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Abstract
Computing the morphological similarity of Diffusion Tensors (DTs) at neighboring voxels within
a DT image, or at corresponding locations across different DT images, is a fundamental and
ubiquitous operation in the post-processing of DT images. The morphological similarity of DTs
typically has been computed using either the Principal Directions (PDs) of DTs (i.e., the direction
along which water molecules diffuse preferentially) or their tensor elements. Although comparing
PDs allows the similarity of one morphological feature of DTs to be visualized directly in
eigenspace, this method takes into account only a single eigenvector, and it is therefore sensitive
to the presence of noise in the images that can introduce error into the estimation of that vector.
Although comparing tensor elements, rather than PDs, is comparatively more robust to the effects
of noise, the individual elements of a given tensor do not directly reflect the diffusion properties of
water molecules. We propose a measure for computing the morphological similarity of DTs that
uses both their eigenvalues and eigenvectors, and that also accounts for the noise levels present in
DT images. Our measure presupposes that DTs in a homogeneous region within or across DT
images are random perturbations of one another in the presence of noise. The similarity values that
are computed using our method are smooth (in the sense that small changes in eigenvalues and
eigenvectors cause only small changes in similarity), and they are symmetric when differences in
eigenvalues and eigenvectors are also symmetric. In addition, our method does not presuppose that
the corresponding eigenvectors across two DTs have been identified accurately, an assumption
that is problematic in the presence of noise. Because we compute the similarity between DTs
using their eigenspace components, our similarity measure relates directly to both the magnitude
and the direction of the diffusion of water molecules. The favorable performance characteristics of
our measure offer the prospect of substantially improving additional post-processing operations
that are commonly performed on DTI datasets, such as image segmentation, fiber tracking, noise
filtering, and spatial normalization.
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1 Introduction
Diffusion Tensor (DT) Magnetic Resonance Imaging (MRI) quantitatively measures the
diffusivity of free water molecules in different directions within the human brain [1].
Whereas free water diffuses equally in all directions, the presence of cell membranes or
cellular organelles within axons, or myelin sheaths surrounding them, will restrict the
diffusion of water molecules in directions perpendicular to the long axis of a nerve fiber,
particularly in myelinated axons within white matter of the brain. Thus by tracking the
principal direction of the diffusion of water molecules, we can track the direction of fiber
bundles along the length of axons in white matter. Diffusion is quantitatively estimated from
a series of Diffusion-Weighted Images (DWIs) that are acquired using diffusion-sensitizing
MRI gradients applied in multiple directions (ranging 6 to 51) [2]. Once estimated, diffusion
is represented by a symmetric 3 × 3 Diffusion Tensor (DT), H, which encodes both the
magnitude and direction of diffusion [1, 3]. A DT image defines a tensor at each voxel
within the image. Therefore, analytic operations (including, for example, reconstruction of
fiber tracts, removal of noise from images, and comparison of fiber tracts across groups of
subjects) require computation of the degree of similarity between the various diffusion
properties of DTs at neighboring voxels within the image and across corresponding voxels
of images from differing individuals. Computing the similarity of tensors is thus one of the
most fundamental and important procedures in the postprocessing of DT images [4].

A number of methods have been proposed for computing the similarity between two DTs,
including the tensor scalar product [5], the sum of squared scalar products between each pair
of semi-major axes [1], the Euclidean distance metric [6], and the similarity of the Principal
Directions (PDs) of diffusion [7]. The first three of these use individual tensor elements to
compute the similarity between two tensors. Tensor elements, however, are only nonlinearly
related to the features of greatest interest–eigenvalues and eigenvectors–that measure
respectively the magnitude and direction, respectively, of the diffusion of water molecules.
Changes in the diffusion properties of water molecules therefore will not be reflected by
changes in the value of a similarity measure that is computed using tensor elements. In
contrast, measures that compare tensors based on their principal eigenvectors do produce
similarity values that vary with changes in the direction of diffusion. Because these
measures exclude much of the information that defines tensors, however, including all of the
eigenvalues and two of the eigenvectors of the tensors, they are highly susceptible to any
error that noise introduces in the DT images when estimating the PDs. The PD of a DT
therefore will not be defined clearly, for example, when noise in a DT perturbs its two
largest eigenvalues whose values are similar. Thus a PD-based measure cannot compare
tensors reliably, because noise will too often cause incorrect identification of their PDs.

The valid comparison of tensors using a similarity measure requires that changes in the
measure are symmetric and smooth when changes in the corresponding diffusion properties
of a water molecule are also symmetric and smooth. By symmetric we mean that the
similarity measure between two tensors decreases for either an increase or a decrease in
diffusion along a specified direction in one tensor, as well as for either a clockwise or
counterclockwise rotation of the tensor. By smooth we mean that changes in the similarity
measure will be small for small changes, or large for large changes, in the magnitude or
direction of diffusion, and those changes in the similarity measure will be a differential
function of change. The magnitude of similarity is unimportant, because similarity is
computed within the context of a single image. Extant methods used to compute the
similarity between two DTs thus far fail to satisfy either one or both of these symmetry and
smoothness preconditions for the validity of the measures.
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We propose a method for computing the similarity between two tensors at neighboring
voxels that is based on perturbation theory [8, 9]. We model variations in tensors in a
homogeneous region as perturbations of their neighbors. The similarity between two tensors
can thus be computed from the conditional probabilities of the eigenvalues and eigenvectors
of an unperturbed tensor, given the perturbations in the elements of the other tensor. Our
method accounts for the effects of noise in DT images. Moreover, these measures vary
symmetrically and smoothly with symmetric and smooth changes in the tensors. Because
our method uses all the eigenspace components of two tensors to compute similarity, the
similarity measure relates directly to the diffusional properties of water molecules within
those tensors. Our method also obviates the need to establish an accurate correspondence
between the eigenvectors of the two tensors when computing conditional probabilities for
those eigenvectors.

2 Method
Our method computes the similarity between tensors within the context of DT images by
accounting for noise in the tensor elements. DTs are most commonly reconstructed from
noisy, gray-scale values in diffusion weighted images using the Stejskal and Tanner
equation [10] together with least-squares estimation. Estimated tensor elements are therefore
random variables. Assuming that noise in the tensor elements is Gaussian-distributed, the
least-squares estimates are also the maximum likelihood estimates. We therefore estimate
variance in the tensor elements from the least-squares procedure and then use the estimated
variance to compute the probability of perturbations in the eigenvalues. Because variance in
the tensor elements depends upon the amount of noise present in the image, our measure
accounts for the presence of noise in DT images and its effects on tensor maps.

We compute the conditional probabilities of the eigenvectors of an unperturbed tensor, given
the perturbed tensor, using the wavefunction renormalization constant from perturbation
theory. Our formulation for computing these probabilities can be divided broadly into two
categories those for either nondegenerate or degenerate tensors, depending on the
eigenvalues of the unperturbed tensor. Nondegenerate analysis is used when each eigenvalue
is unique; otherwise, degenerate analysis is used. To compute the probability of one tensor
given the other, we assume that the eigenvalues and two eigenvectors of a tensor are
independently distributed. (Although the eigenvalues of tensors are independently
distributed, their eigenvectors are not independent, because specification of one eigenvector
will restrict the remaining two to the 2D vector space that is orthogonal to the first.
Nevertheless, one of the eigenvectors in the orthogonal space still has a large degree of
freedom and can be oriented in any direction within the orthogonal space). Finally, we
combine the conditional probabilities for the three eigenvalues and the two eigenvectors to
compute the similarity of the two tensors.

