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Abstract—Quantitative analysis of positron emission tomogra-
phy (PET) brain imaging data requires a metabolite-corrected ar-
terial input function (AIF) for estimation of distribution volume
and related outcome measures. Collecting arterial blood samples
adds risk, cost, measurement error, and patient discomfort to PET
studies. Minimally invasive AIF estimation is possible with simul-
taneous estimation (SIME), but at least one arterial blood sample is
necessary. In this study, we describe a noninvasive SIME (nSIME)
approach that utilizes a pharmacokinetic input function model
and constraints derived from machine learning applied to an elec-
tronic health record database consisting of “long tail” data (digital
records, paper charts, and handwritten notes) that were collected
ancillary to the PET studies. We evaluated the performance of
nSIME on 95 [11C]DASB PET scans that had measured AIFs. The
results indicate that nSIME is a promising alternative to invasive
AIF measurement. The general framework presented here may be
expanded to other metabolized radioligands, potentially enabling
quantitative analysis of PET studies without blood sampling. A
glossary of technical abbreviations is provided at the end of this
paper.

Index Terms—Arterial input function (AIF), electronic health
record (EHR), positron emission tomography (PET) imaging.

I. INTRODUCTION

POSITRON emission tomography (PET) uses radioactively
tagged probes (radioligands) for the in vivo quantification

of blood flow, metabolism, protein distribution, gene expres-
sion, and drug target occupancy in the brain. Fully quantitative
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analysis of PET data requires both the arterial input function
(AIF) that describes the amount of radioligand available for dif-
fusion into the brain, and the tissue time-activity curves (TACs)
derived from dynamic PET images. Kinetic modeling is then
performed to estimate important outcome measures of radioli-
gand distribution and binding [1]. To measure the AIF, typically
a catheter is inserted into the radial artery at a subjects’ wrist
to sample blood for the duration of the PET scan. After cen-
trifugation, the total radioactivity concentration of radioligand
in the arterial plasma (TP) is measured in each blood sample. If
the body metabolizes the radioligand, the parent fraction (PF)
of unmetabolized radioligand in the plasma is assayed from a
subset of the blood samples. After fitting PF using a metabolite
model, the input function is calculated as AIF : y = TP × PF,
which reflects the concentration y of radioligand in plasma that
is available to enter the target tissue.

Utilizing the AIF and the TACs, PET imaging can be used
to estimate outcome measures related to the “binding poten-
tial” of a radioligand to its target. In particular, one estimate
of binding potential BPF is defined as: BPF = Bavail/KD =
(VT − VND)/fP , where Bavail is the concentration of available
receptors, 1/KD is the radioligand affinity to the target, VT

is the radioligand “volume of distribution” or volume of ra-
dioligand in tissue relative to plasma, VND is the radioligand
“volume of distribution” in a tissue devoid of the target (i.e.,
fraction of binding not specific to the target of interest), and fP

is the free fraction of the radioligand in plasma. VT and VND
are estimated from kinetic modeling of the region TACs and the
AIF, while fP can be assayed in additional blood samples col-
lected prior to radioligand injection. When fP is not available,
or cannot be measured reliably, two other variants binding po-
tential can be calculated: BPP = fP BPF = (VT − VND) and
BPND = fNDBPF = (V T − V ND)/V ND , where fND is the
free fraction of the radioligand in a tissue devoid of target.

Thus, quantification of PET data requires arterial blood sam-
pling to estimate the AIF and to calculate the outcome measures
related to the “binding potential” of the radioligand to its target
(i.e., BPP or BPND ). While arterial sampling is routinely done
in research studies, it is invasive, necessitates specific techni-
cal expertise, exposes clinical personnel to radiation, involves
laboratory analysis costs, significant measurement error, and
strongly discourages subject participation in PET studies. If the
patient refuses an arterial line, or if arterial cannulation or blood
assay fails, the entire study may be dropped from data analy-
sis leaving expensive PET images that cannot be interpreted or
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analyzed. Even when these challenges are anticipated, it may not
always be possible to perform arterial blood sampling, such as
with vulnerable populations (e.g., elderly, cancer patients), those
with movement disorders (e.g., people affected by Parkinson’s
disease) or in a combined magnetic resonance imaging (MRI)
and PET scanner due to magnetic interference. Even when blood
samples can be obtained, fitting of TP and PF can be challeng-
ing due to inherent noise present in the blood measurements,
and complex radioligand kinetics such as “lung trapping” that
require adapting and validating a metabolite model [2]. Finally,
and most commonly, arterial sampling is impractical in a clin-
ical setting, hindering adoption of quantitative PET outcome
measures for clinical use.

The last decade has brought a considerable effort to develop
AIF estimation techniques [3] that can be broadly categorized
as noninvasive (i.e., without blood samples), such as “reference
tissue” and population-based approaches, and minimally inva-
sive (i.e., with few blood samples), such as image-derived input
functions (IDIF).

Reference tissue methods use only imaging data to estimate
kinetic parameters of tissue TACs, based on the specification
that a valid reference region devoid of the target (e.g., receptor
or protein of interest) exists and can be identified [4]. This ap-
proach allows estimation of BPND only. For many radioligands
currently employed in brain studies, a reference region truly de-
void of the target cannot be identified or the region commonly
used as a reference actually has measurable specific binding.
Even when a reference region is identifiable, there may be high
bias and variance in BPND values calculated with the reference
tissue methods when compared to using the AIF, as is the case
with [11C]-PK11195 (targeting microglia) [5], and [11C]ABP
(targeting the metabotropic glutamate receptor subtype 5) [6].
Population-based approaches define a template AIF, typically
generated from AIF values derived from blood samples collected
across several studies with the same radioligand. The template
AIF is applied to new subjects after adjusting by a scaling factor
based on their injected dose (ID) and body mass [7], or based on
cerebellar activity [8]. Even when the scaling factor is derived
invasively from arterial blood samples, the shape of the AIF can
vary greatly between subjects. To date, population approaches
had limited success with few radioligands (e.g., [18F]FDG [8],
[11C]PIB [9]).

