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Ultrasound imaging is a wide spread technique used in medical imaging as well as in non-

destructive testing. The technique offers many advantages such as real-time imaging, good resolu-

tion, prompt acquisition, ease of use, and low cost compared to other techniques such as x-ray

imaging. However, the maximum frame rate achievable is limited as several beams must be emitted

to compute a single image. For each emitted beam, one must wait for the wave to propagate back

and forth, thus imposing a limit to the frame rate. Several attempts have been made to use less

beams while maintaining image quality. Although efficiently increasing the frame rate, these tech-

niques still use several transmit beams. Compressive Sensing (CS), a universal data completion

scheme based on convex optimization, has been successfully applied to a number of imaging

modalities over the past few years. Using a priori knowledge of the signal, it can compute an image

using less data allowing for shorter acquisition times. In this paper, it is shown that a valid CS

framework can be derived from ultrasound propagation theory, and that this framework can be used

to compute images of scatterers using only one plane wave as a transmit beam.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4919302]
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I. INTRODUCTION

Over the past decade, Compressive Sensing (CS) has

gained a lot of visibility and recognition from the signal

processing community. This inverse problem technique

allows for drastic down-sampling of a signal and relies on

computational power as well as a priori information, in the

form of the knowledge of a basis where the signal has a

sparse representation, to account for the missing samples,

and uses convex optimization to reconstruct the signal.

The seminal work of Candès,1 Baraniuk,2 Romberg,3

etc., has led to innovations in a lot of different fields ranging

from astronomy to seismology and radars. This technology

is currently used in some commercial magnetic resonance

imaging (MRI) scanners. In MRI, the gain for a higher ac-

quisition rate is obvious: by allowing a smaller number of

measurements, it enables shorter acquisition times,4 resulting

in less discomfort for the patient, less artifacts, and a higher

daily patient turnover. For echography, the applications

could go from fast three-dimensional (3D) echocardiography

to simplified echography systems for example.

Classic beam forming schemes use many transmit

waves to insonify a medium,5 and sample echoes at a high

acquisition rate of tens of millions of samples per second.

While many successful attempts to reduce the number of

transmit waves have been made, several beams are still nec-

essary to maintain good image quality.6,7 One of the advan-

tages of CS is its ability to require less information for

accurate reconstruction when certain mathematical condi-

tions hold. As far as ultrasound imaging is concerned, two

aspects of beam forming or image formation could benefit

from this new approach. In medical echography, the recon-

struction of an image classically requires expensive arrays

made of hundreds of transducers that emit sequences of

focalized transmit pulses.5 First, CS could mean implement-

ing simplified hardware such as an ultrasonic probe with a

small number of independent transducers, making ultrasonic

systems more affordable. Then, it could mean using less

transmit pulses, making the acquisition faster and the frame

rate higher.

CS has started to receive the attention of acoustics phys-

icists. It has been successfully implemented in the frequency

domain by Schiffner and Schmitz,8 it has been used with

wave atoms and wavelets by Friboulet et al.,9 and in the

Xampling framework by Eldar et al.10 Our approach is dif-

ferent in the sense that it is a time domain implementation of

CS, and aims at reducing both the number of transmit waves

and the number of receiving transducers, while decreasing

the sampling frequency. To the best of our knowledge, it is

the first article that justifies formally the CS framework ina)Electronic mail: gd2346@columbia.edu
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the time domain. This work can be put into the perspective

of Ref. 8 as the time and frequency domains are related to

each other by the Fourier transform.

This article focuses on the beam forming of ultrasonic

fields and introduces the CS approach in a medium contain-

ing only a few point scatterers. First, a brief overview of CS

is given, along with a simple example. Then, the approach is

justified using the theory of wave propagation in a homoge-

neous medium, and the fundamentals of the theory are laid

out. In addition, simulation results are presented alongside

the limitations of the described approach. Further develop-

ments to overcome these limitations are proposed. Finally,

images of a phantom are shown and compared against a

state-of-the-art reconstruction algorithm.

II. BEAM FORMING IN A HOMOGENEOUS MEDIUM

A. Focusing in transmission

Focusing in a homogeneous medium is currently

achieved on most commercial scanners by using ultrasonic

probes made of an array of independent transducers. Each

transducer is connected to a separate delay line as presented

in Fig. 1. They are commonly referred to as “channels.” The

size of the elements of the array and the spacing between

them are about the size of the central wavelength of the probe

or smaller. Under those conditions, the side lobes remain

small and the grating lobes are minimized,11 ensuring proper

focalization of the energy in the medium. Each element emits

the same pulse but at different times. The propagation time or

time-of-flight (ToF) between each element and the focal point

are calculated. From those values, delays are inferred and

applied in emission so that the pulses emitted by each individ-

ual element reach the target focal point at the same time, thus

interfering constructively at that location. To obtain a sharp

image with the least amount of noise, a sequence of focalized

pulses is emitted in different directions, and the acquired ech-

oes are combined off-line to form an image. That last step

relies on in silico focalization easily made possible by a direct

access to the phase of the sound waves.

B. Beam forming in reception

Beam forming in reception or image formation is a simi-

lar process. The final image is an echo intensity map that

shows the acoustic echogenicity of the medium. The greater

the echogenicity, the more intense the echo. The intensity is

computed using off-line focusing. The intensity of the sound

reflected in a particular point (xi, zi) of the medium being

imaged is obtained by computing the ToF from each element

of the ultrasonic probe to the point (xi, zi) and back. From

those values, delays are inferred and applied in reception so

that all the echoes originating from (xi, zi) are propagated

back to that point. As shown in Fig. 2, applying the calcu-

lated delays to each channel aligns the waveforms originat-

ing from (xi, zi), whereas the echoes originating from other

locations do not get aligned. Finally, the channels are

summed together, and the waves originating from (xi, zi)

interfere constructively, the delays applied to each channel

making them perfectly in phase. The waves originating from

other locations get averaged out to small values as they are

not in phase. It is the principle of coherent summation. This

process is repeated for all the points (xi, zi) of the final

image, and the amplitude value for each point is stored in

the corresponding pixel. This algorithm is known as Delay-

and-Sum (DAS).12 It is worth noting that to the best of the

authors knowledge it has not been proven that DAS is the

best way to solve this inverse problem, leaving a lot of

potential for new algorithms and innovations.

