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Wavelets for Contrast
Enhancement of Digital

Mammography

Breast cancer currently accounts for 32%
of cancer incidence and 18% of cancer
mortality for women in the United States.
There were 182,000 new cases of breast
cancer in the United States in 1993 and
46,000 deaths. Five year survival rates are
generally very high (93%) for breast can-
cer staged as being localized, falling to
72% for regional disease and only 18% for
distant disease [1]. The early detection of
breast canceris clearly a key ingredient for
any strategy designed to reduce breast
cancer mortality.

Despite advances in resolution and
film contrast, check screen/film mam-
mography remains a diagnostic imaging
modality where image interpretation is
very difficult. Breast radiographs are gen-
erally examined for the presence of malig-
nant masses and indirect signs of
malignancy, such as the presence of mi-
crocalcifications and skin thickening. Un-
fortunately, it is unlikely that major
improvements in imaging performance
will be achieved by technical advances in
screen/film radiography alone. It has been
suggested that as normally viewed, mam-
mograms display only about 3% of the
information they detect! [4]. The major
reason for poor visualization of small ma-
lignant masses is the minor difference in
X-ray attenuation between normal and ma-
lignant glandular tissues [2]. This fact
makes the detection of small malignancies
difficult, especially in younger women
who have denser breast tissue. Although
calcifications have high inherent attenu-
ation properties, their small size results in
low subject contrast [3]. As a result, the
visibility of small tumors and any associ-
ated microcalcifications will always be a
problem in mammography as currently
performed with analog film.

Digital image processing techniques
have been applied previously to mam-
mography. The focus of past investiga-
tions has been to enhance mammographic
features while reducing the enhancement
of noise. Gordon and Rangayyan [5] used
adaptive neighborhood image processing
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to enhance the relevant contrast features.
This method enhanced the contrast of
mammographic features as well as noise
and digitization effects. Dhawan, et al. [6,
7, 8], made significant contributions to-
wards solving problems encountered in
mammographic image enhancement.
They developed an adaptive neighbor-
hood-based image processing technique
that utilized low-level analysis and
knowledge about a desired feature in the
design of a contrast enhancement function
to for specific features. Recently, Taho-
ces, et al. [9], developed a method for the
enhancement of chest and breast radio-
graphs by automatic spatial filtering. They
used a linear combination of an original
image and two smoothed images followed
by nonlinear contrast stretching. Thus,
spatial filtering for enhanced edges was
accomplished while minimally amplify-
ing noise.

Brzakovic, et al. [10], developed an
automated system for the detection and
classification of particular types of tumors
in digitized mammograms. Their system
identified regions corresponding to possi-
ble tumors by using multiscale image
processing based on fuzzy pyramid link-
ing. Regions were classified by means of
deterministic or Bayes classifier and sev-
eral metrics. They concluded that their
system was very useful in detecting re-
gions that need further analysis, but was
somewhat less reliable in recognition.

Chan, et al. [11, 12], investigated the
application of computer-based methods
for the detection of microcalcifications in
digital mammograms. Their system was
based on a difference-image technique in
which a signal-suppressed image was sub-
tracted from a signal-enhanced image to
remove the background in a mammogram.
Signal-extraction techniques adapted to
the known physical characteristics of mi-
crocalcifications were used to isolate them
from the remaining noise background.
They found that their method could
achieve a true-positive cluster detection
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rate of approximately 80% at a false-posi-
tive detection rate of one cluster per im-
age.

In an earlier study related to this paper,
computer simulated images were used to
optimized multiscale wavelet based proc-
essing techniques [13]. Mathematical
phantom images contained a Gaussian-
shaped signal in half of the regions and
included several levels of random noise.
Signal intensity and noise levels were var-
ied to determine a detection threshold con-
trast-to-noise ratio (CNR). An index of the
ratio of output to input contrast to noise
ratios was then used to optimized wavelet
based image processing algorithms. Com-
puted CNRs were found to correlate well
with signal detection by human observers
in both the original and processed images.