With these limitations in mind, most efforts have focused on
developing minimally invasive IDIF methods that can yield in-
dividualized estimates of the AIF. These approaches are based
on estimating the AIF from dynamic PET imaging data. A com-
mon IDIF approach involves averaging the signal from a region
of interest (ROI) placed over the carotid artery identified directly
on PET images either manually [10], by automated segmenta-
tion techniques [11], or with the help of a coregistered MRI
image [12]. Alternatively, clustering [13] or independent com-
ponent analysis [14] can be used to extract the blood signal
from blood vessels in the brain. The drawback of the aforesaid
approaches is that they require at least one blood sample for
scaling of the estimated AIF, and at least three or more samples
for metabolite correction [3]. Another class of IDIF approaches
is based on simultaneous estimation (SIME) of multiple TACs,
with the underlying assumption that the AIF is the same for all

ROIs. SIME exploits a parametric model for the unknown AIF
and seeks to estimate model parameters simultaneously with the
kinetic parameters related to the binding, while fitting several
ROIs at the same time. Recent work has shown that SIME can
recover the AIF using only a single arterial blood sample as
an anchor (or constraint) that ensures model identifiability [15].
One more alternative for a “less” invasive IDIF is to measure TP
and PF from venous blood sampling [3]. Drawing venous blood
does not require arterial catheterization by trained personnel,
making it more practical in research and clinical settings. For
some radioligands, this substitution is nearly equivalent as with
[18F]FDG [10], [16] and [11C]WAY [17]. The equivalence be-
tween arterial and venous blood must be determined separately
for each radioligand and often does not hold. This procedure
still requires considerable effort with regards to blood draws
and the metabolite correction assay.

A totally noninvasive AIF estimation approach is needed to
overcome the aforesaid challenges and drawbacks with existing
IDIF techniques. Our proposed solution taps into the field of
population pharmacokinetics and pharmacodynamics (PPKD)
that focuses on predicting metabolite corrected blood levels of
pharmaceutical compounds at various time points after injec-
tion. This is done by aggregating blood data from many subjects
to determine what measures (e.g., age, body mass index (BMI),
glomerular filtration rate, etc.) explain the variance in drug blood
concentration [18]. Previous work suggests that combining sup-
plementary information (e.g., weight, height, ID) with signal
from cranial blood vessels improves IDIF-based AIF estimation
[19]. However, this technique was developed for the radioligand
[18F]FDG for which metabolites are not present in the blood
(i.e., PF = 1). It is not clear whether such an approach could
translate to radioligands that undergo significant metabolism.

In this study, we bridge PPKD and PET brain imaging by
merging SIME with predicted constraints on the parameters
of the AIF model that are derived from machine learning ap-
plied to electronic health record (EHR) data. We previously
demonstrated the feasibility of using EHR data to predict the
metabolite corrected radioligand blood concentration of a single
blood sample [20]. Here, we develop an algorithm for nonin-
vasively estimating the full AIF curve and validate it on brain
PET data acquired with the radioligand [11C]DASB that binds
the serotonin transporter [21].

In this context, we designed a big-data analytics solution
toward noninvasive PET quantification, handling two big-data
challenges [22]: the first challenge was the low veracity of the
“long tail” EHR records collected prior to the PET studies,
largely recorded in handwritten notes, and not quality controlled.
The second challenge was the wide variety of data, combining
multimodal time-series PET/MRI images, blood measures, and
static EHR measures from different statistical distributions.

II. METHODOLOGY

A. Subjects and Data

In a study approved by the Institute Review Board, PET and
EHR data were obtained for 228 [11C]DASB PET scans at the
Kreitchman PET Center at the Columbia University Medical
Center between 2004 and 2012. Health records consisted of
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TABLE I
DESCRIPTIVE STATISTICS FOR DEMOGRAPHICS AND VITALS MEASURES

Variable Mean (STD) min max

Age (years) 38 (12) 19 64
Weight (lb) 165 (41) 102 279
Height (in) 66 (3) 60 73
pre-scan Δt (h) 2.3 (1.2) 9 0.5
post-scan Δt (h) 4.9 (1.4) 1.9 7.8
BPs_pre (mmHg) 122 (17) 90 189
BPs_post 122 (17) 93 178
BPd_pre (mmHg) 75 (9) 53 107
BPd_post 76 (12) 54 128
HR_pre (beats/min) 72 (11) 45 100
HR_post 73 (12) 48 105

Heart rate (HR), systolic blood pressure (BPs) and diastolic blood pressure
(BPd) were collected before (_pre) and after (_post) PET scan within the time
interval Δt.

data collected prior to the PET scan date and included demo-
graphics (e.g., age, sex), clinical details (e.g., weight, vitals),
clinical laboratory test results (e.g., blood chemistry, clinical
blood counts, thyroid panel), and urinalysis (e.g., pH). Heart rate
(HR) and blood pressure (BP) were obtained within a few hours
before and/or after the PET scan. PET data included regional
brain TACs, ID, injected mass, radioligand specific activity, and
measured AIF based on full arterial blood sampling. Only 95 of
228 available [11C]DASB PET scans had accompanying weight,
height, HR, BP, and useable AIF data. All analysis presented
here were conducted on these 95 [11C]DASB PET scans, for
which descriptive statistics are shown in Table I.

B. Vitals and Hemodynamic Related Variables

The HR was measured manually via radial pulse rate, sys-
tolic (BPs) and diastolic (BPd) BP measurements were obtained
with a sphygmomanometer, before and after the PET scan. The
aforesaid measures were manually transcribed from handwrit-
ten notes made on a PET protocol form by clinical technicians.
Missing or illegible records were marked as “Not a Number”
and discarded. Vital signs were not assessed at consistent times;
they ranged from 9 to 1 h for pre-scan and from 2 to 8 h for
postscan measurements. Therefore, variables that represent the
“closest” and “average” vitals were also calculated. Summary
statistics for vitals are shown in Table I.

The following hemodynamics related variables were also de-
rived from HR and BP measures: mean arterial pressure (MAP),
pulse pressure (PP) and a very simplified estimated cardiac out-
put (eCO), using the assumption that PP is proportional to stroke
volume [23].