III. OVERVIEW OF CS

Over the past 10 years, CS has gained a lot of visibility

from the medical imaging research community. The most

compelling feature for the use of CS is its ability to perform

perfect reconstructions of under-sampled signals using

l1-minimization. Of course, that counter-intuitive feature

does not come without a cost. The lacking information is

compensated for by a priori knowledge of the signal, as well

as certain conditions detailed further in the article.

So far, CS has proven to be particularly well suited for

MRI, where the assumptions of the CS theory can easily be

justified, and the implementation is fairly straightforward.4 It

has allowed for faster image acquisition without loss in image

quality and resolution, which is critical for applications such

as cardiac MRI. The application of CS to ultrasound imaging

FIG. 2. Beam forming in reception: (a) the echoes coming from three point

scatterers are acquired by the probe; (b) ToFs from (x1, z1) to each trans-

ducer are calculated and applied to the channels, aligning the phase of the

wavefronts coming from that point.

FIG. 1. Beam steering in transmission: delays are calculated so that the

waves emitted by each independent element reach the target focal point at

the same time, interfering constructively.
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is not as straightforward due to the very nature of the acquired

signal and the inverse problem that needs to be solved.

This section presents the basics of CS and aims at giving

the reader the minimal background necessary to understand

the assumptions and underlying constraints of this technique.

A. Fundamentals of CS

CS relies mainly on two fundamental assumptions

related to the acquired signal: sparsity and coherence. The

sparsity assumption is used in the form of an l1-norm

minimization, a natural promoter of sparsity. The energy of

a sparse signal in a certain basis is concentrated on a few

samples. The target number of acquisition being low, each

measurement has to provide as much information as possi-

ble. For that reason the acquisition is performed on a differ-

ent basis where the energy of the signal is spread out on as

many samples as possible. Intuitively, the two bases are

incoherent, enabling fewer measurements containing all the

information required for accurate reconstruction.

1. Sparsity

A vector I 2 RN is said to be S-sparse if all but S of its

coefficients are equal to zero. Considering a basis

ðukÞk¼1;…;N of the signal space, the vector I is written

I ¼
XN

k¼1

Ikuk; (1)

where ðIkÞk2ð1;…;NÞ are its coefficients in the basis ðukÞ.
In that framework, I is said to be S-sparse if the subset

X ¼ fk j Ik 6¼ 0g is of cardinality S. Equivalently the con-

dition kIkl0
� S must hold true. kIkl0

is the l0-pseudonorm

defined as the number of non-zero coefficients of I.

2. Incoherence

The coherence between two bases U and W of a given

space is usually defined as the maximum absolute value of

the cross-correlation between the elements of the two

bases13

lðU;WÞ ¼
ffiffiffiffi
N
p
� max

1�k;j�N
jhuk;wjij: (2)

In CS, we are looking at low l values which corresponds to

incoherent bases.

3. Description of the framework

Let us consider a signal f. We assume that f has a sparse

representation I in the basis w, represented by the matrix W.

Thus we have f ¼ WI. The acquisition performed in the ba-

sis u represented by the matrix U results in the data vector

R0 ¼ Uf . For example, in the case of MRI, u could be a

Fourier basis. The coherence between U and W is assumed

to be low.

CS focuses on under-sampled signals. Thus, if R0 is a

vector sampled at the Nyquist frequency and has N samples,

we only consider a subset Xu of samples with cardinality

M � N. The under-sampling or decimation is modeled by

the matrix denoted D 2 MM;NðRÞ. The under-sampled data

may then be written R ¼ D Uf . Subsequently, we have

R¼GI with G ¼ D UW; so there exists a linear application

that links the sparse representation of the signal, I, and the

acquired data, R.

Under the assumptions that the signal is sparse in some

basis w and that the bases w and u are incoherent, the theory

of CS states that the original signal f can be reconstructed

from the under-sampled subset of coefficients R using l1-

minimization.1 That is, the problem

min
Î2RN
kÎk

l1
subject to GÎ ¼ R; (3)

where kIk
l1
¼
P

ijIij, has a unique solution Î0. It can be

proved that the solution is actually Î0 ¼ I. This result can

then be used to recover f ¼ UÎ0 ¼ UI.
Equation (3) simply states that we aim at iteratively

minimizing the l1-norm of a vector Î under the constraint

GÎ ¼ R. That constraint ensures that Î stays consistent with

the acquired data throughout the minimization process. This

problem is known as the Basis Pursuit (BP).14

In the presence of noise, the constraint may be relaxed

and the problem becomes

min
Î2RN
kÎk

l1
subject to kGÎ � Rkl2

� e; (4)

where e is the noise level. This minimization problem is

known as Basis Pursuit De-Noising (BPDN).14

As a last remark, we will note that the signal does not

have to be exactly sparse in some bases. In fact, it is almost

never the case with physical signals. Compressibility is

sufficient: a signal f is compressible in the basis W if its

coefficients ordered by magnitude decay relatively fast. In

that perspective, CS is a more efficient way to acquire the

same amount of information from a signal.

For more information on the theory of CS, the interested

reader could refer to Refs. 1–3, 13, 15, and 16.

