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Although clinicians have long sought to integrate computer-aided diagnostic (CAD) systems into routine
clinical practice, it has proven to be extremely difficult to perform fully automated algorithmic analyses
on lesions, based solely on the information contained in images. To increase the utility of computerized
tools, it would be intuitive to incorporate anatomical and pathological knowledge and heuristics to help
the system draw diagnostic inferences. In neuro-imaging applications, for example, one way to perform
this knowledge integration is to uncover symmetry/asymmetry information from the corresponding
regions of the head and to explore its implication to positive clinical findings. To correctly quantify asym-
metric patterns in brain images, however, the symmetry axis, or the symmetry plane, needs to be appro-
priately oriented in space; i.e., the symmetry plane needs to be correctly identified either manually or
using computerized methods. This review will provide an overview of the current state of knowledge
of both symmetry axis/plane detection, and asymmetry quantification in neuro-images.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The advances in computer technologies, over the last decade or
so, are catalyzing the development of modern computerized
schemes for lesion detection in radiological images. One major
challenge, however, is that computers generally lack sufficient per-
ceptibility and intelligence in terms of discovering pathological
patterns, which hinders the decision making process. Since it is
known that anatomical knowledge plays an indispensable role in
computer vision and artificial intelligence [1–3], integrating ana-
tomical knowledge into the computer system holds great promise
for facilitating decision making and improving patient care.

Based on the assumption that the brain exhibits a high level of
bi-fold symmetry (Fig. 1) and that this symmetry is violated in the
presence of pathological conditions, many researchers have been
motivated to construct a symmetry-based paradigm for automatic
localization and segmentation of brain lesions. The framework of
this methodology is based on the hypothesis that the systematic
correlation between asymmetry and pathologies can be a key to
the improvement of existing detection algorithms. Integrating
symmetry and asymmetry information as the prior knowledge or
heuristics into a computer-aided diagnostic (CAD) [4–6] system,
ought to enhance the system performance in the analysis of brain
pathologies.

To correctly quantify asymmetric patterns in brain images,
however, the symmetry axis, or the symmetry plane, needs to be
ll rights reserved.
appropriately oriented in space. This enables the system to correct
the possible misalignment of radiological scans, and to evaluate
hemisphere-wise asymmetry.

Therefore, this review paper has two main focuses. In the first
part, the existing state-of-the-art methodologies for identifying
the symmetry axis/plane of a given set of brain images will be
investigated. In the second part, the discriminating capacity of
symmetry/asymmetry in the context of extracting pathological
findings in various radiological applications will be explored. In
other words, to achieve the goal of using asymmetry as a patho-
logic index to assist CAD, we need to first solve an image registra-
tion problem, followed by a pattern recognition and segmentation
problem. With respect to research significance and clinical signifi-
cance, the ideas discussed in this paper, for a set of particular neu-
ro-applications, might have much more general applicability for
CAD in many other highly symmetrical parts of the human body,
including the breasts and the limbs; more details can be found in
Section 6.

2. Background

2.1. Computer-aided diagnostic system

Subjective, empirical assessment of medical images is generally
performed manually by radiologists, which is a time consuming
and tedious task. The outcome is usually operator-dependent. In
the era of radiologists hanging and reading films on the alternators,
the inspection of the scans was prone to errors owing to visual
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Fig. 2. Asymmetries exhibited in tilted image modalities such as magnetic
resonance image (MRI) and CT perfusion images (CTP). When a clinician looks at
those images, he or she consciously or subconsciously (1) identifies the symmetry
axis/plane (2) compares the abnormality with the healthy side of the brain.

Fig. 1. The brain torque demonstrates that the brain is largely symmetrical, but not
perfectly symmetrical: The right frontal lobe (1) is larger than the left one, and the
left occipital lobe is larger than the right one (11). This illustration is adapted from
[7].
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exhaustion after long hours of reading, or to limited experience of
the radiologists.