C. Additional Derived Variables

The following variables were also derived from the age (A),
weight (W), height (H), and hematocrit (Hct) of each sub-
ject: BMI, body surface area (BSA) using Mosteller’s equa-
tion [24], estimated total blood volume (eTBV) using Nadler’s
equation [25], estimated total plasma volume (eTPV), defined as
eTPV = eTBV · (1 − Hct), and estimated resting metabolic
(eRMR) rate using Mifflin’s equation [26]. The glomerular fil-
tration rate (GFR) was estimated using two “Modification of

Diet in Renal Disease” formulas [27]: the simplified version that
uses blood creatinine level (eGFR) and a more complex version
that incorporates blood urea nitrogen and albumin (eGFR5).
Since the formulas are implicitly adjusted for BSA and reported
as ml/min/1.73 m2, two additional variants were calculated ad-
justing to each individual’s BSA and dividing by 1.73 [28].
Other calculated standard clinical variables included osmolal-
ity gap, albumin corrected calcium, blood viscosity, anion gap,
Bun:creatinine ratio, and plasma osmolality.

D. PET Image Acquisition and Processing

Brain PET acquisition and processing, as well as arterial
blood analysis, were previously described in detail [2], [29].
Briefly, PET imaging was performed with the ECAT HR+
(Siemens/CTI, Knoxville, Tennessee). After a 10-min the trans-
mission scan, between 5 and 20 mCi of [11C]DASB was ad-
ministered intravenously as a short infusion over 30 s. Emission
data were collected for 100 min over 19 frames of increasing
duration: 3 × 20 s, 3 × 1 min, 3 × 2 min, 2 × 5 min, and 8 × 10
min. Images were reconstructed to a 128 × 128 matrix (pixel
size of 2.5 mm × 2.5 mm). PET images were motion corrected
and coregistered to an accompanying 1.5T or a 3T MRI image.
The TACs were obtained from seven manually traced ROIs on
the MRI that were transferred to the coregistered PET scan.
These ROIs were previously used for SIME with [11C]DASB
[15] and include: gray matter cerebellum, midbrain, amygdala,
dorsal caudate, hippocampus, temporal lobe, and ventral stria-
tum. Thirty-one arterial blood samples were collected during
the PET scan. TP was measured from arterial plasma using a
well counter after centrifugation. PF was calculated after mea-
surement of plasma parent radioligand and plasma metabolites
concentrations with a high-pressure liquid chromatography as-
say from a subset of these blood samples.

E. Estimation of the AIF

The discrete time course of the AIF can be described as:
y[tn ] = TP[tn ] × PF[tn ]. The TP[tn ] are measured from n =
1, . . . , N blood samples taken at time points tn during the PET
scan. When metabolite correction is used, PF[tn ] is estimated
by interpolating a fitted metabolism function to PF[tm ], calcu-
lated after performing a high-performance liquid chromatogra-
phy assay on m = 1, . . . ,M blood samples, typically M � N .
Indeed, fewer samples are analyzed for metabolites since it is ex-
pensive and laborious, and since the radioligand is no longer de-
tectable in later time points if rapidly metabolized. We note that
for a small group of radioligands PF(t)∼1 (e.g., [18F]FDG), and
metabolite correction is, therefore, not needed. However, this
tends to be an exception and not the rule. The final continuous-
time AIF curve y(t) is estimated by fitting an input function
model to the measured samples y[tm ].

The continuous PF(t) function is estimated by fitting PF[tm ]
with a damped biexponential function as

PF(t) = tα (C1e
−λ1 t + C2e

−λc a l t) (1)

where λcal is a calculated time constant equal to λcal = λCER −
λTP , using the terminal rate of washout of cerebellar activity
λCER and the smallest elimination rate constant of the total
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Fig. 1. Radioligand transfer between blood and brain tissue. (a) Radioligands
are injected into the blood, diffuse into the brain, and bind to specific receptors
at the brain tissue target site. Availability of radioligand in the blood plasma
and tissue is limited due to metabolism, plasma protein and blood vessel wall
binding, and nonspecific binding in the brain. (b) One-tissue compartment (1TC)
model representation of the radioligand transfer illustrated in the upper panel.
Cp is the freely available radioligand concentration in the arterial plasma, K1
is the transfer rate from the arterial plasma to the tissue, k2 is the transfer rate
from the tissue back to the plasma. BBB—blood brain barrier.

plasma λTP [2]. The discrete-time AIF curve y[tn ] was calcu-
lated and fitted with the following eight-parameter input func-
tion model

CP (t|θIF ) =

{
αt

A1e
−λ1 t + A2e

−λ2 t + A3e
−λ3 t

t < tp

t ≥ tp

(2)

where CP (t|θIF) is the AIF in continuous time, θIF parameters
related to the input function model including the time of the
peak of the input function tP , the slope α, and the scale Al and
rate constants λl of the three-exponential function (l = 1, 2, 3),
adjusted during the fit.

F. Time Activity Curves Modeling

For the [11C]DASB radioligand, the transfer of radioligand
from the vascular compartment into the brain tissues can be
represented by a one-tissue compartment (1TC) model [29],
as shown in Fig. 1. In this model, K1 is the transfer rate of
the radioligand from the arterial plasma to the tissue, where
free, nonspecific, and specific binding are aggregated into a
single compartment, k2 is the transfer rate constant from the
tissue back to the plasma. Mathematically, the regional TAC is
encoded as a concentration function f of the radioligand in the
tissue that can be formulated as a convolution product between
the AIF, modeled with the parametric input function model Cp ,
and the tissue impulse response function K1e

−k2 t as

f(t, θIF ,K1 , k2) = K1e
−k2 t ⊗ CP (t|θIF). (3)

After collecting blood samples, θIF is first estimated by non-
linear least squares fitting of a continuous model of (2) to the

measured metabolite-corrected arterial data y[tn ]. The result-
ing estimate θ̂IF is substituted into (3). The rate constants are
then estimated using iterative weighted nonlinear least squares
minimization of the following function:

J∑
j=1

wj [Yj − f(tj |θIF ,K1 , k2)]2 (4)

where Yj is the measured TAC from a brain region at points
j = 1, . . . , J specified at time tj , and wj are weights here set to
the frame duration of each time point.