Our approach to feature analysis and
contrast enhancement is motivated in part
by recently discovered biological mecha-
nisms of the human visual system [14].
Both multi-orientation and multiresolu-
tion are known features of the human vis-
ual system. Specifically, there exist
cortical neurons which respond specifi-
cally to stimuli within certain orientations
and frequencies. In this paper, we exploit
the orientation and frequency selectivity
of multiscale wavelet transforms to make
mammographic features more obvious
through localized contrast gain.

This paper is organized into two parts.
In the first part we present a mathematical
foundation for an approach to accomplish
image contrast enhancement by multire-
solution representations of the dyadic
wavelet transform. We formulate two ex-
amples in which a linear enhancement
operator is shown mathematically equiva-
lent to traditional unsharp masking with a
Gaussian low-pass filter. A formal analy-
sis of wavelet filter selection and associ-
ated artifacts is carried out. Then we show
that transform coefficients, modified
within each level of scale by nonlinear
operators, can make more obvious unseen
or barely seen features of mammography
without requiring additional radiation. In
addition, we introduce an edge-preserved
denoising stage based on wavelet shrink-
age with adaptive thresholding, and dem-
onstrate that noise suppression and
contrast enhancement can be achieved si-
multaneously within the same framework.

In the second part, we analyze arbitrary
regions of interest (ROI) of a digital mam-
mogram by (overcomplete) Deslauriers-
Dubuc interval wavelets. This could
provide radiologists with an interactive
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capability for local processing of suspi-
cious lesions within large image matrix
sizes. We demonstrate that features ex-
tracted from this multiscale representation
can support an adaptive mechanism for
accomplishing local contrast enhance-
ment. Our results are compared with tra-
ditional image enhancement techniques
by measuring the local contrast of known
mammographic features.

PART 1: DYADIC WAVELET
ANALYSIS

Image contrast is an important factor in
the subjective quality of radiographic im-
ages. A comprehensive survey of algo-
rithms for contrast enhancement is
presented in [15]. Histogram modification
techniques {16, 17] have been attractive
due to their simplicity and speed. A trans-
formation function is first derived from a
desired histogram and the histogram of an
inputimage. The trans-formation function
is usually nonlinear and for continuous
functions, a listless transformation may be
achieved. However, for digital radio-
graphs having a finite number of gray
levels, some information loss due to qua-
tization errors is typical. For example, a
subtle edge may be merged with its neigh-
boring pixels and disappear. Methods that
incorporate local context into the transfor-
mation process may also have problems.
For example, simple adaptive histogram
equalization [18] with a fixed contextual
region (window) cannot adapt to features
of distinct sizes.

Most edge enhancement algorithms
share a common strategy: edge detection
and subsequent ‘“‘crispening.” Unsharp
masking sharpens edges by subtracting a
portion of a Laplacian filtered component
from an original image. This technique

was justified as an approximation of a
deblurring process in [19]. Loo, etal. [20],
studied an extension of this technique in
the context of radiographs. In addition, an
extension based on Laplacian filtering
was proposed in [21]. However, these (un-
sharp masking) techniques are limited by
their linear and single scale nature, and are
less effective for images containing di-
verse features typically found in mam-
mography. In an attempt to overcome
these limitations, a local contrast measure
and nonlinear transform functions were
introduced in [5], and subsequently re-
fined in [22].

More recently, the advancement of
wavelet theory has sparked researchers in
the application of image contrast enhance-
ment [{23-29]. These early studies re-
vealed promising results, but were more
experimental in design. In this part, we
provide a concise mathematical analysis
of a dyadic wavelet transform, and reveal
its connection to the traditional technique
of unsharp masking. In addition, we pro-
pose a simple nonlinear enhancement
function and analyze the problem of arti-
facts. We next describe an explicit denois-
ing stage that preserves edges using
wavelet shrinkage |33] with adaptive thre-
sholding. In addition, we present a two-di-
mensional extension for digital
mammography and special procedures
developed for accomplishing denoising
and enhancement without orientation dis-
tortion. Finally, sample results are shown
and comparisons made using both digital-
ized mammograms and synthetic signals.

