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Abstract--We present a novel set of shape descriptors that represents a digitized pattern in a concise way 
and that is particularly well-suited for the recognition ofhandprinted characters. The descriptor set is derived 
from the wavelet transform of a pattern's contour. The approach is closely related to feature extraction 
methods by Fourier series expansion. The motivation to use an orthonormal wavelet basis rather than the 
Fourier basis is that wavelet coefficients provide localized frequency information, and that wavelets allow 
us to decompose a function into a multiresolution hierarchy of localized frequency bands. We describe a 
character recognition system that relies upon wavelet descriptors to simultaneously analyze character shape 
at multiple levels of resolution. The system was trained and tested on a large database of more than 6000 
samples of handprinted alphanumeric characters. The results show that wavelet descriptors are an efficient 
representation that can provide for reliable recognition in problems with large input variability. 

Shape representation W a v e l e t s  Multiresolution analysis OCR Neural networks 

I. INTRODUCTION 

Feature or descriptor extraction is a crucial processing 
step of shape recognition systems. In fact, what most 
distinguishes different recognition methodologies is 
the type of features selected for representation. In 
general, "good" features must satisfy the following 
requirements: first, intraclass variance must be small, 
which means that features derived from different 
samples of the same pattern class should be close (e.g. 
numerically close if numerical features are selected). 
Secondly, interclass separation should be large, i.e. 
features derived from samples of different classes should 
differ significantly. 

In this paper we present a novel set of features that 
represents patterns in a concise way and that is parti- 
cularly well-suited for recognition of unconnected hand- 
printed characters. The recognition of handprint is an 
important subproblem of optical character recognition 
(OCR) with applications such as automatic ZIP-code 
reading or understanding annotations in technical 
drawings. The difficulty with handwriting recognition 
is large intraclass variance due to the shape variations 
caused by the distinct writing styles of individuals. 
Obviously, there is no tractable mathematical model 
that can describe such shape variations, and so it is 
impossible to find features that are invariant with 
respect to writing style. Nor can one formally prove 
that a particular feature set will exhibit small intraclass 
variance. Therefore, one can only aim at finding lea- 
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tures that experimentally prove reasonably insensitive 
to shape distortions caused by individual writing style 
and that at the same time maintain the ability to 
separate samples of different classes. 

Experience shows that shapes that "look alike" have 
similar low-frequency components in the Fourier 
domain. Low-frequency Fourier coefficients reflect the 
basic shape of a function, whereas the high frequency 
components represent the details. As far as handprinted 
character recognition is concerned, low-frequency 
components of a character turn out to be less sensitive 
to writing style variations. In fact, this has been the 
principal reason for the popularity of Fourier descrip- 
tors for handprinted character recognition/1 4~ 

There is, however, a serious disadvantage inherent 
in Fourier descriptors. The frequency information ob- 
tained from a Fourier transform is global. Intuitively, 
a more localized frequency representation should be 
more effective for pattern recognition. 

In the last few years, wavelet basis functions have 
become popular for accomplishing localized frequency 
analysis. ~5'6~ Unlike traditional short-time Fourier 
transforms, wavelet transforms have the capability of 
variable time-frequency localization. Furthermore, 
orthonormal wavelets with finite support provide a 
powerful mathematical tool for decomposing a function 
into a multiresolution hierarchy of different localized 
frequency channels. Such a decomposition allows us 
to simultaneously analyse a function at several levels 
of resolution and favors coarse-to-fine recognition 
strategies similar to those known to exist in the human 
visual system/7~ 
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Fig. 1. Time-frequency resolutions for the 

This paper is organized as follows. Section 2 provides 
a brief overview of the major properties of a wavelet 
transform and shows how a set of multiresolution 
shape descriptors can be derived from the transform 
coefficients of a pattern contour. Next, we describe a 
character recognition system that uses a set of neural 
networks trained with wavelet descriptors to simul- 
taneously analyse shape at multiple levels of resolution. 
In Section 4, we report the recognition results we 
obtained when training and testing the system with 
a large database of handprinted character samples. 
Finally, we summarize the significant results of this 
study and outline potential areas for future research. 

2. WAVELET DESCRIPTORS FOR MULTIRESOLUTION 
S H A P E  REPRESENTATION 

In this section we show how to derive a set of 
multiresolution shape descriptors from wavelet coeffi- 
cients of a pattern boundary.  First we review the most 
important  properties of a wavelet transform and des- 
cribe how to derive a multiresolution hierarchy of 
localized frequency in fo rmat ion  by o r t h o n o r m a l  
wavelet decomposition. For a more rigorous treatment 
the reader is directed to papers by Mal la(  8-~°~ and 
books by Chui tS~ and Daubechies. 16~ Since wavelet 
representations are not shift-invariant, we present ap- 
propriate normalization procedures in Section 2.2. We 
then show how an approximation of an original con- 
tour can be computed from a set of wavelet descriptors. 