G. Simultaneous Estimation (SIME)

The SIME approach simultaneously estimates the TAC pa-
rameters from multiple regions r, which are fitted at the same
time. The parameters describing the IDIF are estimated by min-
imizing the following combined objective function:

φ(t, θIF , ψr , . . . , ψR ) =
R∑

r=1

J∑
j=1

wj [Yrj − f(tj |θIF ,ψr )]2

+ [y[topt ] − CP (topt |θIF )]2 (5)

where y[topt] is the metabolite-corrected radioligand concen-
tration in the plasma measured at the predetermined optimum
sampling time topt , CP (toptθ

IF) is the AIF model evaluated
using the estimated parameters θIF at time topt , ψr is the vector
of TAC parameters for the region r, ψr = (Kr1 , kr2), and Yrj

is the TAC measured from region r at time tj . Minimization
of this cost function is done with simulated annealing, a robust
optimization technique for finding the global optimum [30].

H. Pharmacokinetic (PK) AIF Model

General characteristics of an AIF curve (see Fig. 3) include a
bolus or short infusion phase followed by a postinfusion phase.
During the infusion phase, the radioligand concentration in-
creases until it peaks generally when infusion stops. The input
function model of (2) has been utilized within SIME and previ-
ously applied to several radioligands [15]. This model assumes
a linear rise from time zero to the peak at t = tp during the
infusion phase and a decrease modeled by the sum of three ex-
ponentials during the postinfusion phase. As graphically shown
in Fig. 2(a), after infusion starts at t = 0 the radioligand accumu-
lates only in the central compartment for the infusion duration
T. Then, immediately after infusion ceases, the distribution into
other compartments in the body, and elimination phases begin.

Following this model, it is clear that if the infusion rate k0 is
constant, there will be a linear increase in the radioligand con-
centration in the central compartment, until infusion stops and
the radioligand is distributed and eliminated. If a small volume
of drug were injected, almost instantaneously (e.g., a vaccine
injection) the model in Fig. 2(a) would be reasonable. In real-
ity, however, the radioligand is usually diluted into a volume of
several milliliter of saline or water and then infused manually,
or with an infusion pump over a duration of ∼10–60 s. In this
case, infusion and elimination phases occur simultaneously and
cannot be segregated. The infusion phase is nonlinear and typi-
cally begins with a delay relative to the PET acquisition due to
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Fig. 2. Compartmental representation of the AIF models from which equations are derived. (left) Simple AIF model of (2), where the radioligand is infused
into a virtual “central compartment” for the duration of time T at a rate k0 . Once infusion stops, the radioligand diffuses into other compartments and undergoes
elimination. The rates of transfer between compartments are given by the k’s (rate constants), Vl are volumes of each compartment l = 1, . . . , 3. (right) The
compartment PK AIF model of (6). The PET scan acquisition starts at t = 0, and after a delay td the radioligand infusion begins. As infusion is occurring, the
radioligand is simultaneously accumulated in the central compartment, distributed to other compartments, and eliminated from the body.

blood travel time from the brain to the blood measurement site
in the arm.

A more realistic representation of this system is described in
Fig. 2(b), with a compartmental model, a delayed shunt-based
infusion mechanism, and all compartments and data collection
active at t > 0. After a delay time td , infusion begins and pro-
ceeds at a constant rate c. As the radioligand is infused, it simul-
taneously distributes into other compartments and is eliminated
from the body through multiple pathways at a total rate k10 .
After the infusion duration T, the shunt is closed, the infusion
stops, while the distribution and elimination phases continue.
This model has been described previously in the PK literature
and is known as a three-compartment PK model of the drug
plasma concentration [31], for which a combined infusion and
postinfusion equation is readily derived using Laplace trans-
forms and given by

CPK
p (t|θPK) =

⎧⎪⎪⎨
⎪⎪⎩

3∑
l=1

Bl

(
e−λl (t−td ) − 1

)
, t < T

3∑
l=1

Bl

(
e−λl T − 1

)
e−λl (t−td ) , t ≥ T

(6)

where CPK
p (t|θPK) is the concentration of parent radioligand

in the plasma in continuous time, including some parameters
θPK related to the PK input function model (e.g., td , Bl , λl , T).
Bl and λl are, respectively, the scaling and rate constants for
the lth compartment of the input function, and td and T are,
respectively, the delay and infusion duration.

We note that infusion and postinfusion components share the
same parameters, which allows the model to take advantage
of data acquired during infusion to describe the data acquired
postinfusion. Examples of the application of the simple and the
PK-based AIF models from (2) and (6) are shown in Fig. 3. A
variation of this model has been previously utilized in PET but
did not include a delay term, and was only described by a set
of ordinary differential equations that were fit to the data using
Levenberg–Marquardt optimizer [32]. The explicit parametric
formulation of the PK model provided in (6) enables this model
to be utilized with the SIME cost function.

Fig. 3. Comparison of AIF model fits: Measured AIF (black dots), AIF fitted
with nonlinear least squares using a simple model of (2) and currently used by
SIME (blue line), and proposed PK AIF model of (6) (red line).

I. Noninvasive SIME (nSIME) Objective Function

SIME requires a constraint to ensure identifiability of the
model. Currently, this constraint is based on one measured blood
sample taken at an empirically determined optimum sampling
time. For [11C]DASB, this sample is taken at topt = 50 min after
injection. It is used to measure TP[topt = 50] and PF[topt =
50], allowing us to sample the AIF at that optimal time, y[topt =
50], which for clarity we will refer to hereinafter as AIF50.