Digital imaging has revolutionized the field of medical imaging
and has led to the development of sophisticated computer hard-
ware technologies (e.g., data storage, transmission [8] and display
[9]), and specialized software (e.g., registration tools [10] and
expert systems [11,12]) that empower physicians to better distin-
guish abnormalities, characterize findings, supervise interventions,
and predict prognosis. The advances in the hardware, in particular,
over the last decade or so, are catalyzing the development of mod-
ern computerized schemes for lesion detections in radiological
images. These techniques and methods, collectively called com-
puter-aided diagnosis (CAD), are bringing about a new era in which
computers are assisting a wide spectrum of applications in medical
domains. In fact, CAD has become one of the major research sub-
jects in medical imaging and diagnostic radiology [4].

With respect to software, although clinicians have long sought
to integrate CAD systems into routine clinical practice, a readily
usable software system that can efficiently characterize lesions is
still a rarity even in major research hospitals. It has seemed to be
extremely difficult to perform an algorithmic image analysis on le-
sions, given the limitations of available intelligence systems. To
empower the computerized systems, it would seem intuitive to
incorporate knowledge and heuristics of disciplines such as anat-
omy and pathology, to help the system draw diagnostic inferences.
One strategy for development of techniques for lesion detection is
based on understanding the process of radiologists assessing
images—such as how radiologists can discover lesions, why they
may miss some abnormalities, and how they can distinguish be-
tween benign and malignant lesions [13].

2.2. Brain abnormality detection

Brain images of a variety of modalities can disclose anatomical
(MR, CT), functional (PET, SPECT), or physiological (CTP, MRP)
information that is crucial to the diagnosis and treatment of pa-
tients (Fig. 2). Automated detection and segmentation of brain
abnormalities spans several decades of research, and still remains
a challenging problem. To facilitate fully automated segmentation,
it is known that image information alone is insufficient [14] to suc-
cessfully differentiate between target organs, abnormal tissue, and
the background. For example, statistical classification methods
may fail when a brain lesion shows insufficient contrast against
its background, or presents highly inhomogeneous patterns.

On the other hand, in medical images of most state-of-the-art
modalities, absolute values only provide a reference in terms of
dissecting pathologies. The inter-individual and inter-equipment
variations, even under controlled settings, are often so high that
it is impossible to directly draw inferences upon the absolute val-
ues. Finding statistically significant relative values may provide
more insights for detecting and quantifying brain abnormalities
in computerized analysis.

One way to examine the relative values, particularly in brain
images, is to uncover symmetry/asymmetry information from the
corresponding regions of the head, and to explore its implications
with respect to positive clinical findings (see Fig. 2). The hope is
that, with the integration of this information into classification
algorithms, a more knowledge-driven and potentially successful
diagnostic interpreter can be created.

2.3. Neuro-images: misalignment in clinical settings

A common phenomenon in radiological scanning is that many
neuro-imaging devices produce disoriented brain images; the
scanned brain images are somewhat tilted and distorted [15]. Tilt
and distortion can mislead visual inspection, and often yield false
clinical interpretation, since slices of the brain images are no long-
er representing homologous structures within the same coronal or
axial level [7]. The tilt of the head is often observed in the device
during the scanning process, however, is not always tractable.
Common reasons include, but are not limited to, immobility of pa-
tients, inexperience of the technicians, and imprecision of calibra-
tion systems [16].

Correcting the tilt of the head is equivalent to realigning the
mid-sagittal plane (MSP) with the center of the image lattice. The
MSP is defined as the plane that best separates the brain into
two halves [7]. It is evident that the re-adjustment of the MSP from
the geometrical misrepresentation yields more sensible data
assessment either by a human expert or a computer program that
is based upon hemisphere-wise cross referencing.

2.4. Symmetry and its clinical implications

Morphologically speaking, a normal human head exhibits a high
level of bilateral symmetry, although it is not perfectly symmetri-
cal [17]. Corresponding regions of two hemispheres have approxi-
mately identical anatomical properties, and also have comparable,
if not identical, physiologic (e.g., blood perfusion) properties. The
degree of asymmetry has long been thought to be helpful for sug-
gesting a pathological condition and/or providing a diagnostic cue
for clinicians. For example, abnormal asymmetry in the brain indi-
cates a wide range of pathologies, such as stroke, bleeding and tu-
mor. Radiologists routinely use symmetry/asymmetry as one of the
most discriminating features, in conjunction with other characters
such as location, neighborhood relationship, and shape, to assess
abnormalities in brain images.
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Functionally speaking, the brain is functionally asymmetrical
and each side of the brain assumes distinctive functions. For in-
stance, in most individuals, the left hemisphere is more active in
linguistic tasks, while the right hemisphere is specialized for
non-verbal tasks such as visual perception [18]. The degree to
which anatomical asymmetry correlates with functional asymme-
try remains questionable, but it is evident that morphological
differences between hemispheres, however slight, occur systemat-
ically in normal brains. One example would be that the right fron-
tal lobe is expected to be bigger than its left counterpart [18]. In
any case, however, one has to be aware of the existence of normal
asymmetry might potentially confound the process of extracting
abnormal asymmetry.