In order to carry out wavelet analysis, an initial 
functional representation of the input pattern is needed. 
Unlike most recognition problems, in the case of 
characters, the pattern contour  contains all the in- 
formation that is necessary for classification. Further-  
more, contour representations require much less data 
than greylevel images. 

A pattern contour can be represented as a closed 
parametric curve c in the complex plane C, i.e. 

c(t)= x(t)+jy(t), O<t <_ T, (1) 
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STFT (left) and the wavelet transform (right). 
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where j denotes the imaginary unit. Since a closed 
curve can be retraced infinitely often, c is a periodic 
function with period T. The wavelet transform of a 
curve c can be taken independently for each component 

WTc(u) = WTx(u), +jWTy(u). (2) 

2.1. The wavelet transform 

2.1.1. The continuous wavelet transform. A short- 
coming of the Fourier  transform is that the frequency 
information it provides is global. It cannot be determined 
where the function exhibited a particular frequency 
characteristic. To overcome this limitation, short-time 
Fourier  (STFT) transforms have been developed. The 
idea is to multiply a function to be analysed with a 
window function before computing its Fourier trans- 
form. A function* h~L2(R) is called a window function 
if its "center"/~h and "radius" tr h exist: 

1 
Ilh =11~2 -~o~ tlh(t)12 dt (3) 

1 { S (t-I~h,lh(t)12dt} '/2. (4) O ' h = ~  -oo 

If h(t) is a Gaussian, the corresponding STFT is called 
a Gabor transform. The difficulty with STFTs is that a 
window h(t) of fixed size is accompanied by a fixed-size 
window H(co) in the frequency domain. t  However, 
what is actually needed is a long window to analyse 
slowly varying low-frequency components ,  and  a 
narrow one to detect high-frequency bursts. A STFT 
impo~ses a fixed trade-off between time and frequency 
resolution within the time-frequency plane (Fig. 1). 

* L2(R) denotes the space of measurable functions f that 
satisfy I[ f II 22 = ~ ~- ~ If(t)l 2 dt < o0. 

t A capital letter denotes the Fourier transform space, i.e. 
h(t) and H(eg) are a FT-pair. 
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The wavelet transform, on the other hand, is based 
on dilations and translations of a prototype function 
~O E LZ(R). These basis functions have short time resolu- 
tion for high frequencies and longer time resolution for 
low-frequencies (Fig. 1). Such flexible time-frequency 
resolution is well suited for localized frequency analysis. 

Specifically, a function q~ ~ L2(R) is said to be a wave- 
let if it satisfies the following admissibility condition 
needed to obtain the inverse of the wavelet transform. 

oc 

C, = j" IV(°~)l~ d~ < oo. (5) 
0 tO 

Again, h ° denotes the Fourier transformed of ft. A 
wavelet basis is given by shifted and dilated versions 
of a basic wavelet 

qJ,.b = ~aa 0 . (6) 

The continuous wavelet transform (CWT) of a function 
f6LZ(R) is defined as 

ec 

~ f ( a , b )  = ~ f(t)~b,,bdt= ( f ,~ , ,b ) .  (7) 
oc 

Hence the CWT decomposes a function f using a family 
of functions that are dilations and translations of some 
basic wavelet ~. It can be shown that the transform 
described above provides frequency information of 
F(~o) within the frequency window1: [ ~ ( # v - a v ) ;  
~(#v + av)]  which is localized in the time interval 
[b + a(#, - a,); b + a(#¢ + 6,)] .  Figure 1 (right) shows 
that the time-frequency window defined by the intervals 
above is narrow in time for high center frequencies 
#v/a and wide for small center frequencies, while the 
area of the window remains constant (4a,a,). 

For any ~ satisfying the admissibility condition an 
original function can be exactly reconstructed by the 
following inversion formula 

l ~ ~ da f(t)= C;! ~., ~t~f(a,h)Oa,b(x)dbae. (8) 

For practical purposes, the parameters, a and b are 
discretized. Next, we shall consider a comp~, .e repre- 
sentation built from a wavelet ~ such that the set 

= { ~ j , k ( X )  = x/2JO(2Jx - k): j, kEZ}  is an ortho- 
normal basis of L2(R), i.e. the shift and scale parameters 
will be restricted to the dyadic values a = 2~ and b = k 2~'" 
These wavelets will decompose a function into a multi- 
resolution hierarchy of localized frequency channels. 

2.1.2. Orthonormal wavelets and multiresolution de- 
compositions. The concept of multiresolution analysis 
is mathematically formalized as a nested sequence of 
subspaces V v 6 L2(R). A function f ~ L2(R) is represen- 
ted as a limit of successive approximations, each of 

++/~v and a v are, respectively, the "center" and "radius" of 
q~(og) as defined in equations (3) and (4). 

which is computed by projecting f onto some liE,. The 
sequence of subspaces Vv must satisfy the following 
properties. 

• Containment: 

V v , c V2, Vj~Z i.e. sequence { Vv} is nested. This 
implies that a function approximated at resolution 
2 i contains all the information of its lower resolution 
approximations. 