Population PK studies show that it is possible to make indi-
vidualized predictions for clearance and area under the curve
(AUC) for many pharmaceutical compounds [18]. Such pre-
diction is typically performed using mixed effects modeling to
identify significant covariates among various indicative vari-
ables derived from weight, GFR, etc. In this study, we propose
to investigate the development of a predictive model for AIF50
that uses noninvasive patient information. The predicted blood
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Fig. 4. Overview of the nSIME approach showing elements of the cost function that are minimized using simulated annealing. Shape and scale of the input
function are inferred from simultaneous fitting of TACs constrained by AIF50 and AUC predictions.

sample value pAIF50 then replaces AIF50, thus making SIME
completely blood free. To provide additional robustness, we also
predict the PK variable AUC, which is a more stable measure
than AIF50 as it is calculated from multiple time point samples.
We then incorporate the predicted value pAUC as an additional
constraint within SIME. The combined objective function with
predicted constraints becomes

φ(t, θPK , ψtac
r , . . . , ψtac

R )=
R∑

r=1

J∑
j=1

wj [Yr j −f (tj |θPK , ψr )]2

+ v[pAIF50 − CPK
p (topt |θPK )]2 + z[pAUC − AUC(θPK )]2 (7)

where pAIF50 and pAUC are the predicted AIF50 and AUC
constraints, v and z are empirical weights, and the function
AUC is given by

AUC(θPK) =
∫ ∞

0
CPK

p (t|θPK)dt. (8)

Following [15], [33], the empirical weight for the AIF50 con-
straint was set to v = 100 to ensure that the estimated input
function passes through pAIF50. The weight for the AUC con-
straint was empirically set to z = 5 such that the two constraint
error terms have similar magnitude and contribute equally to the
cost function. An overview of the nSIME approach is shown in
Fig. 4.

J. Selection of Noninvasive Patient Variables

The noninvasive patient information available for the pre-
dictive model combines EHR, PET image-derived information,
demographics, and derived variables, amounting to a total of 100
potential predictors listed in Table II. Of the PET-derived predic-
tors, the TAC sum refers to the cumulated sum between 50 min
and the end of the scan and is calculated for each of the seven pre-
selected manual ROIs. Similarly, TPsum =

∫ ∞
50 TP(t)dt cor-

responding to the integration of TP values from 50 min after
the injection to the end of the scan. We also include λcal from
(1) and use it to estimate the portion of ID eliminated from
the body after 50 min due to first order clearance, defined as
eID50 = ID(−λc a l 50) . Although the aforesaid are technically in-
vasive measures, in the future TP and λcal may be replaced

TABLE II
INITIAL SET OF 100 VARIABLES CONSIDERED AS POTENTIAL PREDICTORS

Initial Predictors (100)

Chemistry (21) Thyroid (5) Urinalysis (3) Demographics (4)
A/G Ratio T3 Uptake Specific Grav Urine Weight
Albumin TSH Urobilinogen Height
Alk Phos Thyroxine Free pH Age
ALT(SGPT) Thyroxine Total Sex
AST(SGOT) Triiodothyronine Derived (16)
BUN BMI Vitals (24)
Calcium Hematology (14) BSA HR
Chloride WBC LBMI BPs, BPd
Cholesterol RBC eTBV MAP
CO2 Hemoglobin eTPV PP
Creatinine Hematocrit eGFR eCO
Globulin MCV eGFRBSA x2 (pre, post)
Glucose MCH eGFR5 x2 (closest, avg)
LDH MCHC eGFR5BSA
Phosphorus RDW eRMR PET (13)
Potassium Platelets Osmolarity Gap TAC sum (x7)
Sodium Neut Absolute rCalcium TPsum
T. Bilirubin Lymph Absolute Blood viscosity ID
Total Protein Mono Absolute Anion gap eID50, λcal
Triglyceride Eosin Absolute BUN:Crt ratio Injected Mass
Uric Acid Baso Absolute Plasma osmolarity Specific Activity

by measuring whole blood radioligand concentration with IDIF
methods (see Section I), or a PET wrist scanner [34], and by
scaling this measure using a whole blood to plasma conversion
factor (see Section IV for a discussion).

The following multistage approach is proposed to screen for
variables that may be useful in predicting AIF50 and AUC. First,
since TACs are highly correlated between regions, we only keep
as a potential predictor the TAC sum with the highest correlation
with AIF50 and AUC. It was found to be the cerebellum TAC
sum (noted CERsum).

Next, the 94 remaining predictors (after removing the six
other TAC sums) are screened based on their correlations with
the measured AIF50 and retained if R2 > 0.1. From the 94
predictors we also generate a series of normalized ID variables
by dividing each predictor variable into ID, since interactions
between dose and physiology are expected for some variables.
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Fig. 5. Machine learning approaches: Approach 1 = Top-model, Approach 2
= aggregate model.

The normalized ID variable is retained for further analysis if
the R2 correlating it with AIF50 is greater than the R2 correlat-
ing it with ID. Finally, again considering the 94 predictors, we
conducted a search of two-variable interaction terms. A total of
4371 (choose two out of 94) multivariate regression models are
evaluated, each consisting of two predictors with and without
interaction terms. The interaction term is retained if the R2 of
the model with the interaction term is both greater than 0.1, and
is greater than the R2 of the model without the interaction term,
and the p-value of the interaction term is less than 0.05. The
entire screening procedure is repeated for AUC. Sex (binary
variable) is only included during the interaction term screen-
ing step. To mitigate effects of multicollinearity and different
value ranges among the predictors, all variables (except Sex)
are normalized into Z-scores (zero mean and unitary standard
deviation). A total of 56 predictors were selected for AIF50 and
52 predictors for AUC.

K. SIME Constraints Prediction

We developed two approaches that combine the simplicity
and interpretability of linear regression (LR) with robustness
to outliers and noise of random forests and boosting. The first
approach consists of a bootstrapped best-model selection proce-
dure, and the second approach is designed as a new bootstrapped
model aggregation method. For clarity, a flow diagram for both
approaches is shown in Fig. 5.

Bootstrapped top-model selection: First, a leave-one-out
procedure is employed where one of the scans is left out for
testing and the rest of the scans (N = 94) are used for train-
ing. Second, for the training set, all possible four variable LR
models are assessed leading to 367,290 (choose four out of 56)
for AIF50 and 270,725 (choose four out of 52) for AUC. Third,
bootstrapped average R2 correlations are calculated from train-
ing each model 100 times using randomly drawn samples with
replacement from the training data. Fourth, the model with the
highest R2 is applied to the test data. The procedure is repeated
95 times, once for each observation.