2.1 Noise in Tensor Elements
2.1.1 The Stejskal and Tanner Equation—The Stejskal and Tanner equation [10]
relates diffusion-weighted measurements Sb to non-diffusion-weighted measurements S0 as:

(1)

where η is noise in the measurements Sb, Hij are the elements of a diffusion tensor H; and bij

are the elements of a weighting matrix b given by , where Gi is the
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amplitude of the gradient pulse in the ith direction, δ is the pulse duration, Δ is the time
interval between rising edges of the two pulses, and γ is the gyromagnetic ratio [2]. If a unit
vector r = (r1, r2, r3)T denotes the direction in which a gradient is applied and

 denotes the magnitude of the applied gradient, then Gi = riG0, and

. Hence, trace tr(b) of the matrix b is given as 
[10]. Thus, with bij = rirj tr(b), Eqn. (1) can be rewritten as:

(2)

2.1.2 Correction for the Rician Distribution—The voxel intensities within the brain,
and therefore their noise η, are approximately Gaussian distributed, i.e., η ~ N (0, ση). If Ab
is the voxel intensity in the absence of noise, then the probability distribution p(Sb) of the
voxel intensity Sb follows a Rician distribution [11, 12, 13, 14, 15, 16], i.e.:

(3)

where I0 (·) is the modified Bessel function of zeroth order. This distribution however, in the
regions where the Signal-to-Noise Ratio (SNR) is greater than or equal to 3 [15], can be

approximated with a Gaussian distribution of mean  and variance , i.e.,

(4)

In DW images from most MRI scanners, SNR is well above 3, and in the in vivo images
used in the present study, SNR within the brain ranged from 5 to 10. Therefore, we used the
Gaussian distribution (Eqn. 4) to approximate the noise η in the DW images.

We estimated  from the variance σ2 of the intensities in the background of the image.
Because the signal Ab is zero in the background, i.e. Ab = 0, the intensities Sb are Rayleigh
distributed [17, 15]:

(5)

with mean  and variance  [17]. We therefore estimated ση by
computing the square of the mean (μ) of the background intensities [15], i.e.,
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2.2 Least-Squares Estimates
Taking the natural logarithm and using Taylor’s expansion, Eqn. (2) can be rewritten as:

(6)

Where ϵ represents Gaussian-distributed noise with zero mean and variance , i.e. ϵ
~ N (0, σϵ), which depends upon the weighting matrix b [9]. However, in the procedure for
the least-squares estimates of the tensor elements, the noise terms ϵ are assumed to be
independently and identically distributed (i.i.d.) with equal variance (i.e., they are assumed
to exhibit homoskedasticity) [18, 19]. We therefore compute the noise variance by averaging
the variances for different weighting matrices. Furthermore, averaging also reduces the
variability in the computed variance. For diffusion-weighted measurements Sb in a direction
specified by the matrix b, Eqn. (6) can be written as

(7)

where β = (ln (S0), H11, H12, H13, H22, H23, H33)T is a vector of elements of the diffusion
tensor H and S0.

Let y denote the vector of the logarithm of diffusion-weighted measurements and B denote a
matrix with rows of elements for each gradient direction. Eqn. (7) can then be written in
matrix notation as y = Bβ + ϵ. The least-squares estimates β̂ of β are computed as β̂ = (B
′B)−1B′y, and the covariance matrix V ar(β ^) of β̂ is [18]:

(8)

In the following analysis, we use the covariance matrix to V ar(β̂) to compute the
conditional probability of the eigenvalues.

2.2.1 Heteroskedasticity Conditions—The noise values ϵ do not have equal variance
for differing weighting matrices b, i.e., ϵ are heteroskedastic. Under heteroskedasticity, if
variances for each weighting matrix can be estimated reliably at each voxel of the image,
then the covariance matrix V ar(β̂) of the least-squares estimates β̂ can be computed as [18]:

(9)

where Σϵ is a diagonal matrix with entries .

2.3 Computing Similarities Using Perturbation Theory
We use the following notation [8]: n(0) denotes the nth unperturbed eigenvector of a tensor
H0; n′(0) denotes the transpose of the vector n(0); n denotes the nth perturbed eigenvector of

a perturbed tensor H; n(j) denotes the jth-order perturbation of the eigenvector n; and 

denotes the jth-order perturbation of the difference, Δn, in the eigenvalues and  and En
associated with the eigenvectors n(0) and n, respectively.

We use perturbation theory to compute the wavefunction renormalization constant that is
used as the conditional probability of the unperturbed eigenvector for a given perturbed
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eigenvector. The renormalization constant is computed differently for differing cases
depending on the eigenvalues of the unperturbed tensor. We use a nondegenerate analysis
when each eigenvalue is unique and a degenerate analysis when 2 or 3 eigenvalues of a
tensor equal one another. Additionally, we estimate the first-order change in the eigenvalue
and its variance to compute the conditional probability of the unperturbed eigenvalue for a
given perturbed eigenvalue. We then combine the two conditional probabilities to compute
the similarity between the two tensors.

2.3.1 Nondegenerate Analysis—Let H0 denote the unperturbed tensor whose

eigenvectors (n(0)) and eigenvalues  are known exactly, i.e., , where

; and the set of eigenvectors {n(0)}(n=1,2,3) is complete, that is,

, where 1 is the identity matrix. Let H denote the perturbed tensor obtained by
perturbing H0 by matrix V, i.e., H = H0 + V. For small perturbations V, eigenvalues En and

eigenvectors n of the perturbed tensor H can be estimated as perturbations of  and n(0),
respectively.

In the presence of perturbations, the eigenvalue-eigenvector problem to be solved is (H0 +
V) n = En n. Instead, we used the customary procedure of estimating the eigenvalues and
eigenvectors of (H0 + λV) n = En n, where λ is a continuous real parameter which varies

from 0 to 1. If Δn denotes the energy shift in the nth eigenvalues, i.e., , then the
above equation can be written as:

(10)

In Eqn. (10), n and Δn are estimated by first expanding them in the powers of λ, i.e.,

and then by matching the coefficients of the powers of λ. Thus, the difference Δn in the
eigenvalues is

(11)

and the perturbed eigenvector (n) is

(12)

where Vnk = n′(0)V k(0).

Wavefunction Renormalization: The perturbed eigenvector n is normalized to a unit

length vector  n using a normalization constant Zn, determined such that n′NnN =
Znn′n = 1. Therefore, the normalization constant Zn is estimated as:
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According to this mathematical formulation, the normalization constant Zn is equal to 1
when the perturbed eigenvector is identical to an unperturbed eigenvector, and equal to 0 for
large perturbations. In between, Zn smoothly varies to zero for increasing amounts of
perturbations. Thus, Zn has been used as the probability that a perturbed eigenvector will be
identical to an unperturbed eigenvector (see [8]). We therefore define the conditional
probability Pr(n(0) ∣ n) of the nth unperturbed eigenvector n(0), given the perturbed
eigenvector n as:

(13)

However, Zn can be negative for large perturbations. For large perturbations (for example,
perturbations at the interface of gray matter and white matter will be large because of the
rapid change in diffusion properties of water molecules across the interface) when Zn is
negative, we set the conditional probability Pr(n(0) ∣ n) equal to 0. Furthermore, note that
because our conditional probability is computed completely in terms of the eigenvectors and
eigenvalues of the unperturbed tensor H0, and that the perturbed tensor H is incorporated
only through the perturbation matrix V, our method eliminates the need to establish
correspondence between eigenvectors of the two DTs.

Noise Estimates in : We use the first-order change  (Eqn. 11) in the eigenvalues 

and En to calculate the conditional probability  of  given En. Assuming that

 is Gaussian distributed with zero mean, an estimate of the variance  is used to

compute the probability  of . Because the first-order perturbations

, where nij are the i, jth element of the matrix n(0)n′(0), the

variance  is computed as:

(14)

Thus, we compute the probability  of  given En as:

(15)

To compute the expected values E(VijVkl), we use the covariance matrix V ar(β̂) (Eqn. 8).
For two tensors H1 and H2, the perturbation matrix V = H2 − H1; therefore, the variance and
covariance of the elements Vij of the perturbation matrix V can be calculated as
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where we have used the fact that noise independently and identically perturbs the
neighboring tensors H1 and H2. Values from the covariance matrix V ar(β̂) are then used to
compute the variance , which is in turn used to calculate the conditional probability

.