• Completeness: 

c~,.~z V,. = 0 u,,~z V,~ = L2(R). This property implies 
that if the resolution is increased to oo, the approxima- 
tion converges to the original function, whereas the 
approximated function converges to zero as the resolu- 
tion approaches zero. 

• Scaling property: 

f ( x ) e  Vv ,¢¢-f(2x)e V v. This property states that the 
approximated functions are derived by scaling each 
other by the ratio of their resolution levels. 

Given such a sequence of subspaces, the approxi- 
mation of a function f at resolution 2 i is defined as the 
projection of f onto 1/2,. Mallat "°) showed that for 
any sequence of subspaces satisfying the properties 
listed above, there exists a unique function ckeL2(R), 
called a scaling function, whose translations at scale 2 i 
form an orthonormal basis of Vv. In general ~b is a 
lowpass filter and the multiresolution approximation 
of a function f is a sequence of smoothed versions of 
f. Let Wv be the orthogonal complement of Vv in 
Vv+,. Each scaling function has an associated wavlet 
function ~,~L2(R) whose dilations and translations 
provide an orthonormal bases of Wv. Figure 2 shows 
an example of such a pair. Each fz~,e V 2 N  c a n  then be 
decomposed by 

f2 N=g2N ,+g2 N 2+...+g2~,. ,+ f2r, ~, (9) 

where g2,~ W2J andf2~e V2,. The dilations of ~ can be 
regarded as bandpass filters and the coefficient se- 
quences of the g2, provide localized spectral informa- 
tion of f within the frequency bands [2J(/~v -o-v);  
2J(#~ + or ) ] .  The coefficients of the g2, can hence be 
interpreted as high-frequency details that distinguish 
the approximations of f at two subsequent levels of 
resolution. On the other hand, f2N ,, represents a 
coarser approximation off2N. 

Let A v f  denote the operator that computes the 
approximation of f at resolution 2 i, i.e. that projects 
f onto I/2,. Let D2j be the operator that computes the 
projection of f onto the subspaces W v. If f is a 
discrete function, the decomposition described above 
can be achieved by successive convolutions of f with 
discrete filters, followed by resampling the approxi- 
mated function by a coarser grid, Figure 3 visualizes 
this procedure for one level of analysis. 

The resulting set of coefficients 

WT2J{ f }=(A2  , f , (D2, f ) -~z j< 1) (10) 

forms a pyramidal structure and is called a multi- 
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Fig. 2. Order-3 Lemarie wavelet (top) and its associated scaling function (bottom). 

resolution representation of the discrete function* f.  
If the original function has N samples, then A v f  and 
D v f  shall have 2iN samples. Thus the representation 
in (10) has the same total number of samples as the 
original function, i.e. the representation is non-redun- 
dant. Whenever we use the term "wavelet transform" 
in the sequel, we shall refer to the multiresolution 
pyramid defined in (10). 

* Note that A2o f =f. 

The original function can be exactly reconstructed 
from its wavelet representation by a procedure similar 
to the one outlined (s~ in Fig. 3. The major difference is 
that approximations are upsampled rather than sub- 
sampled. If the reconstruction algorithm is applied to 
the low-frequency coefficients A2 J f  alone, we simply 
obtain a smoothed version of f.  

Since the basic shape of an object is captured by the 
low-frequency components,  our strategy for deriving 
a shape representation is to disregard the information 
within the high-frequency bands (D2~f)_s<_~< - -1 of 
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Fig. 3. Decomposition of the discrete approximation A2Jf into a coarser approximation Af2J-, and detail 
coefficients DaJ- ,. 
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Fig. 4. Low-frequency wavelet coefficients Az~c marked by crosses. J = - 2  ..... -5.  

the multiresolution representation and to use the low- 
frequency coefficients V2 J f  to accomplish recognition. 
In order to obtain features that represent an object at 
different resolutions, we choose the low-frequency com- 
ponents of distinct levels in the multiresolution hierarchy. 
Figure 4 shows the low-frequency wavelet coefficients 
(i.e. A2Jc) of a character contour at the decomposition 
levels J = - 2  . . . . .  - 5  [c(t) denotes the parametric 
representation of the contour]. Note that at higher 
resolutions the sampling rate is high and the degree of 
smoothing low, whereas at low resolutions the degree 
of smoothing is high and the sampling rate low. 

2.2. Shift normalization 

Wavelet transforms have not found widespread use 
in the pattern recognition community because wavelet 
coefficients are not shift-invariant, i.e. 

g(t) =f ( t  + r ) ~  WTg(u) = WTf(u  + z). (11) 

Figure 5 shows an example in the one-dimensional 
case. The two functions shown only differ by a horizon- 
tal shift, their shapes are identical. However, their 
low-frequency wavelet coefficients (marked, respec- 
tively, by boxes and crosses) do not correspond. The 
coefficient set of the translated function is not a transla- 
ted set of the original coefficients. This is inherent in 
the ambiguity of the subsampling process, and is a 
well-known fact for traditional pyramidal multiresolu- 
tion representations/9) 

In the case of a parametric curve, equation (11) 
implies that the resulting coefficients depend on the 
starting point chosen to trace a contour. Since there is 
no a priori way to determine a fixed starting point for 
a given shape, an appropriate normalization should be 
carried out before computing its wavelet transform. In 
the following paragraphs, we present two methods to 
normalize a contour representation of an object with 
respect to parameter shifts. 