Bootstrapped aggregate model selection: This procedure
utilizes two nested leave-one-out loops to find a set of mod-

els that are aggregated and whose predictions are averaged.
First, the dataset of 95 observations is split into test-level1 and
training-level1 (N = 94). Second, the training set training-level1
is split again into test-level2 and training-level2 (N = 93). Third,
for level 2 of the training set, all possible four variable LR mod-
els are assessed: 367,290 (choose four out of 56) for AIF50 and
270,725 (choose four out of 52) for AUC. Fourth, bootstrapped
average R2 correlations are calculated from training each model
100 times using randomly drawn samples with replacement from
the training data. Fifth, the model with the “best” (minimal er-
ror) prediction for the test set test-level2 is selected. Repeating
this procedure for all 94 training-level1 observations, we gener-
ate 94 optimal LR predictive models. Finally, these 94 models
are aggregated (averaged) to predict the test-level1 observation.

The advantage of this approach is threefold: 1) all possible
four variable LR models are tested; 2) each training data point
contributes only with a weight of 1/94 to the overall prediction,
thereby reducing impact of outlier observations without remov-
ing points from the training data; 3) since training points span a
large range of values, selecting the LR predictive model with the
“minimal error” for each point yields a set of models optimal
for narrow ranges of values, improving the chances that at least
some of the models will provide reasonable predictions for any
test point.

L. Performance Evaluation

Predicted pAIF50 and pAUC values obtained using the two
proposed approaches are incorporated as constraints into the
nSIME objective function of (7). Either the measured or nSIME
derived input function can be substituted into (4) to estimate
kinetic rate constants and to derive the outcome measures of
interest (VT , BPP and BPND ), as described in Section I. For
each region and scan, the aforesaid measures were estimated us-
ing kinetic modeling with the measured AIF (from full arterial
sampling) and nSIME. Agreement between the two approaches
was assessed via correlation and regression analysis on the es-
timates, using the nSIME-derived AIF as a dependent variable
and the measured AIF as the independent variable. All analyses
were done using MATLAB 2012a (The Mathworks, Inc.) on
a 12 CPU Intel Xeon E5–2690 2.90 GHz and 128-GB RAM
Linux server. For each PET scan, training of the top-model and
aggregate-model took ∼45 and 430 min, respectively, using all
CPUs. Testing time was∼1 min. Computational time for nSIME
was ∼30 min on a single CPU.

III. RESULTS

A. Prediction of AIF50 and AUC

Predictions from the two machine learning approaches are
shown as Bland–Altman plots in Fig. 6 for AIF50 and AUC vari-
ables. The top-model and aggregate model predictions yielded,
respectively, a correlation between predicted and measured val-
ues of 0.769 and 0.824 for AIF50, and 0.727 and 0.790 for
AUC. Therefore, both prediction models returned high corre-
lation values (r > 0.72) for the two predicted values and the
aggregate model yielded higher correlations for both variables.
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Fig. 6. Bland–Altman plots comparing leave-one-out predicted constraints
(pAIF50, pAUC) to measured values (AIF50, AUC). Mean (solid) and mean
+/− 1.96∗STD (dashed) lines, and Pearson’s correlation (r) between predicted
and measured constraint are shown for reference.

Fig. 7. Absolute% error for predicted variables pAUC and pAIF50 from the
aggregate model. Boxplots show first and third quartiles as bottom and top box
boundaries, and median value as the red line. Whiskers indicate 1.5 times lower
and upper interquartile range with red (+) indicates outliers.

There is no evidence of bias (mean difference is close to zero)
in the estimated variables. Even though few points lie outside
the 95% interval, variance does not appear to increase with
magnitude. Considering the aggregate model, prediction errors
are plotted as boxplots in Fig. 7. Absolute percent error for
pAUC and pAIF50, for most scans, were within the first–third
quartile intervals: [5.5–20.2%] and [4.8–19.9%], respectively.
One scan had a pAIF50 error > 60% and two scans had pAUC
errors >40%.

To assess the relative importance of predictors, we calcu-
lated the frequency of occurrence of each predictor as a vari-
able in the top-model across all 95 top models. These fre-
quencies are reported in Table III. For pAIF50, the top three
most frequent predictor variables were CERsum (34.7%), TP-
sum (22.9%), and the interaction term HRpost∗TPsum (13.9%).
For pAUC, the top three most frequent predictor variables were

TABLE III
FREQUENCY OF PREDICTOR VARIABLE APPEARANCE IN THE BOOTSTRAPPED

MODELS SELECTED BY THE TOP-MODEL PREDICTION APPROACH

pAIF50 top-model pAUC top-model

Variable Frequency Variable Frequency

CERsum 34.7% TPsum 26.8%
TPsum 22.9% CERsum 24.7%
HR_post∗TPsum 13.9% BSA∗PP_post 18.4%
BPd_pre∗Eosin 13.7% eGFR5BSA∗PP_post 17.9%
HR_avg∗CERsum 12.9% eTBV∗Potassium 14.5%
ID/HR_pre 4.2% eID50 12.6%
BPd_closest∗Eosin 3.4% CERsum∗eID50 12.4%
TPsum∗Chloride 2.4% eRMR∗Potassium 5.8%
ID/HR_closest 1.6% Height 2.1%
Weight∗HR_post 1.3% LBMI∗TotalProtein 2.1%
ID/eRMR 1.1% TPsum∗PlasmaOsm 1.6%
HR_post∗CERsum 0.8% TPsum∗HR_avg 1.3%
ID/HR_avg 0.5% TPsum∗Sodium 1.3%
ID/BPd_post 0.3% Height∗Urobilinogen 1.3%
ID/HR_post 0.3% TPsum∗osmGAP 1.3%

Normalized ID variables are indicated as “ID/variable,” while ∗ represents an interaction
term between two predictors (multiplication of values). Some variables were measured
before (_pre) or after (_post) the PET scan, the average (_avg) of before/after the PET scan,
or closest to the PET scan time.

TPsum (26.8%), CERsum (24.7%), and the interaction term
BSA∗PPpost (18.4%).

Overall, for pAIF50, 35.5% and 17.0% of all selected predic-
tor variables contained, respectively a HR- or BP-based term.
In contrast, for AUC, 0.3% and 33.1% of all selected predictor
variables contained, respectively, a HR- and BP-based term.