B. 1D example: Focal plane of an ultrasound probe

As a first, simple one-dimensional (1D) example, we

consider an ultrasonic transducer emitting monochromatic

waves and its focal plane. The resolution in the focal plane is

limited by the wavelength k, so the focal plane of the trans-

ducer is spatially sampled in azimuth at k=2 and for each

point a corresponding plane wave is generated. This assump-

tion corresponds to the Fraunhofer17 approximation. In that

case, the two bases are linked by the Fourier transform.

The diffraction theory states that in the focal plane, per-

pendicular to the probe, the amplitude of the focal point is

described by a sinc function. In the conditions of the experi-

ment, the main lobe has a width of k and the zeros of the

sinc are located every k=2. Therefore, a spatial sampling of

the focal plane at k=2 is enough to acquire all the informa-

tion needed according to Shannon-Nyquist theorem of sam-

pling. When the main lobe of a sinc is centered on a spatial

sample, the image vector is a Dirac d function, as all the
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samples except for the main lobe are located on zeros of the

sinc function. As a result, the focal plane is described mathe-

matically by the set of functions

uj ¼ d x� j
k
2

� �
; (5)

where d is the Dirac delta function and j is an integer. The

plane wave basis may be written

wl ¼ eikl�r; (6)

where kl is a propagation vector, r is a position vector, and l
is an integer. The latter expression may be simplified as the

field is observed on the surface of the probe, at z¼ 0. For the

sake of simplicity, the projection of the propagation vector

onto the x axis is denoted kl, and the basis becomes

wl ¼ eiklx: (7)

A diagram of the bases is shown in Fig. 3. The signification

of those two bases is straightforward: a point scatterer in the

image is represented by a Dirac d function. The plane wave

corresponds to the wave emitted when the scatterer is insoni-

fied, which means that for each and every scatterer in the

focal plane, we associate a plane wave propagating from the

scatterer to the probe. It is common knowledge that when

the Nyquist criterion holds, the two bases are orthonormal

and linked by the Fourier transform.

The term “image” refers here to a 1D representation of

the focal plane of the probe in azimuth.

C. Results

Using this framework, we realize the following in silico
experiment. We simulate a generic, 4 MHz central frequency

probe with the following parameters: k ¼ 385 lm;
Nelements ¼ 128, inter-element pitch p ¼ k=2, and

csound ¼ 1540 m s�1. The focal plane is located at a 7 cm

depth. In the experiment, we realize the measurements using

a subset of only 32 central transducers. The goal of the

simulation is to show that CS preserves resolution even

when a smaller number of transducers is used in reception.

We simulate four scatterers in the focal plane, with dif-

ferent amplitudes. Those amplitudes are stored in a vector u.

The matrix U is simply the identity matrix, and the columns

of the matrix W are eiklx. The under-sampling matrix D
restricts the acquisition to the 32 central transducers of the

probe, for example. This way, we have

R ¼ D UWI ¼ GI; (8)

where R is the data vector as acquired by our system and I is

a map of scatterers in the focal plane. The minimization is

performed using SPGL1.18

A reference image vector was computed using the

Fourier transform of the under-sampled raw data R as the

Fourier transform is indeed the direct relationship that links

w and u. Figure 4 shows a comparison in terms of resolu-

tion between the image one would obtain with the 32

central transducers, with and without CS. Unsurprisingly,

the direct image exhibits the resolution of a narrower 32

transducer probe. Nevertheless, CS was able to perform the

reconstruction with the resolution of the wider 128 trans-

ducer probe.

This simple simulation suggests that CS could be used

in the field of ultrasonic imaging and would contribute to-

ward simpler hardware, for example. A simpler probe with

less transducers could reduce costs while CS would preserve

the resolution of the final image.

IV. TIME DOMAIN 2D COMPRESSED BEAM FORMING

In the field of medical ultrasound imaging, it is more

common to work on two-dimensional (2D) or 3D images

than 1D representations. In this section, we introduce a CS

approach to the 2D image formation paradigm. The

approach, based on the use of simulated Green’s functions,

is justified in the following way: first, we prove that beam

forming can be put in the form of a matrix multiplication.

FIG. 3. (a) Basis of the focal plane of the probe, here a Dirac d function ba-

sis with Dx ¼ k=2; the continuous intensity distribution at the focal point is

also given. (b) Plane wave basis, the first kl is represented. The transducers

are represented by the rectangles along the x axis.

FIG. 4. 1D projection of the focal plane with 4 scatterers using only 32 of

the central transducers of the probe. The signal is interpolated in the Fourier

domain to show the difference in resolution: the dashed line corresponds to

the image without CS, the continuous line shows the image with CS. The

two scatterers on the far left are separated only when CS is used.
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Indeed, the CS framework requires that the acquisition

vector or the raw data R and the image I, assuming that it

is sparse, be linked by a linear operator G such that R¼GI.
Then we explain how time-domain Compressed Beam

forming (t-CBF) may be performed using G as a waveform

dictionary on which the sparse representation of the image

is projected. Finally, we show the equivalence between

this matrix multiplication form and the classic DAS

algorithm.

A. 2D beam forming matrix

1. Linear beam forming operator G

One of the burning issues of CS is to find a suitable ma-

trix G that follows the mathematical conditions of CS. It

must link a sparse representation of our image, and the data

in the acquisition space. Let us consider a homogeneous me-

dium with a distribution of scatterers of reflectivity IðrÞ,
where r ¼ ð x

z Þ; denotes a position vector. An array of trans-

ducers is used for the acquisition. The array emits a sound

wave that propagates through the medium to the scatterers.

The scatterers reflect the excitation wave and these echoes,

propagating back to the array, are acquired by the transducers.