If two identical discrete curves are traced starting at 
different initial points, the resulting parametric func- 
tions differ by a cyclic parameter shift. We wish to find 
a complete representation that is invariant with respect 
to such shifts, i.e. given f .  = g~.-,o),.oaN, f a n d  ~ have 

/ \ 
\ 
\ 

Time 

Fig. 5. Wavelet coefficients do not translate when the function 
is translated. 
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3 3 3 3  
Fig. 6. Left: a sample character and its different starting points. Right: normalized starting points. 

35233   3 
Fig. 7. Normalized starting points for different samples of the character '3'. Top row: starting points 
obtained by scanning from top to bottom. Middle row: starting points resulting from phase normalization. 

Bottom row: starting points determined with respect to the MBR. 

to be derived such that 

L = ~ .  and L=f~,_v,) , .oam 9,=9~,-vg),,odN. (12) 

The traditional approach to eliminate parameter 
shifts in a closed curve is to compute its Fourier trans- 
form. In the Fourier domain a spatial shift results in a 
frequency linear phase shift, i.e.* 

9. = f ~,-.o),.odN ~ Gk = exp(j27zkno/ N) Fk, 

n , k = O  . . . . .  N - I .  (13) 

Obviously, the magnitudes of the Fourier coefficients 
IGk[ and IFk[ are independent of the parameter shift. 
However, these magnitudes are not a complete des- 
criptor set and usually do not contain enough shape 
information for reliable recognition. The problem of 
complete frequency domain normalization for par- 
ameter shifts was first addressed by Crimmins (t 1) and 
later generalized by Arbter. t~ 2,13) In our study, we used 
a special case of Arbter's Z-invariants/12) 

As stated in equation (13), the Fourier coefficients 
of two functions that only differ by a parameter shift, 
differ by a phase factor. From equation (12) we can 
obtain 

G1 = z F 1 ,  Z = exp(j2~no/N) (14) 

or, in polar coordinates, 

G1 = zlF l l exp (JOl), (15) 

* A capital letter denotes the Fourier transformed, i.e. f 
and F are an FT pair. 

where q~l is the phase angle of F r Normalization 
is accomplished by multiplying each of the Fourier 
coefficients Gk with the phase of G i- k. This will eliminate 
the influence of any parameter shift. The normalized 
coefficients (~k are then given by 

a k  = Gkarg(Gt) k 

= Gkz -k exp(--  jcb~k) 

= ZkFk z -k  exp(- jd~lk  ) 

= exp( - j$ lk )Fk .  (16) 

The normalization of the Fourier coefficients of f is 

ff k=  Fkarg(F1)-k=exp( - - jq~lk )Fk  (17) 

which is exactly equal to (~k" Taking the inverse Fourier 
transform of the normalized coefficients, results in a 
shifted version of the original function. Equating the 
exponential factors in (13) and (17) one can obtain the 
spatial shift v/ introduced by the normalization equa- 
tion (17), 

vy = qSl U. (18) 
2n 

The technique described above uniquely determines 
a starting point for two identical periodic functions 
that differ only by a parameter shift (Fig. 6). Unfortu- 
nately, the situation is not as simple for handprinted 
characters, since we must determine a unique starting 
point for many samples of the same character. Each 
sample usually differs by a parameter shift and will 
have a slightly different shape due to the variations of 
individual handwriting style. Ideally one would need 
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a way to map the starting points of different samples 
of the same character to corresponding contour points. 
However, there is no general way to find corresponding 
points on a character contour without a priori knowl- 
edge of the character. This is another form of the 
correspondence problem." 21 

Since the low-frequency Fourier coefficients of two 
similar shapes are close, the starting points determined 
by the normalization procedure described above should 
approximately correspond. Figure 7 illustrates this 
point. However, this normalization technique does not 
solve the correspondence problem exactly. For com- 
parison, we considered a second starting point normal- 
ization strategy. Since orientation of each character is 
known, we can determine approximately corresponding 
points with respect to its minimum bounding rectangle 
(MBR). Specifically, we start the parameterization at 
the contour point that is closest to the top left corner 
of the MBR. The bottom row of Fig. 7 shows some 
examples of this normalization techniques. Extensive 
experiments have shown ~14~ that, in terms of classifi- 
cation accuracy, no significant difference between the 
two methods can be observed. 

2.3. Reconstruction from wavelet descriptors 

When identifying the resolution level of a wavelet 
descriptor set for a particular recognition problem, we 
must trade-off compactness of representation at the 
cost of loss of shape information. 