B. AIF Estimations

Measured and nSIME-derived input functions are shown for
representative cases in Fig. 8. To illustrate the separate effects
that errors in pAUC and pAIF50 impart on the input function
estimation, scans were selected with two different error levels
for (pAIF50/pAUC): [see Fig. 8(a)] low/low; [see Fig. 8(b)]
low/high; [see Fig. 8(c)] high/low and [see Fig. 8(d)] high/high.
It appears that AIF50 primarily impacts the height and shape
of the tail portion of the curve (beyond 40+ min), while AUC
controls the offset of the entire curve. The tail part of the curve
is best recovered when pAIF50 error is low while the initial
part of the curve is heavily influenced by pAUC. When pAUC
error is high, the initial part is over- or underestimated, driven
by the sign and magnitude of the pAUC error. In general, it is
difficult to disentangle the influence of pAUC and pAIF50 since
the constraints are working together and in conjunction with
the dynamic PET imaging data to recover the shape of the AIF
curve. So it is not clear which measure is driving the objective
function for a given scan. We illustrate on Fig. 9 two cases
where pAUC and pAIF50 have large errors of opposite signs,
and therefore the two constraints compensate for one another.
In Fig. 9(a), pAUC error is −8.9% and pAIF50 error is +9.0%,
while in Fig. 9(b) pAIF50 error is +9.2% while pAIF50 error
is −11.3%. In both cases, nSIME was able to recover the input
function quite well, especially the tail part beyond 30 + min.
This suggests that the constraints are counteracting one another
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Fig. 8. Comparison of AIF curves derived from blood measures (black dots)
and fitted with the model (2) (blue line) and nSIME with aggregate model
predicted constraints (red line). Four representative cases are illustrated, with
low/high pAIF50 (a, c) or low/high pAUC (b, d) percent errors.

and ultimately reduce the impact of their individual errors. For
such cases having multiple constraints appears to yield benefits
for AIF recovery.

C. Outcome Measures

Kinetic modeling outcome measures VT , BPND , and BPP

were computed using measured AIF and nSIME-derived input
functions. Bland–Altman plots and Pearson’s correlation coef-
ficients for these outcome measures for seven brain regions are
shown in Fig. 10. A low bias (mean difference close to zero)
is visible for all outcome measures. A tendency toward higher
variance with increasing values is observed for all variables,
but slightly less pronounced for VT . These plots also enabled
us to identify two problematic PET scans, noted #1 and #2,
which generated extreme outlier points, far outside the 95%
limits of agreement for all three measures. The pAIF50 and
pAUC errors are −6.1% and +25.4% for scan #1, and +74.8%
and +37.9% for scan #2, respectively. Scan #1 had the lowest
AIF50 value and the highest radioligand clearance rate of any
scan in our sample. Interestingly, scan #2 had relatively small
constraint prediction errors but very poor nSIME PK model and
TAC parameter estimates. This is likely due to an unusual large
secondary peak present in the measured AIF. This secondary
peak could be due to radioligand partial injection into tissue fol-
lowed by slow diffusion back into the arterial supply (prolonged
bleeding was noted for this subject), error in metabolite model-
ing, or possibly a true radioligand recirculation component that
is not taken account by our PK model.

nSIME estimations returned high correlation values across all
brain regions, the lowest being for VT with r = 0.877. Regional
correlations were always lower than global brain correlation val-
ues except in the temporal lobe. Regional correlation values vary
a lot between regions, but always follow the following ranking:

Fig. 9. Behavior of nSIME derived AIF input functions when errors of pAIF50
and pAUC are of opposite signs. In (a), pAUC error is negative and pAIF50 error
is positive while in (b), pAUC error is positive and pAIF50 error is negative. In
both cases, the recovered curve matches well the AIF tail portion beyond the
30 min time point.

rBPN D > rBPP > rVT . The highest regional correlation value
was found for BPND in the temporal lobe with r = 0.970, which
beats the global brain correlation value for the same measure.

IV. DISCUSSION

We have introduced the concept of nSIME, as a new SIME
framework to enable full noninvasive quantitative PET imaging.
This framework replaces blood-based radioligand measures by
a robust PK input function model and multiple noninvasive
constraints based on machine learning on EHR data. Our results
on a large database of [11C]DASB brain PET images showed
that nSIME predictions of volume of distribution and binding
potentials were highly correlated with estimates based on full
arterial blood sampling.

In this evaluation, we also discovered specific covariates that
appear to be related to [11C]DASB metabolism and clearance
from the body, which may be useful for understanding and
interpreting the radioligand kinetics. CERsum was frequently
included in the predictive models, which is interesting because
the cerebellum is commonly used as a reference region for
[11C]DASB [29].

Another interesting result is that HR and BP appear more
important for AIF50 prediction, while body size related terms
(e.g., BSA, eGFR, eTBV) appear more frequently selected for
AUC predictive models. There are two plausable explanations
for the association of HR and BP with [11C]DASB metabolism.
First, from a hemodynamic point of view, the higher HR and BP,
the greater the cardiac output and thus blood flow. Indeed, it has
been shown that radioligand uptake is alterated during anesthe-
sia beause of reduced HR and BP, and thus blood flow [35].
Second, [11C]DASB binds the serotonin transporters whose
function is associated with cardiac repolarization intervals and
HR variability [36], [37]. The relationship between body size
terms and AUC is possibly more straightforward and can
be inferred from Fig. 2(b). Body size impacts the volume of the
compartments, plasma concentration of radioligand decreases
when radioligand is diluted into a larger plasma volume.

Our results are particularly encouraging since EHR data are
heterogeneous and some measures are quite crude. For exam-
ple, the EHR data were gathered retrospectively and included
measures that were acquired anywhere from hours (e.g., HR,
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Fig. 10. Bland–Altman plots of estimated outcome variables VT , BPP , and BPND derived using nSIME and the measured AIF for all regions and scans. Mean
(black) and 95% limits of agreement (dashed) lines are included for reference. Extreme outlier points from two scans (scan #1 and scan #2) are labeled. Brain
regions are specified in different colors as depicted within the inset table. The inset table shows Pearson’s correlation coefficients for each individual brain region
and across all brain regions, separately for each outcome measure. The binding potentials (BPP and BPND ) are by definition zero for the reference region.

BP) to weeks (e.g., hematocrit, creatinine) from the PET scan
time. Weight was measured up to months before the scan and
HR was measured via manual radial pulse rate.