2.3.2 Degenerate Analysis: In the degenerate case, we use the following notations for
dummy variables: (1) m will denote eigenvectors that span the entire degenerate subspace;
(2) l will also denote the eigenvectors that not only span the degenerate subspace but also
diagonalize the perturbation matrix V; (3) j will denote eigenvectors in the degenerate
subspace that differ from l but diagonalize the matrix V; and (4) k will denote the
eigenvectors that span the nondegenerate subspace.

In the degenerate case, two or more eigenvalues (called degenerate) of an unperturbed tensor
are equal. The subspace spanned by the eigenvectors which correspond to the degenerate
eigenvalues is called the degenerate subspace D. Because the degenerate space is spherical,
any set of orthonormal vectors in D can be chosen as the basis set. We use this fact to select
a set of eigenvectors in D that diagonalizes the perturbation matrix V in this subspace.
Diagonalization of the perturbation matrix avoids the problem of vanishing denominators
(the denominator is equal to 0 when two or more eigenvalues are equal in Eqn. 12) when
computing the first-order perturbation in eigenvectors.

In the case of a g-fold degeneracy, eigenvalues of g eigenvectors in the set {m(0)} are equal

to the unperturbed eigenvalues . Perturbation removes degeneracy – i.e., the eigenvalues
of all g perturbed eigenvectors will differ. Let {l(0)} be the set of eigenvectors in the
degenerate subspace D that diagonalizes the perturbation matrix V. Note that eigenvalues of

the eigenvectors in the set {l(0)} will still be equal to . Perturbations transform this set of
eigenvectors into the set {l} such that {l} → {l(0)} as λ goes to zero. Because a DT has 3
eigenvalues, degenerate cases occur in two types, with either 2 or 3 eigenvalues of the
unperturbed tensor being equal.

Case I: Two Equal Eigenvalues: If P0 and P1 are two projection operators that project an
eigenvector onto degenerate and nondegenerate sub-spaces, respectively, then the first-order
perturbation l(1) of the eigenvector l is calculated as (see Appendix A for details):

(16)

where C(k, l) are C(j, k, l) are defined as
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The eigenvectors in the nondegenerate subspace are calculated using Eqn. (12) of the
nondegenerate case. Also, the first-order change in the eigenvalues is calculated as in the
nondegenerate case.

Wavefunction Renormalization: We normalize the eigenvector l such that the normalized

eigenvector  is of unit length, i.e., l′NlN = Zll′l = 1. Therefore, Zl is calculated as:

As in the nondegenerate case, Zl lies between 0 and 1 for small perturbations; therefore, we
define Zl as the conditional probability of the unperturbed degenerate eigenvector given the
perturbed eigenvector. Hence, for the eigenvectors in the degenerate subspace, we compute
the probability Pr(l(0) ∣ l) as:

(17)

For large perturbations when Zl is negative, we set the conditional probability equal to 0.
The conditional probabilities of the eigenvectors in the nondegenerate eigenspace are
calculated using Eqn. (13), and the conditional probabilities of the eigenvalues are
calculated using Eqn. (15).

Case II: Three Equal Eigenvalues: In this case, the unperturbed tensor is spherical, and
each eigenvector evolves up to the first order independently of the other eigenvectors in the
presence of perturbations; i.e., perturbations of an eigenvector are orthogonal to other
eigenvectors (see Appendix B for details). Thus, the conditional probability of an
unperturbed eigenvector, given the perturbed eigenvector, always equals 1.0. We therefore
compute the similarity between tensors for this case using only their eigenvalues (Eqn. (15)).

2.4 Computing the Similarity of Two Tensors
A symmetric, positive-semidefinite tensor H(0) can be expressed using its eigenvectors n(0)

and eigenvalues  as [20]:

Because eigenvectors are orthonormal, one eigenvector is completely defined (up to a sign)
by the other two eigenvectors; hence, a tensor is completely defined by its two eigenvectors
and three eigenvalues. We therefore compute the probability Pr(H(0) ∣ H) of H0
(unperturbed) given H (perturbed) as:
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(18)

where we have assumed that the eigenvalues and eigenvectors are statistically independent.
Whereas specification of one eigenvector constrains the possible realizations of the second
eigenvector because eigenvectors are be orthogonal, the second eigenvector can lie
anywhere in the plane orthogonal to the first eigenvector, and therefore it still retains a large
number of possible realizations. Thus, the independence assumption is reasonable (and it
also performed well in our experiments, as shown below). The probability Pr(n(0) ∣ n)is
calculated using either Eqn. (13) for the nondegenerate case or Eqn. (17) for the degenerate
case.

We model the first-order perturbation  in the difference between eigenvalues as a
Gaussian distributed random variable with zero mean and variance  computed in Eqn.
(14). Therefore, using the results in Eqn. (15), we compute the conditional probability of the
unperturbed eigenvalues given the perturbed as:

(19)

where we have assumed that eigenvalues are statistically independent.

2.5 Testing Our Formulation
Comparing the performance of methods for computing the similarity between two tensors is
a challenging task. A true similarity between tensors is not defined and therefore tensors
with a priori known amounts of dissimilarity cannot be generated. Thus, to compare the
performance of the methods such that our comparisons are not biased in favor of a particular
method, we used synthetic and real-world datasets that were generated independently of the
methods that we studied. The 6 methods that we used to compute similarity between the
perturbed and the unperturbed tensors are:

1. the tensor probability Pr(H0 ∣ H1), calculated using our method (with );

2.
the deviatoric tensor product ;

3. the deviatoric sum of the squared scalar products between each pair of eigenvectors

;

4.
the tensor Euclidean distance  [6];

5.
the log-Euclidean distance ,
where logarithm of a tensor is calculated by first computing the logarithm of its
eigenvalues and then recomputing the tensor using the logarithmic eigenvalues [21,
22]; and
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6.

the Riemannian distance , where

λi are the eigenvalues of the matrix  [23, 24, 25, 26].

For comparison with the tensor probabilities, we scaled values of H0 ·H1, H0 : H1, d(H0,
H1), LogEuclid(H0, H1), and Riemann(H0, H1) to lie between 0 and 1. Also, the negatives of
the distance values (d(H0, H1), LogEuclid(H0, H1), and Riemann(H0, H1)) are used as the
measure of similarity of two tensors. Note that because the diffusion tensor space is not an
Euclidean space in R6 [26], the Euclidean metric is not the right metric to compute similarity
between two tensors in general. However, we are interested in computing similarity between
two tensors within a small neighborhood where the tensors can be viewed as perturbations
of other tensors in the neighborhood. In these small neighborhoods, we expect Euclidean
distances to be close to the geodesic distances between any two tensors. Furthermore, the
Euclidean metric has been extensively used throughout the image processing literature for
postprocessing DT images. We therefore compare the performance of these six methods for
computing similarity between tensors.

2.5.1 Synthetic Data—We generated five sets of tensors by perturbing an anisotropic
tensor with eigenvalues of 20, 10, and 5, and eigenvectors aligned along the X-, Y-, and Z-
axes. To study the effect a of single eigenvalue on various similarity measures, we generated
the first set of tensors by varying the largest eigenvalue (20 in this case) between 10 and 30.
The second set of tensors was generated by rotating the unperturbed tensor around the Z-
axis (i.e., by varing the angle γ) from −50° to +50°. The third set of tensors was generated
by varying two eigenvalues (20 and 10 of the unperturbed tensor) between 10 and 30, and
keeping the third eigenvalue equal to 5. In the fourth set, the perturbed tensors were
generated by rotating the unperturbed tensors around two axes, the Z-axis (angle γ denotes
the rotations about the Z-axis) and the Y-axis (angle β denotes rotations about the Y-axis),
from −50° to +50°. Finally, to simulate a more realistic situation, we generated the fifth set
of tensors to include perturbed tensors by varying the eigenvalue between 10 and 30, and
rotating the tensor around Z-axis from −50° to +50°.