A measure of the degree of information loss is the 
ability to reproduce an original pattern contour from 
its descriptor set. 

Figure 8 shows reconstructions obtained from low- 
frequency wavelet coefficients across several levels of 
resolution. At higher resolution levels the approxima- 
tion is nearly perfect, whereas the characters reconstruc- 

ted from low resolution descriptors exhibit consider- 
able distortion. However, for all resolution levels dis- 
played in Fig. 8 the reconstructions preserve the basic 
shape of the original character. Note that some con- 
tours may not close since the number of discrete samples 
defining the contour may not be a power of two. 

For comparison we also computed reconstructions 
for the same character contours shown in Fig. 8 ob- 
tained from truncated sets of Fourier coefficients. The 
results are shown in Fig. 9. The number of coefficients 
was the same as the reconstructions in Fig. 8 (from left 
to right: 72, 36, 18 and 9 complex numbers). The 
reconstructions obtained from Fourier coefficients are 
of comparable quality as the corresponding wavelet 
representation. However, as the recognition results in 
Section 4.2 shall demonstrate, wavelet coefficients are 
more reliable for recognition than Fourier descriptors. 
Although Fourier descriptors contain about same 
amount of shape information as low-frequency wavelet 
descriptors, Fourier descriptors exhibits larger intra- 
class variance and weaker interclass separation than 
corresponding wavelet descriptors. 

3. A NEURAL NETWORK TOPOLOGY FOR 
MULTIRESOLUTION SHAPE RECOGNITION 

In this section we describe the implementation of a 
character recognition scheme that relies upon wavelet 
descriptors to simultaneously analyse shape at multiple 
levels of resolution. Classification is accomplished by 
a set of neural networks, namely multilayer perceptrons 
(MLP). The recognition process consists of three stages: 
first, the input patterns are preclassified according to 
their topology. Next, the contour of an input shape is 
represented at multiple levels of resolution and each 
representation is classified independently. Finally the 

U /  

to', 

L,,,, .I 
,1 

Fig. 8. Contours of a character approximated by incremental reconstruction across four levels ofresolution. 
From left to right: original contour, level-2, 3, 4 and 5 reconstruction. (i.e., respectively, 72, 36, 18 and 9 

complex descriptors). 

,! ,, 0 n L_..'I 

", " V,..j b , . , . ,  

Fig. 9. Shapes reconstructed from the first k Fourier coefficients. From left to right: k = 72, 36, 18, 9. 
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classification results are combined to decide a final 
classification. 

3.1. Topological sorting 

Each character is preclassified according to its 
topology. By computing their Euler number, the 
alphanumeric characters of the Latin alphabet can be 
grouped into three distinct topology classes. Recall 
that the Euler number of a shape is defined as the 
number of connected components minus the number 
of holes. The characters of each topology class are 
analysed independently by distinct MLPs. Figure 10 
shows the classifier structure. Note that the characters 
of the Latin alphabet are not distributed evenly among 
the three topology classes. Two thirds of the characters 
belong to class zero (no holes), whereas only nine and 
three characters belong to classes one and two, res- 
pectively. 

There are two major advantages of such a two-stage 
scheme. First, it is obvious that the topological struc- 
ture of a shape is one of the most important features 
for recognition and should therefore be considered by 
a classifier. Secondly, MLPs are trained by example 
and training algorithms usually require extensive com- 
putation. Moreover, training time does not increase 
linearly with the number of classes. Using this pre- 
classification scheme, we needed only to train three 
"small to medium-sized" classifiers rather than a single 
complex one. This considerably reduced the overall 
training time required by our system classifiers, t141 

3.2. Multiresolution recognition 

One of the motivations for using wavelet coefficients 
as contour descriptors is that the wavelet decomposi- 
tion represents a function at different levels of resolution. 
There is substantial evidence that the human visual 

system uses similar multiscale representations, t7'9) By 
analogy our recognition algorithm takes into account 
contour representations of different resolutions. The 
strategy is the following: for each input pattern, wavelet 
descriptors at several levels of resolution are derived 
and classified independently. The classification results 
are then compared to decide a final match. Figure 11 
illustrates the processing, where recognition is ac- 
complished in three stages. 

The results of the subclassifiers can be combined in 
many ways. In our implementation we used the follow- 
ing rule: If all classifiers reported the same result, the 
classification was accepted. If the classifiers did not 
agree, the pattern was rejected as "not classifiable". 
The advantage of this simple scheme is that the error 
probability is reduced considerably, because an error 
can only occur if all classifiers make the same confusion. 
Since the level of detail differs considerably at each 
resolution level, this case is not likely. 