2.5. Summary

The research questions posed to this point consist of, for exam-
ple, can we train the computers toward a new perspective so that
they can perceive abnormal structures and equate them as asym-
metrical patterns in space? Can we encode the prior knowledge
of symmetry into the knowledge base from which we could draw
diagnostic inferences and generate faster and more accurate re-
sults in identification of pathologic dissimilarities? Can we use
asymmetric findings, however evident or subtle, to flag the region
of interest, raise the attention from the physicians and thus en-
hance the practice of radiological scanning?

Based on these research questions, this paper is presented with
three main sections: in Section 3, existing methods and techniques
in brain pathologies detection and segmentation are explored. In
Section 4, I will discuss that in order to uncover asymmetries in
head images, methods are needed for the correction of the mis-
alignment commonly present in radiological scans. In Section 5,
existing symmetry-based paradigms for automatic localization
and segmentation of head lesions will be reviewed.

3. Research in brain pathology detection and segmentation

Medical image segmentation, that is a process of identifying and
delineating anatomical structures and other objects in medical
images, still largely remains an open problem, in spite of several
decades of research from various imaging modalities [19]. There
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are many brain segmentation approaches which range from low-
level image operation such as thresholding, edge detection, math-
ematical morphology [20], to more sophisticated image processing
methods such as statistical classification [21,22], active contours
[23], level set [24], fuzzy connectedness [25], and hybrid segmen-
tation methods [26]. A number of review papers [27] can be found
in this domain.

However, clinical image analysis indicates that to successfully
differentiate between organ and tumor tissue, image information
alone is insufficient [14]. For example, if a tumor shows inadequate
contrast against the healthy brain tissue, the active contour classi-
fication can not be achieved without the manual selection of the
seeds to initialize segmentation; hence the method is not fully
automated. Other statistical classification methods are also limited
due to overlapping intensity distributions of healthy tissue, tumor,
and surrounding edema. One taxonomy of medical image segmen-
tation techniques can be presented in Fig. 3. A structure displayed
in an image can be segmented and delineated by region-based
techniques, boundary-based techniques, or the hybrid of both.
Structures that possess discontinuous borders or overlapping
internal composition, that are common occurrence in medical
images, are likely tocomplicate the segmentation task. Region-
based methods further branch into data-driven methods and
knowledge-driven methods. Data-driven methods are often super-
vised and statistical in nature. In data-driven, unsupervised algo-
rithms, techniques such as thresholding and morphology
operator, often work as a complementary tool or are intertwined
with supervised statistical classifier. Data-driven methods do not
explicitly utilize anatomical knowledge in the segmentation tasks.

Knowledge-driven methods, on the other hand, use prior ana-
tomical knowledge about the properties of a structure to guide
the segmentation process. These priors are encoded into rules, or
transformed into a geographical template (atlas) with tissue labels
assigned. For example, in the digital atlas-based segmentation
methods [28,29], prior knowledge about normal brain anatomy
including the size, shape and location of anatomical structures, is
employed. Kaus et al. proposed an adaptive template moderated
classification (ATMC) method that combines the statistical classifi-
cation with anatomical knowledge [14]. The algorithm involves an
iterative process of classification of patient’s data and nonlinear
registration to match the anatomical templates of a digital atlas
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Fig. 4. This figure illustrates the dissymmetry field computation (left, norm of the
field) and the application of the ||F||div(F) operator (right) on the realigned image of
a real subject (middle). Note that the dissymmetry field is a 3D image. This
illustration is adapted from [38].
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with the brain anatomy of the patient. Although knowledge-driven
methods have shown many advantages over data-driven methods,
and the value of symmetry information in interpreting brain
pathologies has been fully recognized, most existent knowledge-
driven methods to date, surprisingly, rarely use the knowledge
about brain symmetry to their advantages. This is because knowl-
edge representation usually requires manual extraction of mean-
ingful information from a population of data and subsequent
data encoding of extracted information into a database. This can
be a cumbersome process which demands training of a large set
of data. In addition, the characteristics of tumors and other brain
pathologies are highly variable and heterogeneous, thus represent-
ing prior knowledge is not always possible. Encoding symmetry
knowledge about the brain can be further complicated by the nor-
mal variance of anatomical asymmetries.

