 pixels. The actual time re-
quired for segmentation of each frame of the clinical US data was
75 ± 12 ms (this time does not include loading the data from the
disk or rendering). Sample comparison frames are shown in
Fig. 12.
Fig. 12. Comparison of clinical data between the automated method (red) a
10. Discussions

This work presented a near real-time method for extracting
endocardial surfaces in RT3D cardiac US streamed data and using
this intra-procedural information to augment static CT roadmaps.
This work demonstrated the feasibility of using streaming RT3D
cardiac ultrasound as a real-time non-invasive tool for qualitative
assessment of dynamic cardiac tissue morphology and proposed
a framework for incorporating this information into an intra-pro-
cedural display for image guidance.

10.1. Registration and segmentation accuracy

The RMS segmentation error of the phantom data was
3.70 ± 2.5 mm. This is comparable to the findings in other studies
using active contours for 2D cardiac ultrasound segmentation
[13]. The segmentation errors in the clinical data set were smaller
(2.58 ± 1.58 mm RMS error). The RMS error values reported in this
study were calculated via a comparison between two finite ele-
ment surface models (FEM), one fit by the automatic segmentation
algorithm to the endocardial surface within the image data, and
one fit to a manually traced surface. Inaccurate manual tracings
nd manual tracing (green) on one frame at three different view angles.
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and/or a non-perfect fit of the FEM surface to the manual tracing
also contributed to the RMSE values. The improved segmentation
accuracy with the clinical cardiac images was likely due to the data
set’s higher spatial resolution. The increased image resolution pro-
vided more support points along the endocardial surface. Addition-
ally, higher image resolution might have facilitated more accurate
manual tracings.

The multi-modal RMS registration error was 3.80 mm. This reg-
istration error was possibly due to the variation in manually picked
landmark points, the limited resolution of the ultrasound image
data, and deformation of the phantom between the CT and US
scans. This error was comparable to the RMS error in other similar
studies [49] (reporting 5 mm RMS surface distance between CT and
MR co-registration).

In the multi-modality intra-operative display, the segmented
endocardial surface from RT3D US was registered to the CT vol-
ume. Registration and segmentation errors both contributed to
the overall error in the augmented roadmap display. The results
of the phantom registration and segmentation experiments in this
study indicated that this overall error could be as large as
7.5 mm. It is important to note that in the context of this applica-
tion, i.e. augmentation of a static CT roadmap, segmentation was
not intended to provide precise quantitative functional measure-
ments, such as ejection fraction. Therefore the implementation
emphasized temporal performance at the cost of optimal segmen-
tation accuracy.

10.2. Sensitivity to initialization

In order to minimize the amount of manual interaction required
to initialize the segmentation model, the algorithm was simply ini-
tialized as a small sphere in the center of the ultrasound volume. A
sample screenshot of the initial state is shown in Fig. 13a. Only a
small portion of the surface was inside the left ventricle at initial-
ization. As shown in Fig. 13a, the surface was initialized with a ma-
jor part of the model residing within the myocardium; only a small
portion of the model was actually inside the ventricle. Several
frames later, as shown in Fig. 13b, the model began to grow inside
the ventricle. The segmentation depicted in Fig. 13b is the result
after the model had converged. The incorrect segmentation in
Fig. 13b is a transient result due to the poor initialization. Reposi-
tioning and reoriention of the model, based on the current segmen-
tation, were key algorithmic steps that enabled the model to adjust
itself and overcome poor initialization. In our experiments, the
model only required about 1–2 s (about 25 frames) to properly
align itself with the left ventricle as long as some of the surface
function actives were within the ventricle at initialization. This 1–
2 s overhead at the start of US imaging is acceptable in the context
of most interventional applications. This analysis, regarding the
segmentation method’s relative insensitivity to initialization con-
ditions, was based on qualitative observations in a small number
Fig. 13. Segmented model at (a) initial state, (b) 0.5 s later, and (c) 2 s later. T
of experiments. A rigorous investigation of capture range will be
needed in future studies.