Besides reducing the error rate, an advantage of 
combining different recognition results, is that patterns 
which cannot be unambiguously identified are rejected 
rather than misclassified. This is usually not possible 
when an MLP classifier is used, because there is no 
straightforward way to train a network with an output 
node denoting a rejection. It is, however, extremely 
important that an OCR system has the capability to 
reject patterns rather than misclassifying them, because 
the cost associated with a rejection is usually much 
lower than that of a substitution error. Ix 51 Imagine, for 
instance, an OCR system designed to read price labels 
in a supermarket. A rejection error means that the 
price label has to be read again, or in the worst case, 
that the price has to be entered manually. A substitution 
error, however, means that the customer will be charged 
a wrong price. Therefore, in practice, the failure to 
distinguish between rejections and substitutions is a 
severe shortcoming for any OCR system. 

preprocessed boundary 

l 
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Fig. 10. Topology of a single resolution classifier. 
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preprocessed boundary 

*I decision rule 

class labell I rejection 
Fig. 11. A multiresolution recognition scheme that analyses a character at three levels of resolution. 

3.3. Determininy the network structure 

It is well-known that multilayer perceptrons are 
capable of forming arbitrarily complex decision 
boundaries, 1~6~ but performance heavily depends on 
the network architecture. A particular network archi- 
tecture is defined by two parameters, namely the 
number of hidden layers and the number of nodes in 
each hidden layer. There are infinitely many network 
configurations that all perform the same classification 
task. Unfortunately, there is no mathematical rule or 
formula how to choose a network structure that is 
optimal for a given classification problem. Therefore, 
a "good" network structure must be determined experi- 
mentally. Given the large training times required in 
our study, an extensive search of an optimal network 
architecture was not feasible. Therefore, we imposed 
the following limits on the set of network structures 
considered in our investigation: 

(1) One hidden layer and 
(2) the number of hidden nodes close to logs(No), 

where N O is the number of output nodes. The moti- 
vation for these constraints are discussed extensively 
in reference (14). In the next section we report recog- 
nition results obtained from the best performing net- 
work architectures. 

4. EXPEIIIMENTAL RESULTS AND DISCUSSION 

4.1. The database 

In order to train and evaluate the performance of 
our recognition system, we used a large database of 
handprinted characters collected from previous related 
studies.~l 7-19) The database consisted of 6480 distinct 
samples of handprinted digits and upper-case letters. 
The samples were collected from fifteen different 
persons, each providing 12 samples of each pattern. 
The writers were asked to slash the character '0', to 
print '1' without serifs and to place horizontal bars on 
the letter T (see Fig. 12). Such restrictions can also be 
found in standard character databases such as those by 
Munson or by Highleyman. ~2°J Unlike the Munson 
database, the samples of the character 'Z' were written 
without a horizontal stroke. The character '4' was 
required to be closed with a diagonal stroke. Similar 
definitions are common to most studies of OCR 
methodologies. ~20) 

Another constraint the writers had to meet, was to 
avoid gaps. This assumption is made in most recog- 
nition schemes based on contour features, 11'2~'2') 
although it is rarely stated explicitly. Obviously, this 
constraint holds only in special applications. In Sec- 
tion 5.2 we outline how our recognition system can be 
modified to accommodate non-closed characters. 

Fig. 12. Samples for '0', 'O', '1', T, '2', 'Z" and '4' as defined for our study. 
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The samples were collected on forms that allowed 
for simple segmentation. The forms were digitized with 
300 dpi/8 bit resolution and normalized in size to 64 
by 64 pixels by bilinear interpolation. 123'~ s~ 

4.2. Wavelet descriptors vs Fourier descriptors 

First we conducted a preliminary study, the goal of 
which was to compare recognition results achieved 
with wavelet descriptors to those obtained with Fourier 
descriptors (FD). In this comparison we wanted to 
ensure that the classification was based on shape alone. 
Therefore we neither presorted the samples according 
to their topology, nor did we consider multiple levels of 
resolution. The set of Fourier descriptors used is des- 
cribed by Arber. "2~ However, we omitted normal- 
ization for affine transformations, because the digits '6' 
and '9' cannot be distinguished in an affine-invariant 
space. For reference, we also collected the recognition 
results obtained with FD where the influence of an 
arbitrary starting point was eliminated by taking its 
magnitude. In order to avoid extensive training time, 
we limited the set of classes to the digit '0'- '9'. For each 
descriptor set, character shape was represented by the 
same number of features (36 real numbers). The number 
of training patterns was 1200. The classifiers were 
tested with 600 characters written by persons other 
than the training sample authors. Table 1 summarizes 
the error rates of the best performing classifiers. 

These results suggest that wavelet descriptors are 
more efficient for recognition purposes than a pure 
frequency domain representation of the same dimen- 
sionality. Although a complete set of Fourier descrip- 
tor t~2~ was used, it yielded higher error rates. In order 
to rule out that this error rate was due to normal 
statistical variation, we tested whether the observed 

error rates differed at a 5% significance level. ~24~ The 
symbol ' + '  in the last column of Table 1 denotes this 
case. 