Two predictive models were proposed for AIF50 and AUC,
and confirmed the possibility to recover the AIF of the
[11C]DASB radioligand without blood samples. Some outliers
remain that might very well be due to erroneous EHR measures
and/or errors in measured blood samples, to be confirmed with
a quality-controlled prospective study.

There are still a few limitations that prevented us from achiev-
ing a fully noninvasive PET image quantification tool. First,
among the most frequently selected predictors in our predictive
models for AIF50 and AUC were TPsum and eID50 (based on
λcal). Both variables are technically “invasive,” but may even-
tually be supplemented with an IDIF after correcting for the
whole blood to plasma partition. Developing IDIF-based TP-
sum and λcal measures is the subject of future work. Previous
works have shown that the whole blood curve may be estimated
from the PET signal from carotid arteries, by scaling using the
maximum value for [18F]FDG [38] or the average of four hottest
pixels for [11C]flumazenil [39]. A whole blood to plasma cor-
rection factor may then be derived in a similar manner to [40],
based, for example, on hematocrit (e.g., [18F]FTHA, [11C]WAY)
or on a population average function of the whole blood to
plasma ratio (e.g., [11C]HED, [11C]MP4A). For [11C]DASB,
the whole blood to plasma ratio changes over the course of the
scan but begins to equilibrate after 50 min [41]. A population
average function for the 50+ min portion could be used to con-
vert the whole blood IDIF into a “plasmatic” IDIF, enabling
TPsum and λcal to be calculated using only information from
50+ min of the IDIF. Also, given that [11C]DASB is known to
accumulate within red blood cells [41], it may be possible to

predict the red blood cell concentration of [11C]DASB using a
combination of IDIF and the EHR (e.g., by using hematocrit
and red blood cell count).

Second, confirmation of the reported prediction accuracy of
our nSIME relies on the availability of a large training set of
data consisting of PET images, EHR data and blood-based AIFs,
from which to build and test a predictive model for the con-
straints. The number of scans needed for “optimal” training still
needs to be investigated and likely varies from radioligand to
radioligand. It is also plausible that the subject population may
influence results.

Third, alternative noninvasive reference tissue approaches are
available to estimate [11C]DASB BPND . A previous study with
209 [11C]DASB scans reported good performance with either a
simplified reference tissue method, (r = 0.933, slope = 0.972)
or a multilinear reference tissue model approach (r = 0.973,
slope = 0.947) [42]. With nSIME, albeit with fewer scans, our
results for BPND yielded a slope that is closer to identity and cor-
relation values that were between the two. This previous study
noted poor performance with [11C]DASB on the voxel analysis
when comparing the multilinear reference tissue approach to
graphical analysis with full arterial blood sampling (r = 0.508)
[42]. Better performance of voxel analysis might be achieved
with nSIME because it estimates an input function that could
be used with graphical analysis. In general, we emphasize that
reference tissue approaches are limited to estimating BPND only
while our approach is not.

Fourth, the ability of nSIME to predict fP and estimate BPF

was not explored in this study. However, a recent study by
our group reported prediction of fP∗AIF50 for the radioligand
[11C]CUMI with a high correlation (r > 0.9), using only ID and
BMI (or BSA) [43]. For our [11C]DASB scans, all individual
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predictors correlated poorly with fP (R2 < 0.1), and predictor
correlations with fP∗AIF50 were consistently lower than for
AIF50 alone (data not shown). We expect the ability of nSIME
to predict fP to vary by radioligand, depending on mechanism of
radioligand binding to plasma proteins, and the quality and detail
of the EHR record. Incorporating fP prediction into nSIME, and
validation across radioligands, is the subject of future work.

Despite these limitations, [11C]DASB is one of the most chal-
lenging radioligands to analyze because it has metabolite ki-
netics affected by lung trapping [2] and undergoes significant
metabolism [29]. Our approach does not require any assump-
tions with respect to these issues. Since we estimate the AIF
directly, metabolite modeling is not needed and any level of
metabolism can be handled implicitly. Thus, nSIME approach
may be applied to any radioligand once a model for predicting
constraints has been developed.

V. CONCLUSION

We have designed an original big-data analytics tool toward
a noninvasive nSIME quantitative method for PET imaging,
by combining time-series PET images with EHR records. The
application shows that we can exploit EHR data to transform
PET screening into a simpler medical examination tool and also
obtain new knowledge about the relationship between patient
physiology and PET radioligand metabolism and clearance. The
promising results highlight the potentials of big-data analytics
for PET imaging. Development of public databases of previ-
ously unused ancillary records collected routinely with PET
scans should be encouraged to pursue this transforming path.

GLOSSARY OF TECHNICAL ABBREVIATIONS

Acronym Definition

λc a l slope of the TP curve beyond 50+ min
AIF arterial input function measuring the metabolite corrected concentration

of radioligand in the plasma
AIF50 the AIF value at 50 min after injection
AUC the total area under the AIF curve
BMI body mass index
BP blood pressure
BPd diastolic blood pressure
BPF binding potential (relative to plasma and fP )
BPN D binding potential (relative to nondisplaceable compartment)
BPP binding potential (relative to plasma)
BPs systolic blood pressure
BSA body surface area
CERsum sum of the cerebellum TAC beyond 50+ min
eGFR estimated glomerular filtration rate
eGFR5 eGFR formula that includes nitrogen and albumin
eGFR5BSA eGFR5 adjusted to each individual’s BSA
EHR electronic health record
eID50 estimated amount of injected dose eliminated from the body after 50 min
eTBV estimated total blood volume
fP free fraction of the radioligand in the plasma
H height
Hct hematocrit
HR heart rate

Acronym Definition

ID injected dose of the radioligand
IDIF image derived input function
LBMI lean body mass index
nSIME noninvasive SIME (proposed approach)
pAIF50 predicted AIF50 using machine learning on EHR data
pAUC predicted AUC using machine learning on EHR data
PF parent fraction of unmetabolized radioligand measured in the plasma of a

selection of blood samples
PP estimated pulse pressure
PPKD population pharmacokinetics and pharmacodynamics
ROI region of interest
SIME simultaneous estimation
TAC time-activity curve
TP total radioactivity concentration of the radioligand and metabolites in the

plasma
TPsum sum of the TP curve beyond 50+ min
VT volume of distribution
W weight
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