4. Research in symmetry axis/plane detection methods

Since symmetry is routinely employed by the neuroradiologists
to assist their assessment of brain images, the misalignment of the
patient’s head in the scanner often leads to false clinical interpre-
tation of the patients’ scans. Despite the difficulty in realigning
the head at hardware level, a compensational algorithmic (soft-
ware) plan has fortunately shown promise to make the correction
of this disorientation of the head. I will review the existing tech-
niques in this section.

In 2D applications, symmetry axis is defined as the axis best
separating a planar brain image into two halves. Various ap-
proaches for detecting, analyzing, measuring and applying symme-
try in image analysis have been suggested [30–32]. The usual way
for determining symmetry axes assumes the object is somewhat
elongated so the direction of the axis of least inertia [33] can be
used to define the symmetry axes of a 2D planar shape. This is
the axis about which the second moment of a thin sheet of material
of the same shape is the smallest.

For three dimensional brain images, the symmetry plane is also
called mid-sagittal plane (MSP). A vast host of papers investigating
ways to resolve the tilt of the head in volumetric brain images can
be found in literature where an ideal MSP has been defined as a 3D
anatomical structure about which the given volumetric neuro-im-
age presents maximum mirror symmetry [7]. Thus if the MSP is
precisely uncovered, the orientation of the head can be resolved
and the tilt of the head can be detected and corrected. Based on
this rationale, we divide the existing algorithms (to identify MSP)
into the following dichotomies: (1) shape-based methods vs. con-
tent-based methods, and (2) 2D based methods vs. 3D based
methods.

4.1. Shape-based methods vs. content-based methods

Shape-based methods focus on using the geometric landmarks
or topological features of the head as a cue to discover the orienta-
tion of the symmetry plane, while content-based methods utilize
internal signal intensities of brain matters to perform the venue.

One shaped-based example is to use the inter-hemispheric fis-
sure as a simple landmark to extract the mid-sagittal plane. For
example, Brummer proposed a method of using the Hough trans-
form to identify cerebral interhemisphereic fissure [34]. Marais ex-
tracted the fissure using snakes. Methods using inter-hemispheric
fissure enjoy the computational efficiency and robustness against
strong internal asymmetries [35]. These methods, however, are
sensitive to the presence of a large mass near the fissure, or invis-
ibility of the fissure in some of the image modalities. Liu et al. [16]
proposed a method using external surface point cloud as the main
features for the hemisphere-wise matching, and the validation of
this work is still in the process.

Another branch of shape-based methods is to use inertia matri-
ces to describe the dispersion of a given 3D dataset. This approach,
also called the principal component analysis (PCA), deems head as
a 3D rigid body with three distinctive principal axes that are
orthogonal to each other and about which the moments of inertia
are minimized. Those axes are used to characterize rigid bodies by
representing the spatial distribution of their mass. Minovic et al.
hypothesized that ‘‘Any plane of symmetry in a body is orthogonal
to a principal axis” [36]. Some other authors implemented this idea
and presented a method for detecting dominant plane of bilateral
symmetry in an image of arbitrary dimension [37]. These algo-
rithms, however, are only tested on the synthesized images or a
small number of images of the head. The major obstacle preventing
this algorithm from wide adoption in realistic neuro-applications is
its deficiencies in handling incomplete dataset. For instance, when
the data is truncated or the field of view includes non-head struc-
tures (e.g., neck and shoulder), the assumption that the head is
ellipsoid-like 3D object is not met and the technique may produce
flawed results.