Our measure of the similarity of tensors depends on the noise in the DT image, which we

quantify through the value of its variance  in Eqns. (15) and (19). Therefore, to assess the

effect of  on the computed probability, we compared perturbed tensors in the first two sets

to the unperturbed tensor by varying  from 2.0 to 12.0. We then plotted the graph of the

similarity between tensors for varying amounts of .

2.5.2 Real-World Data Sets—We quantitatively and visually evaluated the performance
of the methods for computing similarity using DT images from two individuals. The raw
Diffusion-Weighted (DW) images were acquired using a diffusion-sensitizing gradient of
strength b = 1000s/mm2 applied along 6 directions: (1, 0, 1), (-1, 0, 1), (0, 1, 1), (0, 1,-1), (1,
1, 0), and (-1, 1, 0). The DW images data consisted of 58 slices acquired in the axial
orientation, with a scan matrix of size 128 × 128 in each slice. The image voxels were
isotropic with resolution 2 × 2 × 2 mm.

To ensure that the reconstructed tensors were positive-definite, we masked out the
background in the images and reconstructed tensors in the brain only. Rarely, a
reconstructed tensor within the brain was not positive-definite. For these tensors, we
imposed the positivity constraint by reversing the sign of the negative eigenvalue and then
recomputing the tensor. Such an approach reduced computation time without compromising
the imaging data or findings. More advanced methods, including constrained nonlinear least-
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squares estimation [27, 28, 19], could be used to ensure that the reconstructed tensors are
positive-definite; however, these approaches are computationally expensive.

2.5.2.1 A DT Image from a Single Individual—We generated synthetic DT images
from this single DT image (the template image) by translating it along the X-axis (the in-
plane, or ear-to-ear axis) or by rotating it around the Z-axis (the vertical, or superior-to-
inferior, axis) by varying amounts. To avoid uncertainties in interpolating tensors on
neighboring voxels, we generated the translated or rotated versions of the template image by
first translating or rotating each DW image by specified amounts and then reconstructing the
synthetic DT image. Furthermore, rotating DW images by rotation matrix R will rotate the
locations of tensors in the image, without rotating the tensors themselves. Thus, in the
sythetic images obtained by rotating the template image, tensor at location X will be equal to
the tensor at location R−1X, except for interpolation errors, in the original image. We then
computed the similarity between DTs in synthetic DT images and the template image at
corresponding voxels. We expected that increasing amounts of translation and rotation
would the reduce similarity between tensors in the synthetic and the template images.
Similarity values were gray-scale encoded and displayed at each voxel in the template
imaging space.

To evaluate quantitatively the performance of these methods, for all voxels in the brain, we
plotted a histogram of the Euclidean distances between the voxel locations of the most
similar tensors in the template image and the synthetic image. The tensor in the synthetic
image most similar to a tensor in the template image was found by searching in a 3D
neighborhood of size 11 × 11 × 11 voxels for translations, and 15 × 15 × 15 voxels for
rotations, in the synthetic image. Within this neighborhood, if two tensors were equally
similar to the unperturbed tensor, the Euclidean distance of the tensor closest to the
unperturbed tensor was used to plot the histogram of distances. We therefore expected the
histogram to be skewed towards smaller distance. For translated versions of the template
image, we also plotted the histograms by restricting our search for the most similar tensor to
a neighborhood of 11 voxels along the X-axis alone. Because the synthetic images were
translated by known amounts along the X-axis, we expected that histograms for each
method would show increasing distances between similar tensors. In contrast, when the
synthetic images were generated by rotating the template image, even for a small amount of
rotation (e.g., γ = 5°), tensors far from the axis of rotation would be translated by large
distances from their locations within the template image. However, for an object of interest
(the brain in our images), the number of voxels decrease for increasing distance from the
axis of rotation. We therefore expected that the histograms would show a peak at the center
for rotations across images.

2.5.2.2 DT Images from Two Individuals—We studied the performance of the three
methods by computing the similarity between DTs in images from two individuals, both
before and after they were spatially normalized (i.e., rigidly coregistered, nonlinearly
warped, and reoriented) into a common template space. The DT image from each individual
was acquired along 6 directions (8 averaged measurements per slice for each direction) on a
Siemens 1.5 Tesla MRI scanner, with Repetition Time (TR) = 4000ms, Echo Time (TE) =
96 ms, an image matrix of size 128 × 128, and a Field of View (FOV) of 240 millimeters.
Nineteen slices, each 4 mm thick with no spacing between slices, were acquired in the
sagittal orientation, such that the 10th slice was positioned as the interhemispheric slice. In
the template space, the image volumes were resliced to a 1 mm thickness.

To spatially register the DT images (using rigid registration and nonlinear warping), we first
chose an anatomical MR image of one individual as the template image that defined the
common coordinate space. We then registered and reoriented the two DT images into this
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space in two steps [29, 30]. First, we warped the Fractional Anisotropy (FA) image of an
individual to its corresponding anatomical MR image such that the mutual information
across the images was maximized [31]. Second, we warped the anatomical image from the
individual to the template image using a method of fluid dynamics such that intensity
differences between the images were minimized [32]. Thus, two deformation fields for each
individual were estimated in these two steps. A composite of these two deformation fields
was then used to warp the two DT images into the template space. To reorient the tensors
correctly in the template space, we used Procrustean estimation, which uses local statistical
information for optimal reorientation [33]. We visually verified that the outlines of the two
FA images matched well in the template space. To assess quantitatively the performance of
the three methods for computing the similarity of tensors, we plotted the histograms of
similarity values between tensors at the same locations in the template space, both before
and after normalization of the two images. We expected that the similarity of tensors across
the two brains would increase after the DT images had been normalized. Because the
method used to normalize the DT images was independent of any method used to compute
similarity (i.e., normalization of DT images was not based on increasing any similarity value
of the tensors in the two brains), improvement in the computed similarity of tensors through
spatial normalization when comparing our metric with other standard measures of similarity
would validate our proposed method. Ideally, in the normalized images, similarity should
equal 1.0 for our method and 0.0 for both the Euclidean and Riemannian distances between
tensors at all voxels. The similarity computed using our measure depends upon the
covariance matrix V ar(β̂), which differs across images from different individuals. We

therefore computed the variance , and therefore the similarity between two tensors,
using three methods and compared their performance. First, we assumed that the larger
amounts of noise in one image can perturb tensors in that image more than the perturbation
in the other image and therefore tensors in one DT image normalized to the other DT image
can be viewed as tensors perturbed by this larger amount of noise. At each voxel we
therefore used the larger variance to compute the similarity between tensors at that voxel.
Second, under heteroskedasticity, we used the larger of the two covariance matrices ∑ϵ (i.e.,
the matrix whose sum of the diagonal entries was larger than the sum for the other matrix) to
compute similarity between tensors. Third, because the tensors elements are independent
and multivariate Gaussian distributed, we computed the sum of the covariance matrices V
ar(β̂), and used this summed matrix to compute similarity between tensors. Finally, to study

the effects of  on our similarity measure, we varied the values of  from 100.0 to
20000.0. We expected the similarity of corresponding DTs to increase for increasing values

of .

3 Results
3.1 Synthetic Data

Although both H0 · H1 and H0 : H1 varied reasonably for varying amounts of rotation, their
monotonic increases failed to capture variations in eigenvalues, such as elongations or
contractions of the perturbed tensors (Fig. 1). Therefore, when both the angle γ (i.e.,
rotations around the Z-axis) and eigenvalue were varied to generate the perturbed tensors,
the similarity computed using these methods was maximal for a perturbed tensor that
significantly differed from the unperturbed tensor (Fig. 2). Thus, these two measures are not
suitable to compute the similarity of two tensors.