The acquisition is thus bi-dimensional, as each sample corre-

sponds to a particular instant in time and a particular position

in space. We consider each spatio-temporal sample acquired

after insonification of the medium by a single wave as a mea-

surement, in the CS terminology. Classic beam forming

schemes use many transmit waves to insonify the medium,

and sample the echoes at a high rate of several million sam-

ples per second. Thus, some strategies can be envisioned and

combined to compress the acquisition: first the acquisition of

a single image could be done with less transmit waves, then

the hardware could be simplified to use less independent

transducers. Finally, a lower sampling frequency could reduce

the amount of data transferred to the scanner. In the following

development, we focus on a single plane wave excitation of

the medium. However, the formalism hence introduced can

be easily generalized to any kind of excitation wave.

Let R 2 MNt;Nel
ðRÞ be a matrix containing the raw data

after only one insonification. Nt is the number of time sam-

ples, Nel is the number of transducers used during the acqui-

sition. I 2 MNx;Nz
ðRÞ is the original distribution of

scatterers, and it corresponds to our final image. Nx and Nz

are the number of pixels in azimuth and depth, respectively.

To apply the principles of CS, we need to define a linear

relationship between the data R and the image I. Namely we

are looking for a tensor G 2 MNt;Nel;Nx;Nz
ðRÞ such that

R ¼ GI: (9)

In order to define the matrix G, the acquisition process

is broken down into the following steps. First, the trans-

ducers of the array are excited by an electrical temporal

impulse denoted by hi
exðtÞ for the ith transducer. The trans-

ducers are considered to have equivalent physical properties,

and have the same impulse response denoted by htransðtÞ. As

a result, the impulse response of the acquisition system in

emission is

hi
sys;TxðtÞ ¼ ðhi

ex�
t

htransÞðtÞ: (10)

Expression (10) takes into account the impulse response of

the acquisition system in emission which includes the central

frequency and bandwidth of the probe as well as the trans-

mitted amplitude.

The sound wave thus emitted propagates through the

medium from the array to each scatterer. The impulse

response of the forward propagation process of the emitted

wave is denoted by hfwdðtc; rÞ. Part of the energy of the

wave gets reflected by the scatterers in the form of spheri-

cal waves. The reflected amplitude for each scatterer is

given by the reflectivity IðrÞ. The impulse response of the

backward propagation process is denoted by hi
bwdðtc; rÞ, the

index i corresponding to the index of the transducer used

for the acquisition. Finally, the pressure field is converted

into an electrical signal by the probe and acquired by the

scanner, with the impulse response htransðtÞ mentioned

earlier.

We can now infer the mathematical expression of the total

pressure field recorded by the probe by convolving in time the

different terms aforementioned and summing over space

RiðtÞ ¼
ð

r

�
hi

sys;TxðtcÞ�
tc

hfwdðtc; rÞ

�
tc

hi
bwdðtc; rÞ�

tc
htransðtcÞ

�
ðtÞ � IðrÞdr; (11)

under the assumption that multiple scattering is negligible

which is a classic approximation in medical ultrasound

imaging.

In Eq. (11), the terms hi
sys;Tx and htrans can be grouped:

they describe the impulse response of the acquisition system,

denoted hi
sys;TxRx. hi

sys;TxRx takes into account the central fre-

quency of the probe, as well as its bandwidth, usually mod-

eled by a Gaussian function. As a result, for the sake of

simplicity we can leave that term out of the development,

keeping in mind that depending on the parameters of the

probe, those terms have to be added back when calculating

the matrix G. This leads to

RiðtÞ ¼
ð

r

�
hfwdðtc; rÞ�

tc
hi

bwdðtc; rÞ
�
ðtÞ � IðrÞdr: (12)

The next step is to discretize the simplified Eq. (12).

The time variable t becomes tj ¼ jDt where Dt ¼ 1=fs, fs
being the sampling frequency of the system. The spatial

variable r becomes rkl ¼ ð xk
zl
Þ ¼

�
kDx
lDz

�
; where Dx and Dz

are the grid spacing in azimuth and depth, respectively. This

yields

Rij ¼
XNx

k¼1

XNz

l¼1

�
�

hfwdðtc; k; lÞ�
tc

hi
bwdðtc; k; lÞ

�
ðjÞIkl:

(13)

Equation (13) is indeed a tensor product between a bi-

dimensional matrix I ¼ ðIklÞk;l and a four-dimensional tensor

G ¼ ðGijklÞi;j;k;l. Following this notation, we have

Gijkl ¼
�

hfwdðtc; k; lÞ�
tc

hi
bwdðtc; k; lÞ

�
ðjÞ; (14)
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that may be discretized to

Gijkl ¼
XNt

u¼1

hfwdðj� u; k; lÞhi
bwdðu; k; lÞ: (15)

Based on this framework, we can particularize the solu-

tion. For a plane wave excitation propagating along the axis

of the probe in a homogeneous medium [Fig. 5(a)], the prop-

agation to a scatterer in r ¼ ð x
z Þ can be modeled by the fol-

lowing forward impulse response:

hi
fwd t; rð Þ ¼ d t� z

c

� �
; (16)

which does not depend on the emitting transducer i in the

case of a plane wave excitation: the individual excitation

pulses are synchronized on all the channels.

After propagation through the medium, the plane wave

reaches a scatterer in r and gets reflected. The scatterer is

assumed to be smaller than k, thus generating a spherical

wave which yields to the following backward impulse

response that describes the propagation from the scatterer in

r back to the ith transducer of the array19

hi
bwd t; rð Þ ¼

d t� kr� rik
c

� �

2pkr� rik
; (17)

which is the Green’s function of the homogeneous medium

[Fig. 5(b)].

