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ABSTRACT

Establishing correspondences across structural and functional
brain images via labeling, or parcellation, is an important and
challenging task for clinical neuroscience and cognitive psy-
chology. A limitation with existing approaches is that they i)
possess shallow architectures, ii) are based on heuristic man-
ual feature engineering, and iii) assume the validity of the de-
signed feature model. In contrast, we advocate a deep learn-
ing approach to automate brain parcellation. We present a
novel application of convolutional networks to build discrimi-
native features for brain parcellation, which are automatically
learned from labels provided by human experts. Initial valida-
tion experiments show promising results for automatic brain
parcellation, suggesting that the proposed approach has po-
tential to be an alternative to template or atlas-based parcella-
tion approaches.

Index Terms— Brain Parcellation, Deep Learning, Con-
volutional Networks, Feature Learning.

1. INTRODUCTION

Delineation of structural and functional regions (”parcella-
tion”) of the human brain is an important and challenging
task for clinical neuroscience and cognitive psychology.
Accurate and precise parcellation enables quantification of
normal and abnormal changes in the brain as well as anal-
ysis of relationships between brain function and structural
appearance. Such information is crucial for clinical diagnosis
and prediction of treatment outcome in neurodegenerative
and pychiatric disorders. However, there still does not ex-
ist a widely accepted standard (protocol) for brain image
parcellation [1]. The choice of parcellation units is usually
dictated by software packages that make use of a labeled
atlas brain image, in which a parcellation protocol has been
applied to a single individual. Only recently have large-
scale efforts come about to establish and manually apply a
standard brain parcellation protocol to many brain images
(http://www.braincolor.org/protocols). However, because
manual parcellation is a tedious, time-consuming, and in-
consistent endeavor that requires expertise, many researchers

rely on automatic brain parcellation methods. The challenge
for both humans and computers is the intrinsic variability of
the human brain, which makes it extremely difficult to define
consistent correspondences across brains.

To establish correspondences, researchers ubiquitously
co-register brain images to each other, commonly with a tem-
plate or labeled atlas brain of the same imaging modality
[2]. However, such registration methods typically assume
image similarity as a surrogate for anatomical similarity,
continuous mapping between corresponding features, and
representativeness of the template or atlas. On a lower level
a main drawback with existing automatic brain parcellation
approaches is that they i) employ algorithms with shallow
architectures, ii) are based on heuristic manual feature engi-
neering, and iii) assume the validity of the underlying feature
engineered model. In [3] the authors have demonstrated
that shallow architectures are limited and non-optimal when
learning complex high-dimensional functions. Examples of
learning algorithms with shallow architectures are kernel ma-
chines or single-layer neural networks. In comparison to
deep architectures shallow learning algorithms are limited in
efficiently representing complex function families to learn
high-level learning tasks. Many learning algorithms rely on
human input to handcraft features, which requires a complete
understanding of the problem domain. Such feature engineer-
ing approaches limit the generalizability of the model, which
may lead to feature redesign and validation, a costly, error
prone, and impractical process.

In contrast to existing methods, we would like to advo-
cate a deep learning [3] approach to automate brain image
parcellation. We are motivated by models from biologically
inspired artificial intelligence, in particular cortical network
models such as deep convolutional networks [4] (CNs). Our
research is driven by two main questions. First, can we truly
automate brain parcellation in a realistic clinical setting?
Second, can cortical network models, which possess deep
learning architectures, provide the computational intelligence
for this challenging task? In this paper we report on a novel
application of convolutional networks to build discrimina-
tive features for brain parcellation, which are automatically
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Fig. 1. Deep learning approach to automate brain image parcellation using a convolutional network model. From left to
right, the deep architecture consists of several layers starting with the input layer (I). In an alternating manner the CN consists
of a hierarchical architecture of convolutional (C1, C2) and subsampling (S1, S2) layers followed by a full-connection layer
(F), and finally the output layer (O).

learned from labels provided by human experts. The idea
we would like to pursue is a structured hierarchical approach
using context-aware feature learning to perform parcellation
without resorting to an atlas or a template-based registration
approach. Moreover, our approach does not require the en-
gineering design of handcrafted features, reducing human
expert intervention and the need for prior knowledge. Initial
validation experiments show promising results for automatic
multi-class brain parcellation, suggesting that the proposed
approach has potential as an alternative to existing template
or atlas-based parcellation approaches.