The LogEuclid(H0, H1) and Riemann(H0, H1) methods performed well when the perturbed
tensors were generated by rotating the unperturbed tensor about either the Z-axis only or
about both the Z-and Y-axes (Fig. 1 b & d). For rotations, their computed similarity values
were symmetrical for symmetrical rotations of the perturbed tensors and the unrotated tensor
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was determined to be most similar to the unperturbed tensor. Also, both LogEuclid(H0, H1)
and Riemann(H0, H1) varied smoothly for variations in either one or two eigen-values (Fig.
1 a & c). Their computed similarity values, however, were skewed toward tensors with
smaller eigenvalues – i.e., contracted tensors were computed to be more similar to the
unperturbed tensor than were elongated tensors. Using these measures, for example, a tensor
with an eigenvalue of 10 had nearly twice the computed similarity to the unperturbed tensor
than did the tensor with an eigenvalue of 30, even though the magnitudes of the differences
in eigenvalues of the perturbed tensors from the unperturbed one were identical. However,
when the perturbed tensors were generated by varying both the angle and eigenvalue of the
perturbed tensor, the similarity values were skewed to the right – i.e., elongated tensors were
computed to be more similar to the unperturbed tensor than were contracted tensors (Fig. 2).
These differing skews in computed similarity under differing noise conditions could lead to
erratic and erroneous conclusions concerning the similarity of tensor morphologies when
processing real-world datasets.

Both our measure of similarity, Pr(H0∣H1), and the tensor Euclidean distance, d(H0, H1),
performed well, although d(H0∣H1) did not vary with and therefore did not account for noise
levels in the DT image. Pr(H0∣H1), in contrast, computed similarities within the context of
noise in the DT image, and indeed the similarity of different tensors based on this measure
increased with increasing noise levels in the image, indicating that the difficulty in
discriminating differences in the morphologies of tensors is proportional to the noise levels
in the image (Fig. 3). Additionally, our similarity measure varied smoothly with variations
in eigenvalue or rotation, and it was symmetric for symmetrical variations of the tensor. The
probabilities of similarity between tensors declined when a tensor was elongated or
contracted (Fig. 1 a & c), or when a perturbed tensor was rotated away from the unperturbed
tensor (Fig. 1 b & d).

When the perturbed tensors were generated by varying both the eigenvalue and γ, elongated
tensors were determined to be more similar to the unperturbed tensor using all measures of
similarity. Although our measure still determined that identical tensors were most similar, its
values were slightly right-skewed (Fig. 2). This slight skew was expected using our
measure, and can be understood in an example: the profile of a tensor with eigenvalues 22,
10, and 5 that has been rotated around the Z-axis by 10° matches better the unperturbed
tensor than does a a tensor with eigenvalues 18, 10, and 5 that has been rotated around the
Z-axis by −10° (Fig. 2, middle two panels of bottom row). Thus, our measure consistently
reflected better the actual degree of similarity in tensor morphology than did the other
measures within these synthetic data.

Finally, as expected, our similarity measure increased with increasing noise levels (Fig. 3).
High noise levels cause large perturbations in tensors within a homogeneous region.
Therefore, the increasing degree of similarity computed using our measure reduces the effect
of perturbations from noise in the DTI dataset.

3.2 Real-World Datasets
In our synthetic data, the similarity of tensors computed using LogEuclid(H0, H1) followed
closely the similarity computed using Riemann(H0, H1). Both H0 · H1 and H0 : H1, however,
performed poorly as measure of similarity. For our real-world datasets, we therefore
compared the performance of only three methods: Pr(H0∣H1), d(H0, H1), and Riemann(H0,
H1).

3.2.1 DT Image from a Single Individual—For all three measures, the similarity
between tensors in the template and its translated versions decreased for increasing amounts
of translation (Figs. 4, 5, & 6). The histograms show that the Euclidean distance between the
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voxel locations of the most similar tensors along the X-axis increased for increasing
amounts of translation (Fig. 5). For the synthetic image translated by a half-voxel along the
X-axis, the histogram had two peaks for all three methods: one at 0 and the other at 1 voxel
in distance. Because tensors in the synthetic image that were translated by a half-voxel were
computed by interpolating the voxel’s values by equal amounts on neighboring voxels, we
expected these two peaks ideally to be of equal magnitude, which was nearly true for our
measure but considerably less so for the other two measures (Fig. 5). Furthermore, the
histogram for Riemann(H0,H1) has small, but clearly discernible, peaks at distances greater
than 1 voxel. Thus, our measure is more sensitive than are the others in differentiating
tensors with small perturbations. For translations of 1, 2, or 3 voxels, we expected to see
only one peak at distances 1, 2, or 3 voxels, respectively, in the histogram. The histograms
for all three methods have only one peak at the expected distances (Fig. 5).

In real-world data, however, the true translations are unknown. We therefore also plotted
histograms of distances between the unperturbed tensor in the template image and a most
similar tensor in a 3D neighborhood of 11 × 11 × 11 voxels in size in the synthetic image
(Fig. 6). These histograms show that the Riemann(H0,H1) measure was least able to
distinguish neighboring tensors among the three methods. The histogram for our measure
shows two distinct peaks when the DT image was shifted by only a half-voxel, and shows
that distances increased for increasing amounts of translation. The performance of the
d(H0,H1) measure was similar to ours.

All 3 similarity measures decreased for increasing degrees of rotation along the Z-axis
(vertical axis in the sagittal view of the images in Fig. 7). Tensors in the regions near the
axis of rotation had larger values for our Pr(H0∣H1) measure and smaller values for d(H0,
H1) and Riemann(H0, H1) (Fig. 7). Tensors farther from the axis of rotation were less
similar. In addition, the size of the region around the axis where DTs matched well
decreased for increasing degrees of rotation between images. The histogram of distances
between the most similar tensors in the template image and the rotated image as expected
shows a large spread of distances and a single peak in the middle for both our measure and
d(H0, H1) (Fig. 8). These two methods therefore correctly determined similar tensors across
the template and the rotated images. The method based on the Riemann(H0,H1) distance,
however, failed to determine the appropriate similar tensors across the two images. Thus,
both our method and d(H0,H1) performed well when computing the similarity between
tensors across real-world images, although our method was able to distinguish better among
differing tensors.

3.2.2 DT Images from Two Individuals—Similarity increased across tensors in the two
DT images after they were normalized into the template space (Fig. 9). The histograms of
similarity values for our measure and for the measure d(H0,H1) showed that spatial
normalization produced marked improvements in the similarity of tensors across
corresponding voxels of the two images (Fig. 10). The number of tensors with similarity
greater than 0.5 computed using our method increased by 480 % after normalization.
However, the Riemann(H0,H1) measure detected only minimal improvements in similarity
(Fig. 10). Similarity computed between tensors in images from two individuals under
heteroskedasticity shows that after normalization the number of tensors with similarity
greater than 0.5 increased by 930 % and 422 % when using the sum of the two covariance
matrices (Fig. 11, (a)) and the larger two matrices (Fig. 11, (b)), respectively. Because the
method that spatially normalized the images was independent of the methods used to
compute similarity between tensors, and because the similarity of the tensors was expected
to be greater in the normalized images, these findings show that our measure is more
sensitive to perturbations in tensors, and therefore more correctly detected differences in the
similarity of tensor morphologies, than do the other commonly used measures.
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Our metric of similarity increased proportionally with synthetically manipulated noise levels
in the DT images (Fig. 12). Because two tensors therefore cannot be differentiated using our
metric in the presence of large amounts of noise, the asymptotic similarity of any two
tensors is 1.0. Our metric is robust to the presence of noise because it explicitly uses noise
levels in its computation.