From Eqs. (16) and (17), we can infer the mathematical

expression of the pressure field resulting from an excitation

of the medium by a plane wave and its reflection on a scat-

terer located in r,

hfwd tc; rð Þ�
tc

hi
bwd tc; rð Þ tð Þ ¼

d t� z

c
� kr� rik

c

� �

2pkr� rik
:

(18)

Discretizing Eq. (18) leads to the following expression

for Gijkl:

Gijkl ¼
d tj �

zl

c
� krkl � rik

c

� �

2pkrkl � rik
: (19)

Equation (19) corresponds to the diffraction impulse

response of a homogeneous medium with one point scat-

terer located at rkl; in other words the Green’s function of

the medium that takes into account both the transmission

and the reception parts. Therefore, Gijkl is the Green’s func-

tion of the medium, observed at the time sample j by the ith
transducer when a point scatterer is at the position rkl in

space.

We have defined a four-dimensional tensor G that gives

a linear relationship between a map of scatterers I in a homo-

geneous medium, and the raw data R acquired by the array

of transducers:

R ¼ GI: (20)

For CS, we need to write Eq. (20) in the form of a ma-

trix product. To that end, we perform a change of indexes

going from ði; j; k; lÞ to ða; bÞ with

n a ¼ jþ Ntði� 1Þ
b ¼ lþ Nzðk � 1Þ; (21)

which is a bijective C1 change of variable.

With that notation, we have

Ra ¼ GabIb (22)

using Einstein’s convention, where the repeated index b is

implicitly summed across all its accessible values.

2. Relationship with DAS

The standard beam forming algorithm described in the

literature and widely used in available commercial scanners,

called the DAS, is a reconstruction algorithm that computes

an image D based on the raw data R by using the principle of

coherent summation.12 In that framework, the propagation

delays from the surface of the transducers to the different

points of the final image defined by the grid G are applied to

each channel of the raw data before summation and detec-

tion. Thus, the level value of the pixel (k, l) in the image D is

given by

Dkl ¼
XNel

i¼1

R ri;
zl

c
þ krkl � rik

c

� �
; (23)

where the term ðzl=cÞ þ ðjjrkl � rijj=cÞ corresponds to the

propagation time, back and forth, from the probe’s ith ele-

ment to the position rkl for a plane wave excitation.

The right-hand side of Eq. (23) can be interpreted as a

convolution product of Rðri; tÞ and dðt� ðzl=cÞ
þðkrkl � rik=cÞÞ. In discrete time, we have

FIG. 5. (a) The pressure field in the medium after emission by the ultrasonic

probe. The black dot is a scatterer. The arrow indicates the direction of prop-

agation of the ultrasonic wave. (b) The pressure field after reflection on the

scatterer.
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Dkl ¼
XNel

i¼1

XNt

j¼1

d tj �
zl

c
� krkl � rik

c

� �
� R ri; tjð Þ: (24)

DAS classically neglects the amplitude term ð1=2pkrkl

�rikÞ that is due to propagation12 as well as the impulse

response of the transducer. The interested reader can refer to

Ref. 20 that describes a back propagation beam forming algo-

rithm that does not neglect the amplitude term and the impulse

response of the transducer, and Ref. 21 that describes a

matched filter approach to beam forming that also accounts for

the amplitude term by modeling the wavefront propagation.

Adding that term back in Eq. (24), we find that DAS is equiva-

lent to

D ¼ GTR; (25)

which involves the same matrix G as we are using in the

t-CBF framework. Subsequently, G can be interpreted as a

beam forming matrix. The final image D is obtained by

successive projections of the raw data on the columns of

dictionary G.

Equations (20) and (25) together define a direct relation-

ship between the DAS image D and the scatterer distribution I:

D ¼ GTGI: (26)

From this, we can sense the importance of the matrix

GTG: it links the scatterer distribution to the final DAS

image and can therefore be seen as a Point Spread Function

(PSF) of the acquisition system. As we will see further in the

development the mutual coherence of that matrix, that

accounts for the similarity of its column vectors, is of tre-

mendous importance in the resolution achievable in both

DAS and t-CBF frameworks.

Equation (26) also shows that we should expect the

DAS and the t-CBF images to be different in nature.

3. Practical implementation

In the previous development, we established a formal

expression for Gijkl leaving out the influence of the parame-

ters of the acquisition system such as the central frequency

fc, and the bandwidth bw of the probe. The bandwidth is gen-

erally modeled by a Gaussian function. Usually, the electri-

cal excitation pulse hi
ex is a simple temporal Dirac d pulse. In

the case of a plane wave, the pulses are synchronized on all

the channels, therefore hi
sys;Tx does not depend on i and is

equal to htrans. Finally, the term hi
sys;TxRx from Eq. (11) is the

auto-convolution of the Gaussian pulse, which can be

approximated by another Gaussian pulse of same central fre-

quency fc and bandwidth ð
ffiffiffi
2
p

=2Þbw,

hsys;TxRx tð Þ � gauspuls t; fc;

ffiffiffi
2
p

2
bw

� �
; (27)

where the function gauspuls is defined by

gauspulsðt; fc; bwÞ ¼ e�ðt
2=2tvÞ cos ð2pfctÞ (28)

with tv ¼ �½8 log ð10�6=20Þ=4p2bw2f 2
c �.

To get the final expression for Gijkl, expression (19) is

convolved with hsys;TxRx,

Gijkl ¼ gauspuls tj�
zl

c
�krkl � rik

c
; fc;

ffiffiffi
2
p

2
bw

� �
; (29)

which is the expression used in Sec. V.

Therefore, in this particular setting, we can link a point

scatterer at a certain location with a wavefront recorded by

the probe, or simulated, as shown in Fig. 6. By repeating this

process for all the points of a grid G that spans the whole

final image space, one can populate a dictionary of wave-

fronts G that links a map of scatterers in a medium to the

pressure field generated by them and acquired by the probe.

Intuitively, one can expect this dictionary to be suitable for

CS as long as the number of scatterers in the medium is

small enough to ensure sparsity, and the grid spacing in

depth and azimuth is chosen wisely, to ensure that the dic-

tionary has a low coherence.

