
 
 
 
 

  

Abstract—Automated texture analysis of lung computed 
tomography (CT) images is a critical tool in subtyping 
pulmonary emphysema and diagnosing chronic obstructive 
pulmonary disease (COPD). Texton-based methods encode lung 
textures with nearest-texton frequency histograms, and have 
achieved high performance for supervised classification of 
emphysema subtypes from annotated lung CT images. In this 
work, we first explore characterizing lung textures with sparse 
decomposition from texton dictionaries, using different 
regularization strategies, and then extend the sparsity-inducing 
constraint to the construction of the dictionaries. The methods 
were evaluated on a publicly available lung CT database of 
annotated emphysema subtypes. We show that enforcing sparse 
decompositions from texton dictionaries and unsupervised 
dictionary learning can achieve high classification accuracy 
(>90%). The flexibility of sparse-inducing models embedded 
either in the representation stage or dictionary learning stage 
has potential in providing consistency in classification 
performance on heterogeneous lung CT datasets with further 
parameter tuning. 

Index Terms−Lung CT, emphysema, texture analysis, 
supervised learning, sparse representation  
 

I. INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a 
chronic lung disease characterized by limitation of airflow, 
and is currently the third leading cause of death in the United 
States, affecting over 11 million people [1]. Pulmonary 
emphysema, which is defined morphologically by the 
enlargement of airspaces with destruction of alveolar walls, 
overlaps considerably with COPD.  

Computed tomography (CT) is a vital tool in the analysis 
of lung structures. There are three primary subtypes of 
pulmonary emphysema with distinct visual characteristics on 
CT images, defined as follows [2]: centrilobular emphysema 
(CLE), defined as focal regions of low attenuation, surrounded 
by normal lung attenuation, located within the central portion 
of secondary pulmonary lobules; paraseptal emphysema 
(PSE), defined as regions of low attenuation adjacent to 
visceral pleura (including fissures); and panlobular 
emphysema (PLE), defined as diffuse regions of low 
attenuation involving entire secondary pulmonary lobules. 

Illustrations of the visual appearance of normal tissue (NT) 
and the three emphysema subtypes are provided in Figure 1. 
There are clear texture differences among the emphysema 
subtypes and normal lung tissue. These emphysema subtypes 
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are associated with distinct risk factors and clinical 
manifestations [3, 4]. They likely represent different diseases 
and could help with the diagnosis of COPD. 

Traditional interpretation of emphysema subtypes relies on 
radiologists’ labeling, which is labor-intensive, has high cost 
and limited inter-rater agreement [2]. Texture analysis of lung 
CT images enables automated quantitative assessment of 
different subtypes of emphysema and could benefit COPD 
diagnosis and follow up, bringing robustness and 
reproducibility. 

Textons are very powerful tools to encode and label 
textures in computer vision, and have shown better 
performance for emphysema subtypes labeling compared with 
classic texture features [5]. Compared with deep-learning 
based method [6], they are more adaptable to classification 
tasks with small training sets. Classic texton-based methods 
construct textons as dictionaries of image texture patches, 
characterize textures via labeling of patches within regions of 
interest (ROIs) with the most similar texton and generate 
texton frequency histograms. Such labeling can be interpreted 
as a sparse decomposition of an n-D image and can be 
extended in this context. Textons are comprised of centroids 
from a k-means clustering of patch features, which is based on 
Euclidean distance. The elements belonging to a certain 
cluster are thus distributed in an n-D sphere, which might not 
reflect the intrinsic underlying distribution of the data in the 
feature space [7].  

In this work, we first explore characterizing lung textures 
with sparse decomposition from texton dictionaries using 
three variants of the sparsity-inducing constraint. We then 
explore alternative unsupervised texton dictionary learning 
approaches exploiting sparsity regularization which can 
provide more flexibility in characterizing data distribution in 
feature space. 

 

 
 

Figure 1: Illustration of visual appearances of normal lung tissue and 
emphysema subtypes, adapted from [2].  
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II. METHOD 

A. Labeling Framework Overview 

The lung texture labeling framework is divided into 
training and testing stages.  A dictionary encoding the texture 
information is trained using the training ROIs. Specifically, 
we adopted two strategies for dictionary construction in this 
work: texton-based construction and dictionary learning with 
sparsity regularization. For the texton-based construction 
method, we extend the original nearest-texton frequency 
histogram model, which can be viewed as a special case of 
sparsity-inducing regularization, to other sparsity-inducing 
constraints, detailed in Section II-B.  For the dictionary 
learning with sparsity regularization, ROIs are modeled using 
three strategies, detailed in Section II-C. Textures of the 
training ROIs are modeled in the learning stage, and are used 
to train the classifier. Textures of the test ROIs are modeled 
with the same formulation as the training ROIs, and are 
classified in the testing stage. A graphical overview of the lung 
texture labeling framework is shown in Figure 2. 