Ifthe character shape was represented by the magni- 
tudes of the Fourier coefficients, the results were worse. 
This is intuitively clear, because despite being shift- 
invariant FD magnitudes lack completeness. More- 
over, interclass separation seems to be poor for FD 
magnitudes, as suggested by a large number of training 
epochs.t 14) 

4.3. Single resolution recognition 

Next we analysed the recognition results as function 
of decomposition level. We only considered descriptors 
of one resolution at a time. In this case the three-stage 
multiresolution recognition scheme shown in Fig. 11 
reduces to the two-stage scheme depicted in Fig. 10. In 
this study we used two distinct test sets. First, we tested 
the classifier with samples taken from the same indivi- 
duals that provided the training samples. Here, the 
application in mind is a system that only needs to 
recognize a few distinct handwriting styles and that 
must be retrained, when used by a different individual. 
The second test set was designed to simulate a more 
general application where the system is only trained 
once and is then expected to recognize samples of 
unknown handwriting. It is intuitively clear, that the 
second application is more difficult, and indeed, the 
recognition results differed considerably. In both test 
situations the number of training and test samples 
were identical. Table 2 summarizes the results for the 
best performing configurations. 

Testing the classifier with familiar handwriting yiel- 
ded error rates of less than 1% for each decomposition 
level. In order to determine the quality of the observed 

Table 1. Wavelet descriptors vs Fourier descriptors 

Features L H Errors % Error % Correct 5% Sig. 

Level-4 WD 36 6 0 0 100 
FD 36 5 8 1.33 98.67 + 
FD (mag) 36 5 13 2.17 97.83 + 

Recognition results for the digits '0'-'9', where represented by wavelet and Fourier descriptors, respectively. The second 
column shows the number of features (number of input nodes). Column three contains the number of hidden nodes that yielded 
best recognition. 

Table 2. Recognition rates as a function of decomposition level 

Level L NNo NN1 NN2 Errors % Error % Correct 5% Sig. 95% Conf. 

3 72 5 5 2 13 0.60 99.40 + [0.3,0.9] 
4 36 4 5 1 6 0.28 99.72 [0.1, 0.5] 
5 18 5 2 2 10 0.46 99.54 - [0.2,0.8] 

3 72 5 2 2 38 1.75 98.24 + [1.2, 2.3] 
4 36 4 5 1 27 1.25 98.75 [0.8, 1.7] 
5 18 2 5 2 ! 3 5  1.62 98.38 - [1.1,2.2] 

Top: results for test samples of familiar handwriting. Bottom: results for test samples of unfamiliar handwriting. The second 
column shows the number of features (number of input nodes). Columns three through five show the number of hidden nodes 
for each subnet that yielded the best recognition results. 
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Table 3. Multiresolution recognition results 

Levels L Subst. Rej. % Subst. % Rej. % Correct 95% Conf. 

3/4 108 3 13 0.14 0.60 99 .26  [0.0,0.3] 
4/5 54 0 17 0 0.79 99.21 - -  
3/5 90 1 17 0.05 0.79 99 .16  [0.0,0.1] 
3/4/5 126 0 29 0 1.34 98.66 - -  

3/4 108 13 39 0.60 1.81 97 .59  [0.3.0.9] 
4/5 54 9 45 0.42 2.08 97 .50  [0.1,0.7] 
3/5 90 7 60 0.32 2.78 96 .90  [0.1,0.6] 
3/4/5 126 6 83 0.28 3.84 95.88 [0.1, 0.5] 

Top: results for test samples of known handwriting. Bottom: results for test samples of unknown 
handwriting. The second column shows the number of features (number of input nodes). Columns 
three through five show the number of hidden nodes for each subnet that yielded the best recognition 
results. 

error estimate, we computed 95% confidence intervals. ~e4) 
Due to the large number  of test samples (2160 distinct 
test samples were used), the confidence intervals ob- 
served were rather narrow. Table 2 shows that in 95~o 
of all cases we will observe error rates of less than 1% 
for familiar handwriting. Unfortunately it is hard to 
compare these results to others reported in the literature, 
since in most papers the assumptions and restrictions 
on the test data are only incompletely stated or very 
different from ours. However, we can directly compare 
these results to those of a previous study conducted 
with the same database. (18) The features used in this 
early study were wavelet coefficients derived from a 
character's grey level image. The number of substitution 
errors* was 35 which corresponded to an error rate of 
1.43%.t Note that the feature vector dimension was 
192. Using wavelet descriptors, we obtained a signifi- 
cantly smaller error rate (0.28%) while only using 36 
features. Thus, despite a more than five-fold data 
reduction in representation, the error rate was reduced 
by more than a factor of five. 

Table 2 also shows the recognition rates observed 
when tested with samples of unfamiliar handwriting. 
These error rates were about  three times greater than 
those for known handwriting. Still, the number  of 
errors were about  the same as those reported in ~ for 
recognition of familiar handwriting. As far as decom- 
position level is concerned, it turned out that level-4 
W D  were the best compromise between compactness 
of representation and preservation of shape information. 
The recognition results obtained with level-3 W D  are 
only slightly worse, but the difference is statistically 
significant. Surprisingly, level-5 W D  yielded better 
recognition results than those of decomposition level 
three, although the character shape was represented 
by only 18 features (real numbers). In fact, we observed 
that the level-5 error rates did not differ significantly 
from those obtained by level-4 descriptors. 