Content-based methods, treating the head as two halves of
gray-level volumes that the intensities of one half can be matched
to those of the other half through registration. By geometrically
aligning one hemisphere to its reflection the symmetry plane is de-
rived. Typically, an optimization scheme is proposed to seek the
maximum value of the similarity measure between hemispheres.
Methods vary in this regards; the searching process can, either
be global [15] or local [38–40]; the chosen features can be the
intensities of the voxels [38], edge images [15], or characteristics
of the sampled distributions [41,42].

4.2. 2D based methods vs. 3D based methods

2D based methods extract 2D lines first from each individual
slice and then compute the 3D plane from those lines by using
standard interpolation technique. For example, some used Hough
transformation to compute the longitudinal fissure at each coronal
slice [34]; Liu et al. estimated the 2D mid-sagittal axis for each
coronal or axial slice, and then computed a 3D plane from set of
these lines [15]; Junck et al. used a cross correlation analysis for
the detection of the line of symmetry in a transverse positron
emission tomography (PET) or SPECT slice [43].
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Because these methods process head volume slice-by-slice,
the global symmetry of the whole brain is not captured. In
case when the head is strongly tilted, the structures displayed
in the same axial slice do not reside in the same axial level.
The midlines computed independently from each axial slice,
are likely to be a misrepresentation of the real symmetry axes,
therefore the 3D interpolation of those lines leads to meaning-
less results.

3D based approaches consider the head volume as a whole
mass, hence the plane that maximizes the bilateral symmetry is
captured. Minoshima extended Junck’s method to 3D, and im-
proved its tolerance to pathological asymmetries by applying the
stochastic sign change (SSC) criterion as an index of image align-
ment [44]. But the results only demonstrated its success in PET im-
age and the performance on MRI and other image modalities
remains unknown.

Ardekani conducted iterative search on the unit sphere, in order
to find the plane with respect to which the image exhibits maxi-
mum cross correlation [39]. In general, the algorithms that are
based on local search, enjoy the computational advantage, but
are likely to fail in pathological brain images where gross asymme-
tries happen.

Thirion et al. used the ‘‘Demons” algorithm to find the anatom-
ical counterpart via a non-rigid registration method [38]. However,
non-rigid registration will provide aberrant matching when a le-
sion is present only on one hemisphere. The meaningless corre-
spondences can degrade the LS criterion and its minimization.
Prima et al. modified this method and computed local similarity
measures between two sides of the brain, using block matching
procedure [7]. This method generated a robust estimation of MSP
other than plain registration based methods.

Contrary to the 2D based methods, when the whole 3D volume
is taken into account, the overall gross anatomy of the volumetric
brain is used. 3D based methods are less sensitive to the initial con-
dition of the head’s orientation and variability of the inter-hemi-
spheric fissure. For most existing 3D methods, however, one
common drawback is the computational cost due to the optimiza-
tion scheme when searching over the 3D space for the maximum
matching hemispheres.

The existing work on the MSP detection is summarized as in Ta-
ble 1. In terms of computational efficiency, one should be aware of
if the algorithm is realistic to be implemented in the clinical set-
tings. Generally speaking, content-based algorithms are more time
consuming than shape-based methods. Said that, most algorithms
do not seem pose a significant threat to be implemented in realistic
settings. In addition, a number of techniques can be used to facili-
Table 1
Existing methods for detecting symmetry planes of brain images.

Methods Content based vs.
shaped based

Extracting feature 2D v
3D

Brummer (1991) Shape based Inter-hemisphereic fissure (IF) 2D
Hu and Nowinnski

(2003)
Shape based Inter-hemisphereic fissure (IF) 2D

Minovic (1993) Shape based Principle axes 3D

Liu (2006) Shape based External surface point cloud 3D

Liu (2001) Content based Edge map cross correlation 2D
Smith and

Jenkinson
(1999)

Content based The ratio of intensity profile 3D

Junck (1990) Content based Content cross correlation 2D
Ardekani (1997) Content based Content cross correlation 3D
Prima (2002) Content based Content cross correlation 3D

Volkau (2006) Content based Intensity distribution:
Kullback–Leibler’ measure

3D
tate the computation, for instance, down-sample the volumetric
data or employ the multi-scale scheme.
5. Research in brain symmetry and asymmetry analysis

Human head presents a high level of symmetry; however, it is
not perfectly symmetrical. Morphological and functional difference
between the hemispheres makes the brain slightly asymmetrical.
Different aspects of anatomical asymmetry of human brain have
been studied. For example, it is recognized that the right frontal
lobe is larger than the left frontal lobe, while the right occipital
lobe is smaller than its left counterpart [18] (see Fig. 1).