4 Discussion
Computing the morphological similarity of tensors at neighboring voxels within a DT
image, or at corresponding voxels across DT images from differing individuals, is a
fundamental and ubiquitous operation in the postprocessing of DT images. Various methods
have been proposed to compute similarity measures, and we compared quantitatively the
performance of our measure with that of five other similarity measures frequently employed
in the post-processing of DT images. Of these six measures, the Euclidean distance d(H0,H1)
and ours performed better than the other methods in both synthetic and real-world datasets.
Our method, however, was more sensitive to morphological differences and better able to
distinguish tensors that differed by only small perturbations than were the d(H0,H1) and
Riemann(H0,H1) measures. Additionally, our method exhibited a clear advantage in
computing a similarity value that related directly to the diffusion properties of water
molecules (i.e., to their eigenspace components). Finally, our metric was explicitly
developed to be sensitive to noise levels in the DT images, and our demonstration of its
dependence on synthetically generated noise levels also demonstrated that the behavior of
our metric in the presence of noise was smoother and less erratic than were the behaviors of
the other measures.

Computing the similarity of two tensors is a local operation in most post-processing
procedures for DT images, including fiber tracking, noise filtering, local nonlinear warping,
and image segmentation. Our experiments using synthetic tensors showed that both
d(H0,H1) and Riemann(H0,H1) performed equally well in small neighborhoods of the tensor
space (Figs. 1 & 2). Within imaging space, however, tensors may differ significantly in a
small neighborhood because of differing tissue type and because of differing orientation of
fibers passing through a region of the brain. In these regions of the brain, tensors on
neighboring voxels may differ significantly, and d(H0,H1) is therefore not an appropriate
measure to compute similarity between tensors within these regions. On the other hand,
although Riemann(H0,H1) will compute similarity that is mathematically meaningful, we
believe that the similarity of tensors across differing brain regions is not well-defined – i.e.,
a numerical value representing the similarity of two ellipsoids that have vastly differing
morphologies provides no more information to an investigator than simply stating that the
two tensors differ in shape. Tensors will be oriented differently across various tissues and
brain regions, and therefore comparing eigenvectors of the tensors across differing regions is
undesirable. (In that instance, if the investigator is interested in studying differences only in
the eigenvalues of the two tensors, then the similarity of tensors can be computed using only
the eigenvalue terms in our formulation; other methods to compute similarity do not provide
such flexibility.) Our measure therefore will not differentiate tensors well that differ greatly
in morphology (as would be encountered, for example, when spatially normalizing one DT
image to match another), because it will not distinguish differing degrees of similarity when
the tensors are not similar at all. Nevertheless, our measure will be considerably more robust
in the presence of noise and more sensitive in discriminating differences in tensor
morphologies, than are the other measures in post-processing procedures, including the
registration of images that are already in close approximation, because it better distinguishes
tensors that differ by only small morphological perturbations, and because most post-
processing steps are localized operations.
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A similarity measure for diffusion tensors must generate similarity values that change
smoothly and symmetrically for corresponding smooth and symmetrical changes in the
diffusion properties of water molecules. Otherwise, small changes in diffusion could
produce large changes in the similarity measure, which in turn could produce errors in the
post-processing operations that use it and that depend crucially on the validity and accuracy
of the measure, such as the tracking of fiber pathways, that depend crucially on the validity
and accuracy of the similarity measure. Our synthetic examples showed that both H0 ·H1 and
H0 : H1 performed increasingly poorly with increasing morphological differences between
tensors. The tensor Euclidean distances d(H0,H1) was symmetric and continuous but not
smooth. Finally, although the LogEuclid(H0,H1), and Riemann(H0,H1) measures were
continuous, they were not symmetric. Our similarity measure, in contrast, increased
smoothly, continuously, and symmetrically for smooth, continuous, and symmetrical
differences across tensors.

Measures that assess the morphological similarity of tensors should account for the noise
level in the image, because the noise present in all DT images will produce unknown
variations in a tensor’s eigenvalues and eigenvectors. Using synthetic examples and real-
world DT datasets, as well as manipulation of noise levels in the images, we showed that our
similarity measure accounts for noise in the images by appropriately increasing in
proportion to increasing noise levels, unlike more commonly used measures. In other words,
the sensitivity of our measure (the change in similarity value for small changes in diffusion
properties) for detecting differences in eigenspace components decreases with increasing
noise in the image. Because two tensors are perturbed more in the presence of increasing
noise, our method accounts for these perturbations by increasing the similarity value of the
two tensors. In the limiting case in which noise increases to a very large value, our measure
will approach a value of 1 for all tensors, because no information can reliably differentiate
the DTs in the presence of this much noise (note also that our similarity measure equals 1
when comparing two identical tensors).

Improving the sensitivity of similarity measures to detect variations in tensor morphology
will improve the discrimination of those morphologies and therefore will improve the
validity and accuracy of other post-processing operations that are commonly performed on
DT images, such as image segmentation [34, 35, 36], fiber tracking [37, 38, 39, 40, 41, 42],
noise filtering [43], and spatial normalization [33, 31, 44, 45, 46, 47, 48, 49, 50]. Despite the
importance of their validity and accuracy, few studies have ever actually compared directly
the performances of differing similarity measures. We therefore compared quantitatively the
performance of our similarity measure with those of five others. We showed that ours was
most sensitive to perturbations in tensor morphology and that its performance was most
robust in the presence of noise in the DT images. Furthermore, our method can be employed
easily in additional post-processing procedures. Guided by this improved understanding of
the performance characteristics of the various measures, we are developing methods for
reducing noise in DTI datasets that exploit this improved ability to compute the similarity of
neighboring tensors.

Because diffusion tensors are randomly distributed in the presence of noise, a similarity
measure will itself be a random variable. When processing DTI datasets from many
individuals, the analytical distribution and statistical properties of the similarity measure can
be useful in the further post-processing of DTI datasets [51, 36, 52, 26]. Our measure
computes the probability of similarity, which is a product of various conditional
probabilities (Eqn. 18). It therefore can be regarded as a test statistic between tensors,
because it is simply a transformation of random tensors. Computing the analytical
probability distribution of our similarity is challenging, however. The computed conditional
probability of eigenvectors in this measure is a sum of the ratio of squared random variables
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(Eqns. 13 & 17). If the numerators and denominators are assumed to be Gaussian-
distributed, then these ratios, and therefore the conditional probability of the eigenvectors,
will be F-distributed. Furthermore, if the conditional probabilities of the eigenvalues (Eqn.
15) are assumed to be Gaussian-distributed, then computing the analytical distribution of our
similarity measure will require derivation of the distribution of the sums of products of
random variables that are Gaussian-and F-distributed – a most challenging task.
Nevertheless, various statistical properties of our similarity measure can be computed
accurately using nonparametric methods, including bootstrapping and permutation statistics
[53, 54, 16], thereby providing at least one option for performing rigorous statistical
comparisons of the measure without the need first to compute its analytical probability
distribution.

The valid mathematical formulation of our measure rests on two assumptions: (i) the
wavefunction renormalization constants Zn and Zl (Eqns. 13 & 16, respectively), define the
conditional probability of an unperturbed eigenvector for a specified perturbed eigenvector,
and (ii) eigenvectors and eigenvalues of a DT are distributed independently. The
renormalization constant is not a true conditional probability because it can be negative for
large perturbations. Our experiments show, however, that the renormalization constant is
nonnegative for a sufficiently large range of perturbations (±35° rotations) that are
realistically plausible for tensors within structurally homogeneous regions of the brain. For
larger perturbations, we set the renormalization constant, and hence the corresponding
conditional probability, equal to 0, thereby forcing the conditional probability to lie between
0 and 1. Note that even though the conditional probability is set to 0 for large perturbations,
our computed similarity measure is smooth because it smoothly reduces to zero for
increasing perturbations (Figs. 1 & 2). Once the computed similarity reduces to zero, our ad
hoc procedures set the probability equal to zero for larger amounts of perturbation. This
procedure allows us to interpret the renormalization constant as a conditional probability, an
assumption whose validity was supported by our experiments with simulated and real data.
As discussed earlier, although the eigenvectors of a tensor are not independently distributed,
the assumption of independence allowed us to formulate the conditional tensor probability in
mathematically simple terms.