B. Toward a compressed beam forming algorithm

According to the definition of G, each of its columns

contains the Green’s function of a given scatterer. In that

sense, it is a dictionary of Green’s functions that associates a

diffraction impulse response to a distribution of scatterers.

So within the limitations of our model, if R is a signal

acquired with the ultrasonic probe, then there exists a spatial

distribution of scatterers I such that

R ¼ GI: (30)

Using Eq. (30), we may infer a BP beam forming algorithm

based on l1-minimization

min
Î2R

Nimg

kÎk
l1

such that R ¼ GÎ (31)

in the absence of noise and if the distribution of scatterers I
is sparse.

In order to take into account the acquisition noise, and

the inaccuracies of our model, one can relax the constraint

with an inequality:

FIG. 6. Representation of a point scatterer in (a) the image space and (b) the

acquisition space.
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min
Î2R

Nimg

kÎk
l1

such that kGÎ � Rkl2
� e (32)

where the parameter e accounts for the noise and the model

inaccuracies. This yields a BPDN beam forming algorithm,

which is the basis of t-CBF.

V. RESULTS AND DISCUSSION

In this section, we present and discuss simulation results.

We simulated a linear ultrasonic probe made of Nel ¼ 128

elements. The central frequency is fc ¼ 7:3 MHz, which gives

k¼ 211 lm at c¼ 1540 m s–1. The distance between the center

of two consecutive elements is equal to k in order to minimize

the grating lobes. The sampling frequency is set to

fs¼ 40 MHz, which means that if the final image is a sector

that spans 7 cm in azimuth and 7 cm in depth, each simulated

Green’s functions will be a 128� 2000 sample matrix at least.

After the column-wise unwrapping, this gives a 256 000 value

vector. Now if we work on a grid G defined by the pitches

Dx ¼ k=2 in azimuth and Dz ¼ k=2 in depth, we need to sim-

ulate roughly 670� 670¼ 448 900 Green’s functions. Using

these parameters, the final matrix G will be a

256 000� 448 900 matrix of double precision floating point

numbers. Hence, the size of the entire matrix G would be

roughly 920 GB. Having that matrix readily accessible in the

random access memory (RAM) of the system is unrealistic.

This first limitation could be mitigated by the use of a multi-

core graphics processor unit (GPU) card to compute the coef-

ficients of G on-the-fly as opposed to storing them in the

RAM. Another solution, that we chose to pursue in this arti-

cle, is to restrain the simulation to a small domain of

192� 192 pixels. Another important aspect is the computa-

tion time needed to calculate a single image. Here, MATLAB is

used to carry out the computation for proof of concept. As a

result, processing times can be significant. In the long run, a

few strategies could be pursued to improve on this: the algo-

rithm could be adapted to C language, heavy GPU paralleliza-

tion could be used, etc. The following development focuses

on off-line reconstruction.

All the pressure fields are simulated using Jensen’s

Field II.22

A. t-CBF using a plane wave excitation and 128
transducers in reception

In this section we simulate a homogeneous medium con-

taining a finite number of point scatterers and we investigate

the influence of the scatterers’ position on the reconstruction.

1. One point scatterer simulation

For this simulation, a unique point scatterer is consid-

ered. The field-of-view (FOV) is a 192� 192 pixel image

and the pitch in azimuth and depth is Dx ¼ 5k=2 and

Dz ¼ 3k=2, respectively. Attenuation is neglected as a first

approximation, and the image is centered on x¼ 0 cm,

z¼ 2.5 cm. The excitation is a plane wave: all the trans-

ducers fire the same pulse at the same time. The full aperture

is used in reception. In Fig. 7, the point scatterer is located in

the center of the image, at x¼ 0 cm, z¼ 2.5 cm. The results

from both the l1-minimization and the dynamic focusing

DAS (Ref. 12) are presented in Fig. 7.

The l1-minimization recovers the map of the scatterers

in the medium. The appearance of the image computed with

DAS is different: it displays sidelobes and a coarser resolu-

tion. The differences between the methods may be explained

by Eq. (26). The t-CBF would be a de-convolved version of

the DAS image to a certain extent. For that reason, the result

obtained through l1-minimization is a single white pixel,

whereas the image obtained using DAS shows sidelobes on

each side of the point scatterer. Obtaining a comparable re-

solution with DAS would require many focalized transmit

beams (typically 84, Fig. 7), or many plane wave excitations

in the case of plane wave compounding (typically 12)23 as

well as a wide aperture.

2. Point scatterers selected at random

In this section we briefly look into the limits of the spar-

sity constraint. One of the main assumptions we have made so

far is that the number of scatterers is relatively small. In that

section, the ultrasonic field generated by 128 scatterers was

simulated. The position and reflectivity of each scatterer are

chosen at random on the grid G. In Fig. 8, the images obtained

using DAS, projections on the matrix G, and l1-minimization

are given for comparison. The reconstruction in Fig. 8(c) was

very accurate, as the amplitude of each scatterer was recov-

ered as well as their position. However, when the number of

scatterers increases, the quality of the recovery decreases and

the convergence time of the algorithm increases.

FIG. 7. Simulation of one point scatterer at azimuth 0 and depth 25 mm.

Images obtained using: (a) plane wave DAS, (b) conventional DAS with 84

focalized transmit beams, (c) projection of the raw data on the matrix G, and

(d) l1-minimization.
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The resolution is much better than in the case of 84

transmit beams [Fig. 8(b)]. For that simulation, the point

scatterers were located on a known grid, which made it eas-

ier for the algorithm to recover the map. However, the model

was not perfect and the wavefronts generated for the simula-

tion differed from the wavefronts stored in the dictionary G.

The attenuation was not considered, and neither was the

influence of the directivity of the transducers.