The gross volumetric asymmetries in hemispheres in total,
brain compartments, and different intracranial structures were re-
ported in a number of works. For example, 200 normal brains MRI
had been studied to contribute to a normative volumetric database
and their relations with age and gender were examined [45]. It was
found that an asymmetry in the depth of central sulcus has its rela-
tionship with handedness and gender [46]. Steinmetz reported a
strong correlation between left hemisphere dominance for right-
handedness and a large left planum temporal [47]. Those studies
suggested morphological asymmetries is associated with func-
tional variations in human brain populations. On the other hand,
some pathology is strongly linked with abnormalities of brain
asymmetry. For example, bilateral reduction of metabolic activity
in parietal, temporal, and prefrontal regions is known to be an
important feature for diagnosing the Alzheimer’s disease [48]. A
method of analysis and visualization of cerebral brain asymmetry
was reported in [49].

Some research group also tried to quantitatively estimate brain
asymmetries. In 2004, Lee et al. investigated hemispheric asymme-
try and calculated the fractal dimension (FD) of the 3D skeleton-
ized volume, which represented the cortical folding pattern [50].
They also measured volumes of gray matter and white matter
and obtained the hemispheric asymmetries of each measurement.
They used MRI dataset from 62 normal adults’ brain. This study
discovered among normal brains, although hemisphere-wise corti-
cal folding pattern (obtained from FD) presented significant asym-
metry, the volumes of WM and GM showed no significant
asymmetric changes.

In another paper [51], Kovalev et al. investigated structural
brain asymmetry in normal volunteers and in patients with path-
ological findings using 3D volumetric texture analysis. The algo-
rithm is based on multi-sort co-occurrence matrices that employ
intensity, gradient and anisotropy image features. By calculating
s. Local search vs. global search Modalities

Global: seek longitudinal fissure MR
Local: in the vicinity of IF MR, CT

Global: search the inertia matrix of 3D rigid body Simulated data
and MR

Global Simulated data
and MR

Global: edge cross correlation MR, CT
Global: measure the symmetry of the lines orthogonal
to the candidate symmetry plane

CT, MR, PET,
SPECT

Global PET, SPECT
Local: on a unit sphere MR, PET
Local: block matching CT, MR, PET,

SPECDT
Global MR, MRA, CT
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L1 (normalized sum of absolute element-by-element differences)
distance, matrices computed for the left and right hemispheres
are treated as two feature vectors. It was found that pathological
brains are significantly more asymmetric and the variation of
asymmetry degree is much wider. It also reported significant gen-
der-related asymmetry difference.

Maes et al., measured the hemispheric asymmetry in cerebral
grey and white matter volumes from MR images [17]. The grey
and white matter segmentation was conducted through non-rigid
registration with the labeled template image. Their findings indi-
cated a slight difference between grey matter volumes left and
right, both in normal and schizophrenics. Their study only in-
tended to compare the volume difference of grey and white mat-
ters between left and right, hemispheres, it is not applicable to
neuro-images where a large lesion is present.

Volkau et al. evaluated asymmetry as a scalar value, using the
Jeffery divergence measure [42]. A threshold is set to T = 0.007 to
achieve minimum number of false positives and false negatives.
This study demonstrated the significant statistic dissymmetry in
normal brains compared to tumor brains; it however may only
provide a gross estimation of asymmetries for it only employed
one scalar value to represent dissymmetry. The algorithm does
not have the capability for localizing pathologies.

Thirion et al. stated that ‘‘the quantification of abnormal dissim-
ilarity can be a powerful tool to detect abnormalities” [38]. They
computed a dense 3D dissymmetry fields and compared the rela-
tive dissymmetry measure of a patient to a population (see
Fig. 4). Thus a 3D significance map was acquired. It aimed to an-
swer the question if a brain tumor is significantly more dissym-
metrical than the same region in a normal population. This has
been the most systematic discussion to date to compare volumet-
ric dissymmetry between abnormal and normal population. It is
worthwhile to notice that acquire large sample of normal brains
as control for inter-patient fusion may not be straightforward to
implement in a clinical setting [22].