* Digits and letters were classified by different perceptrons. 
t A recent study ~19~ showed that using hexagonal wavelets 

these error rates can be reduced by about 25%. 

4.4. Multiresolution recognition 

The results discussed in the previous section suggest 
that W D  are a concise shape representation that is 
very effective for recognition. Next, we exploited the 
possibly most powerful aspect of wavelet descriptors: 
hierarchical multiresolution representation. Table 3 
summarizes the results when testing the multiresolution 
classification scheme with both familiar and unfamiliar 
handwriting. 

A significant conclusion that can be drawn from 
Table 3 is that it is clearly advantageous to simul- 
taneously analyse multiple resolutions when recog- 
nizing handprinted characters. Note that this was not 
obvious a priori. If the same misclassifications had 
occurred at all resolutions, it would have been senseless 
to consider more than one decomposition level, since 
most errors would have remained undetected. Our  
results demonstrate that this is not the case. The gain 
in reliability is achieved at the expense of a somewhat 
lower rate of correct classifications. This is, of course, 
due to the rejections that occur if the distinct classifiers 
have contradictory outputs. But, as mentioned earlier, 
the distinction between rejections and substitution 
errors is important  for most OCR applications. 

The data in the top part of Table 3 can be directly 
compared with the recognition rates reported by Laine 
et al. ~18) Note that for all cases shown in Table 3, the 
number  of features remained smaller than those used 
by the classifier described in reference (18). Thus, repre- 
senting a character at multiple resolutions allowed us 
to maintain a rate of correct classifications of over 99~o 
while avoiding substitution errors. More importantly, 
we could also reduce the error rate below 1% for 
samples of unfamiliar handwriting. In this case the 
rejection rates were, of course, somewhat higher. 

5. CONCLUSIONS AND FUTURE RESEARCH 

5.1. Summary 

In this paper we introduced a novel set of features 
that are well-suited for representing digitized hand- 
printed characters. Features are derived by computing 
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the wavelet transform of a character contour. Since 
only the low-frequency bands of the transform coeffi- 
cients are included, the features are insensitive to the 
shape variations caused by the writing styles of different 
persons. Representations by wavelet transform coeffi- 
cients depend on the parameterization starting point 
of a function. Appropriate normalizations yield a shift- 
invariant multiresolution representation for characters 
of known orientation. 

The most powerful aspect of a wavelet representation 
is, however, the decomposition of a function into a 
multiresolution hierarchy. We described the imple- 
mentation of a character recognition system that uses 
WD to simultaneously analyse character shape at 
multiple resolutions. Recognition is accomplished by 
several neural nets, namely multilayer perceptrons, 
that are independently trained with WD obtained from 
distinct resolution levels. The system was trained and 
tested with a large database of handprinted characters. 
Significant results of the study are listed below: 

• wavelet descriptors are a compact representation 
for digitized characters that contain sufficient shape 
information to allow for reliable recognition. Even 
when characters were described with only 1/32th 
(level-5 WD) of their original data, recognition rates 
did not  significantly degrade; 

• wavelet descriptors are insensitive to individual 
writing style variations. Confronted with unfamiliar 
handwriting, the recognition system continued to 
exhibit low error rates; 

• although closely related to Fourier descriptors, 
wavelet descriptors are a significantly better shape 
representation for handprinted characters than a com- 
plete Fourier descriptor set of the same dimensionality; 

• mul t i resolu t ion  recogni t ion is a powerful 
methodology to increase recognition reliability. In 
contrast to most single scale techniques, it enabled the 
system to reject patterns which could not be unambi- 
guously classified, and thus considerably reduced the 
rate of substitution errors observed; 

• although the multiresolution recognition scheme 
reduced the error rate at the expense of rejections, the 
rate of correct classifications remained satisfactory. 

5.2. Future work 

Since we derived shape descriptors from the charac- 
ter contour, we had to impose the constraint that 
character contours be closed. For practical applica- 
tions, this restriction should be overcome. This issue 
is discussed in greater detail in reference (14). It is 
relatively straightforward to lift the constraint for 
pen-based input, since the data may be naturally split 
into a set of distinct strokes. The major modifications 
of our system would be to skeletonize the input by a 
thinning algorithm and presort the samples according 
to their number of strokes rather than their Euler 
number. However, the solution of this problem is more 
difficult if only a greylevel image is available, and may 
require knowledge-based preprocessing. 

Nevertheless, wavelet descriptors are a compact shape 
representation that are well-suited for applications 
with large input variability. It would be interesting to 
apply WD to recognition problems other than OCR. 
Since the wavelet transform can also be executed in the 
Fourier domain, it is straightforward to apply the 
normalization suggested by Arbter 1~21 to derive affine- 
invariant wavelet descriptors. Thus wavelet descriptors 
can easily be generalized to serve as a shape represen- 
tation for a variety of additional recognition problems. 
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