Future studies should investigate the computation of the conditional probability using the
component of the second eigenvector that evolves in the 2D vector space orthogonal to the
tensor’s principal eigenvector. This will obviate the need to assume that the eigenvectors of
a DT are independent, which will in turn improve the accuracy of the computed similarity
measure. Nevertheless, our similarity metric as currently computed performed well in all of
our experiments, thereby supporting its computational utility while assuming the
independence of the tensor’s eigenvectors.
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A Degenerate Theory
Although derivations for the nondegenerate case are available in any standard text on
quantum mechanics (for example see [8]) these books do not provide the intermediate steps
for derivations in the degenerate case. Therefore, for the sake of completeness, we herein
derive and present all the steps needed to compute the wavefunction normalization constant
in the degenerate case.
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Eqn. (12) cannot compute perturbations in eigenvectors when two or more unperturbed
eigenvalues are equal, because the denominators will equal zero (vanishing denominators).
Vanishing denominators can be avoided by using a set of eigenvectors that diagonalizes the
perturbation matrix V in the degenerate space.

For a g-fold degeneracy, eigenvalues of g unperturbed eigenvectors equal . Let the set of
degenerate eigenvectors be denoted by {m(0)}. Perturbations remove degeneracy, and
therefore eigenvalues of the corresponding g-perturbed eigenvectors will differ. Because the
set of eigenvectors {m(0)}) is degenerate, we select another set of eigenvectors {l(0)} in the
degenerate subspace D (subspace spanned by {m(0)}) that diagonalizes the matrix V (i.e.,
Vnk = 0, ∀n ≠ k). This set of eigenvectors is perturbed to a set of eigenvectors {l} such that
{l} → {l(0)} as λ goes to zero. (Eigenvectors in the set {l(0)} are also eigenvectors of the

unperturbed matrix H0, each with eigenvalue .

Let P0 be the projection operator that projects l onto the degenerate subspace spanned by

{l(0)}, i.e., . Then the projection operator P1 that projects eigenvectors onto a
subspace orthogonal to D is defined as P1 = 1 − P0. Thus, the perturbed eigenvector l can be
written as the sum of its projections on these two subspaces: l = P0l + P1l. We will use the
following result in our derivations:

(20)

where Eqn. (20) follows from the unperturbed eigenvalue-eigenvector problem.

In the degenerate case, the exact perturbation problem to be solved is (H0 + λV)l = El,
which can be rewritten as

(21)

To calculate the total perturbation in the eigenvector l, we divide the problem into two
subproblems: first, we compute the first-order perturbations of l in the nondegenerate
subspace; second, we compute the first-order perturbations of l in the degenerate subspace.
We then add the two first-order perturbations to calculate total perturbation in the
eigenvector l.

A.1 Projecting on the Nondegenerate Subspace using Operator P1

Taking projection from the left using P1 in Eqn. (21), we obtain

(22)

because P1P1l = P1l and P1P0l = 0. We can solve this problem in the P1 subspace because
the operator P1(E − H0 − λP1V P1) is nonsingular and the eigenvalues of P1H0P1 are all

unique and differ from .
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Substituting approximations l = l(0) + λl(1) + … and 
in Eqn. (22), we have

Keeping the terms up to the second power in λ, we have,

Equating terms that are first-order in λ, we obtain

where we have used the facts that P0l(0) = l(0), and that the inverse operator  acting
on Pl can besimplified as

because 

Therefore, the first-order perturbation of the eigenvector l in the nondegenerate subspace is
computed as:

(23)

A.2 Projecting on the Degenerate Subspace using OperatorP0

Next, we compute the perturbations of the eigenvector l in the degenerate subspace D by
taking the projection from the left in Eqn. (21):

because P0P0l = P0l, and P0P1l = 0.
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Substituting approximations for Δl and l is this equation, we obtain

because P1l(0) = 0. Because λ is non-zero, we divide by λ and keep the terms up to second
order in λ,

(24)

By equating the zero-order terms in Eqn. (24), we obtain

Thus, l(0) and  are eigenvectors and eigenvalues, respectively, of the perturbation matrix
V when projected into the degenerate subspace D (i.e., eigenvalues and eigenvectors of the
matrix P0V P0).

By equating the first-order terms in the powers of λ in Eqn. (24), we obtain

(25)

(This equation can be used to show that l(0) and l(1) are orthogonal.) Premultiplying Eqn.
(25) with j′(0) where j ϵ D but j ≠ l, and noting that

we obtain

The left-hand side term in this equation can be rewritten as
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Therefore, we have

Pre-multiplying this equation by j(0), we obtain

Thus, the last equation evaluates the projection of P0l(1) on the subspace defined by the
eigenvector j(0). Because P0l(1) is orthogonal to both the eigenvector l(0) and the subspace
defined by P1, we obtain P0l(1), by summing its projections on all eigenvectors j(0) where j ≠
l and j ϵ D.

Thus, the projection of the first-order perturbations P0l(1) in the degenerate subspace is

(26)

Using Eqn. (23), we can rewrite Eqn. (26) as

(27)

Therefore, the total first-order perturbation l(1) in the eigenvector l(0) is obtained by
summing Eqns. (23) and (27):

and the eigenvector l is approximated as: l = l(0) + λl(1) + Ο(λ2).
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As in the nongenerate case, we use the normalization l′(0)l = 1, which allows us to compute

the change in the eigenvalues  that is approximated as

The first-order term  is eigenvalue of the operator P0V P0, and the second-order

correction term  can be shown to be:

The eigenvectors not in the degenerate subspace evolve according to nondegenerate theory
(see Eqn. (12)).

A.3 Wavefunction Renormalization

From the eigenvector l we calculate normalized eigenvector  such that Nl′lN = Zll′l
= 1. Therefore, the normalization constant Zl is computed as follows:

B When All Eigenvalues are Equal
When all eigenvalues are equal, each perturbed eigenvector evolves independently
(orthogonal) of the other perturbed eigenvectors. And because the DT is spherical, its
perturbed eigenvectors are the same as the unperturbed ones. The exact eigenvalue-
eigenvector problem to solve in this case is:

where P0 is the projection operator projecting eigenvectors onto the degenerate subspace,
which is the complete space for this case. Substituting approximations for Δl and l, we
obtain

As λ is non zero, dividing by λ and keeping only the terms up to the second-order in λ, we
obtain
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Equating the zero-order terms in λ, we obtain , which is the eigenvalue-
eigenvector problem to solve in this case. Equating the first-order terms in λ, we have