Liu et al. proposed a statistical method for detection and seg-
mentation of acute/subacute ischemic stroke. This technique has
been demonstrated and validated on MR images to detect rodent
cerebral ischemic stroke, and the results have been compared with
post-mortem histological sections (see Fig. 5). They make use of
2D Symmetry
Axis Detection

Brain Axial Images

Pair-wise
Subtraction

Non-parametric
Statistic Test

Region Growing

Segmented Stroke Images

Absolute 
Difference
Map (Seeds Mask)

Statistical
Difference
Map (Seeds Map)

Fig. 5. The proposed segmentation framework illustrated (a) in flowchart (b) in segment
[52].
statistical analysis (non-parametric statistical test) on paired win-
dows across hemispheres to identify statistically significant differ-
ences between hemispheres [52].

It should be noted that, for any of these algorithms, the toler-
ance to normal asymmetries is critical to the success of abnormal
asymmetry detection. Normal anatomical asymmetries between
hemispheres can be statistically significant. Slight geographical
misalignment between left and right hemispheres and patient-spe-
cific asymmetric patterns in regions of the head can complicate the
procedure in differentiating pathological asymmetries from ana-
tomical asymmetries. If there appears a non-trivial normal varia-
tion between two hemispheres, it is highly likely that the
method will detect unwanted artifacts together with pathological
asymmetries.

In another word, asymmetry analysis as a tool for pathology
detection cannot be achieved without differentiating normal
asymmetries from abnormal asymmetries. In the rodent ischemia
model [52], authors pointed out four major types of asymmetries
imbedded in brain radiological images should be taken into consid-
erations: (1) normal asymmetry in the image signal intensity, (2)
abnormal asymmetry in the image signal intensity, e.g., the pres-
ence of tumor; (3) noise due to geometrical misalignment; (4)
noise due to in-homogeneity of the signals, e.g., bias fields.

In order to eliminate type (1) and type (3) artifacts, a non-rigid
registration process between hemispheres is recommended as a
preprocessing step [53]. By doing so, points formerly misaligned
will be mapped to their counterparts by a set of geometric affine
transformations. Plus, standard noise deduction algorithm may
have the promise to remove errors introduced by type (4) noises.
Despite the promising results in the preliminary studies, these
techniques are still in its infancy: more solid evaluation is required
in order to verify the robustness and efficacy of these algorithms.
6. Discussion

The readily usable software for abnormality analysis of images
has hindered the integration of computer-aided diagnosis (CAD)
tools in the clinical information system. It is believed that a fast
and accurate CAD tool would provide physician with a mechanism
ing stroke from rat ischemia stroke models in MRI. The illustration is adapted from
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for early detection of important findings that could result in earlier
delivery of effective therapy [54]. With isolated image signals yet-
to-be linked with the underlining anatomical landscape, each
radiological image is treated as a spatial data sheet of pixel values
rather than knowledge entries. While we acknowledge the impor-
tance of employing knowledge in computer-aided diagnosis, we
must also realize, particularly in brain imaging, the systematic cor-
relation between asymmetry and pathologycan potentially im-
prove existing detection algorithms.

In this review, the use of symmetry and asymmetry information
in neuro-imaging applications has been explored. The impact of
developing a fully automated method for complex characterization
and quantification of asymmetry could be far-reaching. To make
this process fully automated, future work will need to have the fac-
ulty to detect symmetry plane (or axis) and quantify asymmetries
sequentially using the computational framework suggested in
Fig. 6.

However, with the recognition that sometimes normal hemi-
spherical asymmetries can be as significant as asymmetries caused
by abnormal pathologies, we must admit that using asymmetry
analysis alone is not always sufficient as a classifier to completely
discriminate brain pathologies.

In these cases a hybrid approach is recommended, where sym-
metry can be used as a spatial prior to facilitate subsequent either
region-based or boundary-based segmentation operations. In addi-
tion, when the normal asymmetric artifacts are adjacent to the
boundary of the lesions, or a brain lesion are cross the midline,
or a pair of brain lesions are largely bilaterally symmetrical, addi-
tional errors might occur. One solution could be the fusion of
images from multiple modalities, each of which provides comple-
mentary information concerning the region of interest. The merg-
ing of these data channels can yield a cross-referenced mask to
filter out connected artifacts (that exhibit similar signal intensities
Data acquisition, 
de-noising 

enhancement

Head Tilted?