 

 
Figure 2: Overview of the lung texture labeling on ROIs. 

B. Texton-based Models 

To construct a texton dictionary, small-sized local patches 
are randomly extracted from training images. Patches from the 
same class are clustered in feature space using k-means. For 
lung texture on CT images, the features are the patch intensity 
values directly. The centroids constitute the textons in the 
dictionary. ROIs are modeled via projection coefficients of 
patches extracted from each ROI onto the dictionary. The 
projection coefficients can be generated in multiple ways, as 
described below. 

1) Texton histogram model: 

In the original texton histogram model, a ROI is modeled 
via the normalized frequency histogram 𝐴  of the nearest 
textons of its patches in the dictionary 𝐷  with a Euclidean 
distance metric. Formally, 𝐴 = $%

&
%'(
)

, where 𝑛 is the number 
of patches from the ROI, and 𝑎, is the projection coefficient 
vector of patch 𝑝, subject to: 

𝑎, = argmin$ 𝐷𝑎 − 𝑝, 5
5																									(1)		 

s. t. 𝑎 = = 1	and	 𝑎 ? = 1  

The projection coefficient vector can be alternatively obtained 
by relaxing or changing the sparsity-inducing constraints as 
follows: 

2) l0 norm regularization model: 

𝑎, = argmin$ 𝐷𝑎 − 𝑝, 5
5				𝑠. 𝑡. 𝑎 = = 1										(2) 

3) l1 norm regularization model: 	
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4) Elastic-net regularization model: 
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C. Dictionary Learning-Based Models 

Instead of using the texton dictionaries, we can 
alternatively model the ROIs based on dictionary learning 
with sparsity regularization, using the following strategies: 

 

1) Multiple-dictionary model: 

Separate dictionaries for each class are built by [8]: 
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   where 𝐷O denotes the dictionary for the kth class, and m is the 
number of all training patches in ROIs belonging to the kth 
class. For a test ROI with n patches, the classification is 
achieved via 𝑘 = argminO𝐿(𝑘), where: 

𝐿 𝑘 = min$%
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2) Single-dictionary model: 

Instead of constructing separate dictionaries using 
class-specific data, a single and general dictionary is built 
with m training patches from all classes, as: 
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The sparse representation of each ROI of n patches with 
respect to dictionary 𝐷 is calculated as 𝐴 = $%

&
%'(
)

, where: 

𝑎, = argmin$
1
2
𝑝, − 𝐷𝑎 5

5 + 𝜆 𝑎 ? 							(8) 
 

3) Concatenated-dictionary model:  

A single and general dictionary is built for all classes. 
Instead of training on data from all classes as in 2), the single 
dictionary is constructed by concatenating the dictionaries Dk 
constructed following Equation (5). The sparse representation 
is again generated following Equation (8). 

In the last two models, the sparse histogram-like 
representations of the training ROIs, defined as 𝐴, are used to 
train a multi-class classifier. We used a random forest 
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classifier with 100 trees (heuristically determined). We 
generated one random forest classifier per dictionary of 
textons. 

 
III. RESULTS 

A. Data and Experimental Settings 

The dataset used in this work is the publicly available 
Computed Tomography Emphysema Database [9], which 
contains 168 manually annotated 2D ROIs of size 61×61 
pixels (slice thickness of 1.25 mm; in-plane resolution of 0.78 
mm × 0.78 mm) from three different classes of lung tissue: 
normal lung tissue (NT, 59 ROIs), centrilobular emphysema 
(CLE, 50 ROIs), paraseptal emphysema (PSE, 59 ROIs). PLE 
is excluded in this work due to the low number of cases in the 
dataset. 

Experiments based on sparsity regularizations were 
implemented using the Sparse Modeling Software (SPAMS) 
[10]. The l0 norm regularization problem was implemented 
using a greedy approach. The ROIs were randomly divided 
into training and testing sets, with a ratio of 3:1. All 
classification accuracy values reported in the sections below 
are averaged values over 50 permutations.   

B. Texton-based Dictionary Construction 

For the classification using texton-based dictionaries, the 
parameters in the texton histogram model include the number 
K of textons per class and the size of local patches. Parameters 
in l0 norm regularization are the same as the original model. 
Two additional parameters are introduced in the l1 norm and 
elastic net regularization models: λ? and λ5.  

Parameter selection was done via a grid-search manner. 
Parameter values were set as follows: K in the range [10, 40], 
patch size in the range [3×3, 8×8] pixels, λ?  in the range 
[0.001, 0.5], and λ5	in the range [0.001, 0.1]. Example of a 
texton dictionary (K=10, patch size = 8×8 pixels) is shown in 
Figure 3. We illustrate in Figure 4 the evolution of the 
classification accuracy when varying some parameter values, 
for the different regularization strategies.  

 

Figure 3: Example of a texton dictionary. The three rows correspond to the 
trained centroids from three classes of lung tissue (From top to bottom: NT, 
CLE, PSE). 