In the current implementation, repositioning and reorientation
accounted for an average of 66% of the overall processing time for
each frame. This could be a bottleneck of the algorithm and a can-
didate for further optimization to achieve higher frame rates. For-
tunately, it has been found in cardiac biomechanics [1] that the
long-axis of the left ventricle is relatively stable through the car-
diac cycle. Therefore, it might be possible to turn off the reorienta-
tion/reposition step after the initial several seconds which were
required for the model to adapt to actual orientation of the image
data. This modification to the algorithm could provide a threefold
gain in the update rate.

10.3. Segmentation speed

The update rate was about five frames per second, which was
well below the maximum frame rate at which RT3D US image data
can be acquired. The temporal performance of the segmentation
could be increased by several means. In the current implementa-
tion, the 4D data stream was stored on the system hard disk.
Therefore, the algorithm needed to load the data from the hard
disk frame by frame, an effort that takes about 50 ms per frame.
In a real clinical setting, the US data would be streaming into the
system memory and would be processed in place; loading from
the hard disk would not be required. Additionally, the time spent
on visualization could also be decreased by using high perfor-
mance graphics cards and rendering algorithms.

As pointed out in Section 4.2, since repositioning and reorienta-
tion accounts for an average of 66% of the overall processing time
for each frame, the computational load could potentially be cut by
a factor of 3 by reducing the frequency of these steps once the
model is roughly aligned with the anatomy. Also, since most of
the operations in the current implementation were node-wise,
the algorithm could be parallelized in order to utilize the efficiency
of multi-threaded and parallel computing. Finally, running the
whole framework on a more powerful hardware platform would
reduce the overall processing time.

By taking all these factors into account, the update rate of the
overall framework might be able to reach 20 frames per second
or higher rate for true real-time performance.

10.4. Future Developments

This work represented preliminary implementation towards the
extraction of dynamic information from a 3D intra-procedural US
stream. In addition to the endocardium’s position and morphology,
further valuable information might also be extracted using the cur-
rent framework. Since the segmentation model is a parametric sur-
face model based on finite elements, the segmentation process was
actually a LV parameterization process. Once the segmentation
he arrow indicates the orientation of the model’s long-axis in each frame.
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converged, a patient specific finite element LV surface model was
automatically built. Based on this surface, model-based LV motion
analysis [1] could be easily adapted into this framework. More de-
tailed cardiac functional metrics, such as mechanical dyssynchro-
ny, ejection fraction, local 3D fractional shortening, etc, might be
directly computed or estimated from the model.

This framework could be also applied to other applications,
such as tumor tracking for liver ablation guidance or tracking of
the atria or right ventricle in minimally invasive cardiac interven-
tions. Ultimately, this segmentation method could be applied in
the context of a multi-modality guidance system using electro-
magnetic or optical tracking to localize the ultrasound probe for
automatically and dynamically computing the registration with
datasets from other imaging modalities.

11. Conclusions

Surface Function Actives (SFA) was presented as a new frame-
work for deformable model. It offers great advantages in computa-
tional efficiency, benefited from dimensionality reduction in the
interface representation. It utilizes implicit surface representation,
enabling easy determination of inside from outside surface areas as
well as straightforward quantitative segmentation comparison.
Moreover, besides providing numerical solutions to the desired
interface like a level set framework, SFA can use closed form
expressions as well to achieve even better efficiency and accuracy.
The continuous form of interface function can also benefit down-
stream analysis based on shape or other information from the
interface. Although illustrated in a minimum-invasive application,
SFA is suitable for any applications where real-time feedback is de-
sired. The variational framework that SFA adopts provides flexibil-
ity of further expansion in terms of additional constraints or the
ability to deal with multi-channel multi-phase segmentation
problems.
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