B. t-CBF using a plane wave excitation and 16
transducers in reception

One of the great benefits of CS is the ability to decrease

the number of measurements necessary to perform an accu-

rate reconstruction. In our case, that could mean acquiring

less samples in time, or less samples in space, or both. It

could also mean imaging a medium using less transmits. In

this paper, we focus on acquiring less spatial samples, and

less transmits, as it seems to be the most beneficial way to

use CS for ultrasound beam forming.

The reduction of the number of transmits was implicitly

used in the beginning of the paper: we assumed that the me-

dium was insonified by a single plane wave. Usually, many

focalized transmits are used to generate a single image,

affecting the frame rate. The use of one, or a few, non-

focalized transmits would allow for higher frame rates.

Reducing the number of transducers in acquisition can

take several forms. In fact, using less elements in the probe

raises a simple question: how to select the elements in a way

that satisfies the principles of CS. The selection process is

not trivial, as it directly impacts the mutual coherence of the

measurement matrix. Figure 9 shows the evolution of the

mutual coherence of the matrix G. It is generated by comput-

ing the scalar products of all the columns of G and sorting

them by descending order of magnitude. The mutual coher-

ence l of a matrix G is commonly defined as the maximum

absolute value of the cross-correlations of the columns of G,

lG ¼ max
1�i;j�Nimg

jGT
i Gjj: (33)

The acquisition using the entire aperture of 128 ele-

ments is here taken as a reference and compared against dif-

ferent element selection strategies: the signal is acquired

using (a) the Nacq central transducers; or (b) Nacq transducers

equally spaced, and spanning the entire aperture; or (c) Nacq

transducers selected at random, and spanning the entire aper-

ture, used throughout the acquisition; or finally (d) Nacq

transducers selected at random at each time sample.

We simulate two scatterers: one is positioned on the

grid G while the other one is off the grid. The reason for that

experiment is that when the expansion of a wavefront origi-

nating from a point on G is evident, the expansion of the

wavefront coming from a point off grid is not. It is expected

to be wider.

1. On selecting the central transducers

A first strategy would be to select the central transducers

of the probe, and to try to recover the image as if it had been

acquired with the entire aperture. However, this approach

leads to a high coherence of the measurement matrix and

proves to be inefficient, as shown in Figs. 9 and 10(a). Using

a smaller aperture means a loss in resolution as the main

lobe of the PSF of the system becomes wider.24 Therefore, if

we consider a distribution of neighboring scatterers located

in the vicinity of each other’s main lobes it becomes evident

that discriminating them would be a daunting task. The vec-

tors of G corresponding to those points are highly coherent

as the signals coming from them are very similar.

Intuitively, we know that using a smaller aperture causes the

FIG. 8. Simulation of 128 point scatterers chosen at random on the grid G.

Images obtained using: (a) plane wave DAS, (b) conventional DAS with 84

focalized transmit beams, (c) projection of the raw data on the matrix G, and

(d) l1-minimization.

FIG. 9. Sorted coherence of sub-sampled G (dashed lines) vs complete G
(continuous line): selecting only the central transducers leads to high coher-

ence and a slow decay of l, whereas selecting random transducers.
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far-field of the probe to be shallower.19 Hence, the deepest

wavefronts acquired by the probe are very close to plane

waves. The considered points being close to the axis of the

probe, the waveforms generated by scatterers located within

a few wavelengths from each other are highly correlated,

making it harder for the algorithm to discriminate point scat-

terers in azimuth for a given depth. The result, shown in Fig.

10(a) is that the main lobe of the point on-grid is a few pixels

wide, and the PSF of the off-grid point is wider and some-

what noisy. The algorithm was able to detect a scatterer at

the right depth but it had more trouble discriminating it in

azimuth.

2. On selecting equally spaced transducers spanning
the whole aperture

To alleviate the limitation aforementioned, a second

strategy would be selecting transducers across the entire

aperture. It should be beneficial for discriminating scatterers

in azimuth. This way, the algorithm is still using only a small

subset of transducers, but the entire physical aperture is

used. At first, we selected equally spaced transducers. In a

classic setting and if the distance between transducers is

greater than k, the issue with using equally spaced trans-

ducers is the appearance of grating lobes.24 In fact, the space

between two transducers in an ultrasonic probe is calculated

so that the angle at which the grating lobes exist is about 90	

from the axis of the probe, minimizing their effect on image

quality.

Surprisingly, the grating lobe artifact did not seem to

affect the image quality too much, as can be observed in Fig.

10(b). The results are much better as the two PSFs are equiv-

alent. The PSF of the point on-grid is almost a single pixel,

as expected, whereas the PSF of the point off-grid is much

narrower than in the previous case.

However, it is to be expected that due to the sidelobes,

the coherence of G will be higher for points located in the

secondary lobes of each other. As a result, an image with

more scatterers would be less accurately reconstructed.

3. On selecting randomly spaced transducers
spanning the whole aperture

In order to attenuate the grating lobe effect, another

selection strategy would be to use a subset of randomly

spaced transducers to make sure the grating lobe issue does

not occur. Before acquisition, a subset of elements is chosen

at random and used in the generation of the matrix G as well

as in the acquisition process.

Figure 10(c) shows a result that is not fundamentally

different from what was obtained previously, because the

two scatterers are not located in the vicinity of each other’s

grating lobes.

4. On selecting randomly spaced transducers for each
time sample

In order to decrease mutual coherence even further, one

could think of using a different random set of transducers for

each time sample. For example, if the user wants to acquire

1600 time samples with 16 transducers, a 16� 1600 map of

transducer numbers can be generated and used in the genera-

tion of G, as well as to perform the acquisition. This way,

the acquisition basis is well-known and well-defined.

From Fig. 9, we can see that the performance improves

in terms of coherence. For the neighboring scatterers, the co-

herence of the sub-sampled basis follows the one of the orig-

inal one. In azimuth, the coherence decreases faster than

what we observed in the previous cases.