 
With the original texton histogram model, accuracy tends 

to increase with a larger K and a smaller patch size. The best 
classification accuracy achieved is 93.9%. With the l0 norm 
regularization model, accuracy tends to increase with a larger 
K but with a larger patch size. The best classification accuracy 
achieved is 92.1%. With the l1 norm regularization model, 
accuracy tends to increase with a larger K, a larger patch size 
and a smaller λ?  within the tested ranges. The best 
classification accuracy achieved is 91.8%. With the elastic net 
regularization model, the trend is similar to the l1 

regularization model, and we found that λ5 = 0.01 yields the 
best accuracy, which is 92.4%. Overall, the classification 
accuracies obtained with the four sparse texture representation 
models based on texton dictionaries are very similar. 

 

 

Figure 4: Classification accuracy of the different texton dictionary 
construction approaches. (a) Accuracy vs. K and patch size for the texton 
histogram model; (b) accuracy vs. K and patch size for the l0 regularization 
model; (c) accuracy vs. 𝜆? and patch size for the l1 regularization model; (d) 
accuracy vs. 𝜆? and K for the l1 regularization model. The trend for elastic net 
model, not shown here, is similar to the l1 regularization model. 

C. Dictionary Learning-Based Construction 

The best classification accuracy achieved is 89.4% using 
the single-dictionary model, and 91.7% using the 
concatenated-dictionary model, which compares to the 
performance obtained with the texton dictionary-based 
models. Using the multiple-dictionary model, the best 
accuracy achieved is only 83.3%. Best accuracies obtained 
with the different models are summarized in Table I. All 
models except for the multiple-dictionary model achieve 
classification accuracy around 90%. The multiple-dictionary 
model uses the dictionary learning encoding cost function 
rather than the projection coefficients for the classification 
task. This model was shown to achieve excellent performance 
in previous studies on classifying images of digital numbers 
[8], but it is not discriminative enough for this lung texture 
database. However, models based on classifiers might gain 
power from the discriminative capabilities of the classifiers. 
That may be part of the reason behind the current poorer 
performance of the multiple-dictionary model. 

TABLE I.  SUMMARY OF CLASSIFICATION ACCURACY 

Texton-based models Freq. 
Hist. l0 l1 

Elastic 
net 

Accuracy (%) 93.9 92.1 91.8 92.4 
Dictionary 

learning-based models 
Single 
Dict. 

Multiple 
Dict. 

Concatenated 
Dict. 

Accuracy (%) 89.4 83.3 91.7 
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      Examples of dictionaries (single dictionary and multiple 
dictionaries) are shown in Figure 5. Examples of feature 
vectors for the single-dictionary model are shown (as a matrix 
of concatenated test ROIs) in Figure 6. It is clear that the NT 
and CLE classes are not easily distinguishable, whereas 
feature vectors of the PSE class are clearly different, which is 
reflected in the final classification results. 

 

 
Figure 5: Examples of learned dictionaries. (a) Single dictionary generated 
with data from all classes; (b) Separate dictionaries generated for separate 
classes (From left to right: NT, CLE, and PSE).  
 

Figure 6 Feature vectors of different emphysema subtypes and normal lung 
tissue based on a single dictionary (From top to bottom: NT, CLE, PSE).  

IV. DISCUSSION AND  FUTURE WORK 
In this work, we investigated seven texture models for the 

classification of emphysema subtypes and normal lung tissue, 
on CT lung images, including four models based on texton 
dictionaries (texton histogram, l0 norm regularization, l1 norm 
regularization, and elastic net regularization), and three 
models based on dictionary learning with sparsity 
regularizations (multiple-dictionary, single-dictionary and 
concatenated-dictionary model). All models except for the 
multiple-dictionary model achieved high classification 
accuracy (~90%). The multiple-dictionary model, which uses 
the dictionary learning encoding cost function rather than the 
projection coefficients for texture labeling, is shown to be less 
discriminative and suboptimal for the classification task in this 
lung texture database.  

In practice, automated labeling of emphysema subtypes is 
a challenging task in the presence of heterogeneous visual 
properties of lung CT images across scanners and subjects. 
We validate in this work the feasibility of using both the 
classic texton-based models and sparsity-inducing models for 
the classification of emphysema subtypes using a dataset 
acquired with a single scanner type and protocol. Compared 
with classic texton-based models, the higher flexibility of 
sparse-inducing models embedded either at the representation 
stage or dictionary learning stage has potential in providing 
consistency of texture classification in heterogeneous lung CT 
dataset with finer parameter tuning, which could be a future 
work for this study. 

Another perspective of the study is to use histogram 
features or filter-based features in addition to raw CT intensity 
values used in this work. The filtered data can incorporate 
additional desired property, such as translation-invariance and 
rotation-invariance. Other strategies such as data 
augmentation and convolutional sparse modeling can also be 
investigated. 
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