2. METHODS

2.1. Problem formulation

Consider the problem of finding a function f : X → Y that
maps an input space to an output space. Here X refers to the
brain image data and Y to a delineated label space of a multi-
class brain parcellation. We are given a dataset D as a collec-
tion of N images {I} = {I1, I2, ..., IN}. The dataset is fur-
ther partitioned into D = {Dl,Du}, where Dl = {si, yi}li=1

denotes the labeled training set and Du = {si, ŷi}ni=l+1 the
unlabeled test set. Each pair consists of an image site si (e.g.,
voxel) and a label yi, which assumes values in a finite set
y = {0, ..., C}. The index n refers to the number of sites
within each image. For each site in the training set we form
a d-dimensional patch xi ∈ Rd. A detailed description of xi

can be found in section 2.3. The input-output pairs in Dl are
drawn in an independent and identically distributed manner
from some unknown probability distribution P(X,Y ) defined
jointly over X and Y . Our goal is, given Dl, to predict ŷ for
the unlabeled test set Du such that the learned approximation
to f has low probability of error P(f(X) 6= Y ).

2.2. The convolutional network architecture

Convolutional networks (CN) belong to the class of cortical
network models and are an extension to the classical multi-
layer perceptrons (MLPs) model. They consist of a multi-
layer hierarchical architecture of feature maps as depicted in
Fig. 1. The learned model Φ = {w, b} includes convolu-
tional operators w and bias term b, which in combination with
a nonlinear activation function γ (e.g. sigmoid or hyperbolic
tangent), form so-called ”activity feature maps” Ikq , where k
indexes a CN layer and q a particular feature map of layer k.
The first step is to perform a forward propagation of an input
patch through the CN architecture shown in Fig. 1. The fea-
ture maps in each convolutional layer (C1, C2) are computed
through a recursive forward dynamic of the form

Ikq = γ(uk
q ) (2.1)

uk
q = bkq + (

∑
p

wk
q,p ⊗ Ik−1

p ), (2.2)

where γ denotes a smooth differentiable nonlinearity to en-
sure differentiability, uk

q a pre-activation image, Ik−1
p the fea-

ture image at layer k − 1, wk
q,p a directed convolution kernel

from map p to q, and bkq a bias term. The layers (S1, S2) are
simple subsampling layers to reduce the computational load
of the model and to introduce scale invariance of the learned
features. The full-connnection layer (F) is a hidden layer as in
MLPs with a nonlinear activation function. The output nodes
of layer (O) represent the class labels of the network. Forward
propagated class labels are compared with ground truth labels
and the errors are then back-propagated through the network
to refine the CN model in an iterative fashion.

Given our deep CN model Φ, the forward dynamics in
Equations (2.1, 2.2), and some training data (xi, yi), our algo-
rithm automatically learned discriminative features of parcel-
lation units by solving an optimization problem via recursive
error back-propagation
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Fig. 2. Context-aware feature configurations. Shown are
orthogonal slices of subject one from the LBPA40 dataset.

arg min
Φ
J (xi, yi,Φ) (2.3)

Φt+1 ← Φt − η∇ΦJ (xi, yi,Φ). (2.4)

To solve Equation (2.3) we employed an online learning
strategy using stochastic gradient descent by minimizing the
negative log-likelihood

J (x, y,Φ) =
∑
i

log(P(Y = yi|xi,Φ)). (2.5)