The end result, shown in Fig. 10(d), displays an

improvement in the focalization of the energy as the PSF is

this time a single pixel exact for both the on-grid and off-

grid points. The incoherence of G greatly improves the qual-

ity of the reconstruction.

C. t-CBF and super-resolution

1. Principle

In very specific conditions, we can hope to use CS to

achieve super-resolution. In fact, the matrix G links a pixel

to a wavefront like a dictionary. If the dictionary includes

wavefronts originating from scatterers closer than k=2, we

can hope to separate them. Of course, one could object that

with such a fine grid, the coherence of G will increase drasti-

cally. However, in silico experiments suggest that in the case

of a model G that describes the data R exactly, super-

resolution is indeed achievable. Similarly, the PSF of a point

scatterer should be a single pixel without sidelobes. In that

very specific case, the raw data R is generated using the

FIG. 10. Results obtained from sub-sampled data: (a) using 16 central trans-

ducers; (b) using 16 equally-spaced transducers spanning the entire aperture;

(c) 16 randomly-spaced transducers spanning the entire aperture; and (d)

using a different set of 16 randomly-chosen transducers for each time

sample.
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same function gauspuls mentioned in Eq. (29) than the ma-

trix G. This way, we know that the raw data R corresponds

to an image that is exactly sparse.

2. Results

For this experiment, a finer grid spacing of Dx ¼ k=10 in

azimuth and Dz ¼ k=10 is used. The other parameters remain

unchanged. We consider a homogeneous medium with two

point scatterers located at the same depth but at different azi-

muths. The reconstruction algorithm is applied to the raw data

generated analytically using Eq. (29). The DAS image is gen-

erated using a standard pulse sequence for a linear array such

as the Philips L12-5: a translating aperture of 64 elements is

used resulting in 64 focalized pulses fired en face the probe.

The two scatterers are located at depth zs¼ 15 mm. Figure 11

shows a performance comparison in terms of resolution

between t-CBF and DAS. Four cases are presented: (a) the

two scatterers are distant enough to be perfectly separated by

DAS: the distance between the two scatterers is Dxs ¼ 8k, (b)

the scatterers are at the limit of separation as defined by the

Rayleigh criterion: Dxs ¼ 2k, (c) the scatterers are no longer

separated by DAS but t-CBF can still separate the points, the

classic reconstruction showing only one main lobe:

Dxs ¼ 2k=3, and (d) neither of the reconstructions can sepa-

rate the scatterers: Dxs ¼ k=2. Overall, the contrast seems bet-

ter as it is not affected by sidelobes.

D. t-CBF on a wire phantom

1. Introduction

The last experiment is realized using an iU22 ultrasound

scanner from Philips (Bothell, WA) with a modified

hardware that allows us to acquire the raw data. The acquisi-

tion is done using a Philips S5-1 sector probe. The phantom

is made of a series of taut fishing lines of diameter close to k
parallel to each other, in a water tank. The speed of sound in

water is assumed to be unchanged throughout the experi-

ment. S5-1 acquires echoes in a 2D plane perpendicular to

the orientation of the fishing lines so that each of them acts

as a point scatterer. This way, the expected image should be

a set of aligned bright spots on a dark background, ensuring

the sparsity we need for CS.

2. Results

Figure 12 shows the images obtained using DAS [Fig.

12(a)] and t-CBF [Fig. 12(b)]. For this particular experiment

and because we are using a sector probe, the excitation wave

is a diverging wave. The advantage of using a diverging

wave is that if the parameters are chosen wisely the entire

sector can be insonified at once. The image obtained with t-

CBF appears more resolved, there are no sidelobes, and each

wire is separated from the next and well-defined in space.

The DAS image displays a lower resolution and intertwined

sidelobes.

VI. CONCLUSION

Over the past decade, the importance of CS in the med-

ical imaging world has increased drastically. So far, and to

the best of our knowledge, that revolutionary inverse prob-

lem technique had never been applied for time-domain

beam forming of ultrasonic fields. With this article, we pre-

sented a brief overview of CS, and more importantly we

justified theoretically the feasibility and validity of the

framework. Through simulations and experimentations we

showed that an image of point scatterers can be recovered

from the insonification of a medium by a single plane

wave, when in the case of conventional DAS, more than a

hundred focalized excitation pulses would be necessary

and, in the case of plane wave compounding, more than ten

excitation pulses would be required. We showed that the

number of transducers in reception can be reduced from

FIG. 11. DAS is used as a reference: (a) separated points: Dxs ¼ 8k; (b) at

the limit of separation for DAS according to the Rayleigh criterion:

Dxs ¼ 2k; (c) DAS no longer separates the two scatterers: Dxs ¼ 2k=3; (d)

t-CBF and DAS cannot separate the two scatterers: Dxs ¼ k=2.

FIG. 12. Wire phantom.
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128 to 16 transducers without significant loss of image

quality. Finally, we showed that in specific, controlled con-

ditions (near-perfect model, point scatterers on a known

grid) t-CBF can be used to achieve super resolution of point

scatterers.

The technique presented here is for time-domain beam

forming. Other groups such as Schiffner and Schmitz8 have

proposed a CS framework in the frequency domain.

However, the relationship between the two frameworks is

direct. In fact, the matrix G used by Schiffner and Schmitz8

is an under-sampled Fourier transform of the matrix G
described in this paper.

As a result, the great potential of CS for ultrasonic beam

forming has been formally proven. The next steps include,

but are not limited to, working on decreasing the size of the

matrix G while retaining all the information needed for the

reconstruction, finding bases better suited to describing

speckle and tissue structures, applying the algorithm to med-

ical phantom, and eventually use the technique in vivo.

Those aspects are currently being investigated. Some

encouraging results have already been obtained and will be

the subject of a future publication.
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