Symmetry axis/plane 
detection

and tilt correction

Measure level 
of asymmetry

Pathologies 
detection and 
segmentation

Other statistic 
methods

Fig. 6. The generic workflow of the symmetry-based brain lesion detection system.
It consists of two main topics: symmetry detection and asymmetry analysis.
as that of a lesion) and asymmetrical artifacts (that are adjacent to
asymmetrical pathologies).

The concepts described in this paper could be potentially gener-
alized from neuro-domain to other regions of the body, as mirror
symmetry is a common occurrence in many human structures such
as face, breast and limbs. For instance, interpretation of asymme-
tries in mammograms between the left and right breasts can be
used to indicate potential tumor masses. Alterson and Plews pro-
posed a way to perform symmetry analysis on a population of 51
randomly selected patients and demonstrated that automated
symmetry detection of symmetry is both feasible and accurate
[55]. Because the human body is essentially a symmetrical object,
the study of symmetry and asymmetry can significantly deepen
our understanding about human anatomy, physiology and pathol-
ogy; and assist computerized tools to serve better roles in decision
making and improving patient care.

A full exploitation of symmetry information of the human body
requires knowledge infusion from multiple disciplines (see Fig. 7).
We use the term ‘‘computational asymmetry analysis” to the sub-
set of all these methods that utilize the computer and information
science to uncover the symmetry information quantitatively inside
the human body. Computational asymmetry analysis requires mul-
ti-disciplinary fertilization that makes this brain pathology assess-
ment meaningful and effective. For instance, the deployment of
prior information about brain symmetry can potentially bridge
the cognitive association between human experts and computer
systems (can the human way of dissecting visual asymmetries be
of inspiration to the computer vision algorithm?). It conveys core
ideas of an increasingly growing discipline—cognitive science. This
research also falls into the discipline of modern artificial intelligence
and computer vision, because it engages a machine to ‘‘think” like a
human and in this ‘‘thinking” course, knowledge and heuristics are
known to shorten the searching time and reduce the searching
space. In addition, this research directly deals with geometric ob-
jects such as symmetry axis and symmetry plane therefore it con-
cerns about basic theorems and applied methods in computational
geometry. Furthermore, knowledge engineering is a discipline that
involves integrating knowledge into computer systems in order
to solve complex problems. Because prior knowledge about sym-
metry is another form of high level human expertise, we can utilize
the advances in this discipline to further aid the understanding
Fig. 7. Computational asymmetry analysis can be deemed as a highly interdisci-
plinary research, and it can only be enriched via the cross-fertilization with insights
from different disciplines.
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about human asymmetry. Neuroinformatics is a research field that
employs development of neuroscience data (structure, function,
and physiology), knowledge and application of computational
models and analytical tools for the integration and analysis of
experimental data and for improving existing theories about the
nervous system and brain [56]—the scope of this research also fits
with this definition. The analytical tool employed here is imaging
algorithms and the mission is to discover brain structural and
physiological changes in a pathological condition. Likewise, this re-
search can easily find its course in the disciplinary track of imaging
informatics and biomedical informatics. Other disciplines, such as
anatomy, physiology, and radiology can also in one way or the other
impart insights into the sphere of symmetry/asymmetry analysis.
7. Conclusion

Based on the hypothesis that the systematic correlation be-
tween asymmetry and pathology can be a key to the improvement
of existing lesion detection algorithms, this paper explores the
state-of-the-art technologies for analyzing brain symmetry and
asymmetry. This review has attempted to demonstrate that inte-
grating symmetry/asymmetry information into computer-aided
diagnostic (CAD) scheme promises to enhance the system perfor-
mance in the evaluation of brain pathologies. The hope is that this
work will raise greater interest in studying symmetry and asym-
metry of human body, leading toward a systematic development
of hybrid methodologies, necessarily integrating multidisciplinary
knowledge ranging from human anatomy, physiology, pathology
to applied engineering sciences such as imaging informatics and
biomedical engineering.
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