2.3. Context-aware feature learning

We built two different kinds of context-aware feature config-
urations. For each image site si we considered a large neigh-
borhood of surrounding image data, providing discriminative
contextual information to determine the class label of the site.
Fig. 2 shows examples of feature configuration C1 and C2
that were used to assess the performance of our approach. For
testing, we performed linear patch sampling in order to learn
a site-wise class probability. Invalid patch samples near the
border were ignored. Parcellation labels were then obtained
by choosing the class label with the highest probability given
xC1,C2

and the learned CN model Φ

ŷC1,C2
= arg max

i
P(Y = i|xC1,C2

,Φ). (2.6)

C1 consisted of a single patch centered around si, whereas C2
consisted of a cross configuration of four patches (i.e., north,
south, west, east) around si. Both were obtained through
randomized sampling to build our training and validation set
(xi, yi). To perform cortical and subcortical parcellation, we
constrained the context area to a 28 x 28 dimensional patch.
For C2, the four-element patches had dimensions 14 x 14,
which were then concatenated to the final 28 x 28 patch di-
mension.

3. EXPERIMENTS AND RESULTS

We used 40 brain images and their labels (56 structures
+ background) from the LONI Probabilistic Brain Atlas

(LPBA40) at the Laboratory of Neuro Imaging (LONI)
at UCLA. We performed two sets of experiments on the
LPBA40 dataset to assess the performance of our approach
using feature configuration C1 and C2. For both configu-
rations we have used the following settings (η = 0.1, batch
size = 60, number of training epochs = 50, number of ran-
domized patches = 25000, number of feature maps in each
layer (C1, S1) = 6, (C2, S2) = 12). Training and valida-
tion (50:50 split) was performed by random patch samples
from a single central slice of subject 1. The validation set of
subject 1 was used to determine the best performing model
during online stochastic gradient descent learning. After the
best model was obtained test performance was assessed on
single central slices of all other LPBA40 subjects. For quan-
titative validation we computed the Dice coefficient Dc for
the overall cortical structure and for individual subcortical
structures

Dc =
2|A ∩B|
|A|+ |B| . (3.1)

HereDc measures the set agreement between the ground truth
labels and our computed brain parcels. The Dc score ranges
from (0-1), where 1 means perfect agreement. For experiment
C1, the complete cortical structure had a mean Dc of 0.85 (±
0.04), whereas for C2, the same structure had a lower mean
Dc of 0.73 (± 0.04). The superior and middle frontal gyrus
for C2 had a higher Dc and lower variance than for corre-
sponding parcels in experiment C1. The parcellation perfor-
mance for the superior and middle temporal gyrus for C1 and
C2 could not be computed since they were not part of the cen-
tral slice during testing. In general the Dc was low for small
brain parcels in comparison to larger sub-cortical structures.
Overall parcellation performance showed high variability and
no significant difference between C1 and C2 could be found.
We have used the convolutional network implementation pro-
vided by Theano [5].

4. DISCUSSION AND CONCLUSION

In this paper we have presented a novel application of bio-
logically inspired cortical network models to automate brain
image parcellation using a deep convolutional network ar-
chitecture. We were able to demonstrate parcellation of the
complete cerebral cortex, without human intervention to build
handcrafted features or to provide other prior knowledge. The
feature configurations were able to correctly reject the detec-
tion of the main white matter regions. We attribute the low
parcellation performance and high inter-subject variability to
the very limited training set that we used. Another factor
that affected the performance was the crud registration of the
dataset causing the central slices that were used for training
and testing to be misaligned. Misalignment caused by reg-
istration errors however can be accounted for by enriching
the training set samples from a slap of slices. In future work
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Fig. 3. Qualitative performance results on automatic brain parcellation. Shown are central slices from 20 randomly selected
subjects from the LPBA40 dataset. Left: computed brain parcels using feature configuration C1 as translucent color overlays.
Right: computed brain parcels using feature configuration C2 as translucent color overlays. LPBA40 subject IDs are shown in
white below each slice.

we plan to improve upon the results obtained by these ini-
tial experiments and to extend our current approach to three-
dimensional, context-aware feature learning and in-depth val-
idation of the model in a clinical setting.
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