Pre-multiplying this equation by j′(0), with j ≠ l, and noting that 

(because eigenvectors are orthogonal), we obtain: . Using the

identity , we can write the above equation as

Because perturbations remove degeneracy, i.e. , the previous equation yields: j
′(0)l(1) = 0; that is, perturbations in one eigenvector are orthogonal to the other eigenvectors.
Therefore, the conditional probability of the unperturbed eigenvector given the perturbed
eigenvector will be 1.0.
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Figure 1.
Graphs of Various Similarity Measures for between the unperturbed tensor and the
perturbed tensor. The perturbed tensor was obtained from the unperturbed tensor by (a) only
varying the largest eigenvalue from 10 to 30, (b) only varying the angle γ (i.e., rotations
around the Z-axis) from −50° to 50°, (c) only varying the largest two eigenvalues by the
same amount from 10 to 30, and (d) only varying the angles β (i.e., rotations around the Y-
axis) and γ by the same amount from −50° to 50°. The eigenvectors of the unperturbed
tensor were aligned along the X-, Y-, and Z-axes, with eigenvalues 20, 10, and 5,
respectively. The similarity between tensors was computed using six methods: Pr(H0∣H1),
H0 · H1, H0 : H1, d(H0, H1), LogEuclid(H0, H1), and Riemann(H0, H1). For comparison, we
scaled the similarity values to lie between 0 and 1 for all of measures. Because the values
that were computed using H0 : H1 were close to the values of H0 · H1, for clarity we plotted
only the values of H0 · H1. Also, for varying eigenvalues, LogEuclide(H0, H1) values were
close to those of Riemann(H0, H1); we therefore plotted only the values of Riemann(H0, H1)
for varying eigenvalues. The negatives of distance measures are used as the similarity values
between tensors. The graph of similarity values computed using our measure is bell-shaped
and symmetric around the point where the perturbed tensor equals the unperturbed tensor.
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Figure 2. Graphs of Similarity Values for Varying Eigenvalues and Rotations
Here we compared the similarity of the unperturbed tensor with perturbed tensors generated
by varying both the largest eigenvalue (20 in the unperturbed tensor) and the angle γ (i.e.,
rotations around the Z-axis). All similarity measures are skewed to the right. Both H0 · H1
and H0 : H1 computed the largest similarity for a perturbed tensor that was unequal to the
unperturbed tensor. The bottom row of the figure shows the profile of the perturbed tensor
(purple) and the unperturbed tensor (blue) for varying eigenvalues (E) and angles γ.
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Figure 3. The Morphological Similarity of Tensors in the Presence of Varying Noise Levels
Similarities were computed using our measure for (a) varying eigenvalues and (b) varying
angles of rotation. The eigenvectors of the unperturbed tensor were aligned along the
coordinate axes with eigenvalues 5, 10, and 20. The width of the bell-shaped distribution of
similarity values increased with increasing noise levels. The graphs labeled var2, var4, var6,
var8, var10, and var12 are similarity values for noise variance equal to 2, 4, 6, 8, 10, and 12,
respectively.
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Figure 4. Effects of Translation on Similarity Measures
Three orthogonal views (axial, coronal, and sagittal) of similarity values between tensors at
corresponding locations in a DT image of a real subject (template) and its translated copies
along the X-axis (ear-to-ear axis in the axial view). Three methods were used to compute
similarity: Pr(H0∣H1), d(H0, H1), and Riemann(H0, H1). (The performance of LogEuclid(H0,
H1) was similar to that of Riemann(H0, H1).) Large values of Pr(H0∣H1) and small values of
d(H0, H1) and Riemann(H0, H1) usually indicate that the tensors matched well, but for ease
of comparisons with our measure, we inverted the intensities in the images for d(H0, H1) and
Riemann(H0, H1). The similarity of tensors across the template and translated datasets
declined for increasing degrees of translation. Clearly, our measure was the most sensitive
indicator of both similarities and dissimilarities in tensor morphology.
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Figure 5. Histogram of Distances Between the Most Similar Tensors Along the X-Axis
From a single template image, we generated simulated images that were shifted along the X-
axis by varying amounts (Fig. 4). We then used one of the three similarity measures,
Pr(H0∣H1), d(H0, H1), and Riemann(H0, H1), to find a tensor along the X-axis in the shifted
image that was most similar to the unperturbed tensor. We computed the Euclidean distance
between the most similar tensors and plotted the histograms. For increasing amounts of
translation, the distance between tensors increased, especially when the most similar tensor
was searched using our method. Our measure therefore was most sensitive to perturbations
in tensors and distinguished better tensors with differing morphologies in neighboring
voxels.
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Figure 6. Histogram of Distances Between Similar Tensors Across Images
Here we plotted the histogram of distances between the most similar tensors acrossthe
template image and its translated versions. We searched for the most similar tensor in a 3D
neighborhood 11 × 11 × 11 voxels in size, and we used the Euclidean distance between them
to plot the histograms. If two tensors in the synthetic image were equally similar to the
unperturbed tensor in the template image, we used the Euclidean distance of the tensor
closest to the unperturbed tensor to plot the histogram. For increasing amounts of
translation, the spread of distances in the histogram shifted to larger distances between
similar tensors, especially for our method.
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Figure 7. Effects of Rotation on Similarity Measures
Plots of similarity between tensors across a template image and synthetic images obtained
by rotating the template image around the Z-axis (the superior-to-inferior axis in the sagittal
view). Similarity was computed using three methods: Pr(H0∣H1), d(H0, H1), and
Riemann(H0, H1). (The performance of LogEuclid(H0, H1) was similar to that of
Riemann(H0, H1).) Three orthogonal views (axial, coronal, and sagittal) of the similarity
maps are displayed. Tensors in the neighborhood of the axis of rotation (i.e., the Z-axis) are
most similar to tensors at corresponding locations in the template image. For ease of
comparison across method, we inverted the intensities of the similarity maps for d(H0, H1)
and Riemann(H0, H1). The similarity between tensors reduces rapidly for increasing rotation
between images, as is evident when the rotation is increased from 5° (top row) to 15°
(bottom row). Our similarity measure is the most sensitive indicator of differences in tensor
morphology in the template and rotated images.
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Figure 8.
Histogram of Euclidean Distances Between the Most Similar Tensors across the
template image and the synthetic image rotated by 5° around the Z-axis. Even for a small
amount of rotation, tensors far from the axis of rotation are translated by large amounts. To
plot the histogram, we searched for the most similar tensor in a 3D neighborhood 15 × 15 ×
15 voxels in size. We computed these histograms for three similarity measures: Pr(H0∣H1),
d(H0, H1), and Riemann(H0, H1). As expected, histograms for both Pr(H0∣H1) and d(H0, H1)
show a large spread and a peak in the middle of distances between the tensors that are most
similar across the images.
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Figure 9. The Similarity of Tensors in DT Images from Two Differing Individuals
Shown is the comparison of tensors at corresponding locations across DT images of two
individuals before (top row) and after (bottom row) they were spatially normalized (i.e.
nonlinearly warped and reoriented) into a common template space [29, 30]. Three
orthogonal views (sagittal, axial, and coronal) through the 3D dataset show three similarity
measures: Pr(H0∣H1), d(H0, H1), and Riemann(H0, H1). The similarity between tensors
across normalized images improved significantly (bottom row).
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Figure 10.
Histogram of Similarity Values at Corresponding Locations across two individual
images (Fig. 9) both before and after normalization. We expected the similarity between
tensors at corresponding locations to increase significantly following normalization.
Histograms in the left column show that after normalization, more tensors were similar
across images when similarity was assessed using our measure. In our method, the number
of tensors with similarity greater than 0.5 in the normalized images increased by 480 % as
compared to those in images before normalization.
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Figure 11.
Similarity Computed Across Images After Normalization with covariance matrix V ar(β̂)
of the noise calculated using Eqn. (9), i.e. under heteroskedasticity of the noise in the tensor
elements. To compute similarity between tensors across the two images normalized into the
common space, we consider the tensors in the normalized image as perturbations of the
tensors in the other image. The noise in the tensor elements is multivariate Gaussian that is
assumed to be independently distributed across images from two individuals. Assuming
heteroskedasticity, we computed noise variance in tensor elements using two methods: (a)
because the noise in the two images is independently Gaussian distributed, we computed the
covariance matrix of the noise as the sum of the two covariance matrices V ar(β̂) of the
noise in the two images, and (b) using the larger matrix of the two covariance matrices in the
two images. We then used the estimated covariance matrix to compute similarity between
tensors at corresponding locations across the two images. The number of tensors with
similarity greater than 0.5 in the normalized images increased by (a) 930 %, and (b) 422 %
as compared to those in images before normalization (Fig. 9, top row).
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Figure 12. The Effects of Varying Noise Levels on Our Similarity Measure
Similarity was computed between tensors using our measure at corresponding locations in
normalized DT images from two differing individuals. The similarity of tensors increased
with increasing noise levels.
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