One-dimensional Discrete Dyadic
Wavelet Transform
A fast algorithm [31] for computing
1-D discrete dyadic wavelet transform
(DDWT) is shown in Fig. 1. The left side
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1. One dimensional discrete dyadic wavelet transform (three levels shown).
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2. An equivalent multi-channel struc-
ture for three-level DDWT.

shows the structure of decomposition, and
the right, reconstruction. For an N-chan-
nel structure, there are N — 1 high-pass or
band-pass channels and a low-pass chan-
nel. Thus, the decomposition of a signal
produces N— 1 sets of wavelet coefficients
and a coarse signal. In Fig. 1, decomposi-
tion filters differ from reconstruction fil-
ters. However, this structure is equivalent
to the multichannel structure shown in
Fig. 2. This computational structure
makes obvious the potential for parallel
processing to support an interactive user
interface for computed assisted diagnosis.

Channel frequency responses Ci (®)
can be written as:

Cpl@) = Fy(0),(0) =
1) m

i

ol -[eno

5ol

As an example, we consider an exten-
sion of the class of filters proposed in [31]:

PO 2n+p
H(w)= &2 {cos(gﬂ
2 (1

where p=0, or 1. Let:
m—1 q
0, ,(0)= { I cos(21‘l u))}
=0
then we can show that:
q
sin(2'"—1m)]
J

0, ,(0)=
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2m sin(gj
2
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and therefore:

Cm (w)=

6m.4n+2p((’)) - 6111+1.4r1+2p(m) .0<m< (N - 1)
ON dni2p(@) .m=N

3)
Note that @ g, (®) = 1, and for O <m <N

Cm ((,l)) = 8m,4r1+2p (('0) - ®m+1,4n+2p (0‘))

. 2@
=sin (5)4”’ ®m,4n+2p+2 (('0)
2n+p-1 2!
Y [cos(Zm_l u))]

1=0
L2{ @) . .
and sin (Ej is the frequency response of

the discrete Laplacian operator having an
impulse response of {1; —2; 1}.

O 4(®) with even exponential ¢q is ap-
proximately a Gaussian function, while
the frequency responses of channels (0 <
m < N ) are approximately a Laplacian of
Gaussian.

Linear Enhancement and
Unsharp Masking

Review of Unsharp Masking
A prototype of unsharp masking can be
defined [19] as:

S(ry)=s(ry)—kas(xy) (4
2 2

where A=—+
ax? Byz

operator. However, this original formula
processed only the level of finest resolu-
tion. More versatile formulas were later
fashioned in two forms, described below.

One way to extend the original formula
was based on exploiting the averaging
concept behind the Laplacian operator.
The discrete form of the Laplacian opera-
tor may be written as:

As(ij)=[s(i+1.j) = 2s(i. j) + s(i = 1.)]
[9(:’ JHD =25 7)+s(i.j - 1)]

{ (i 1)——[ (i +1.))+ (i = 1.j)

+s(i, j)s(i,j+ 1)y +s(i, j— 1)]}

is the Laplacian

This formula shows that the discrete
Laplacian operator can be implemented
by subtracting from the value of a central
point its average neighborhood. Thus, an
extended formula [20] can be written as:

50.7) = (i) + K[s(i, /) = 50, j)=h(i, ))]s)

where A(i, j) is a discrete averaging filter,

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

and * denotes convolution. For example,
in [20] an equal-weighted averaging mask
was used:

2 )
/’l(x,y):{l/N , |x‘<n/2,M<n/2

0, otherwise.

Another way to extend the prototype
formula [21] came from the idea of a
Laplacian-of-Gaussian filter, which ex-
pands Equation (4) into:

F(x.) = s(x. )~ kA s(x, ) g(x.)]
s(r\ k[s X,y ‘AK( )] (6)

where g(x, y) is an Gaussian function, and
Ag(x, ) is a Laplacian-of-Gaussian filter.

Finally, we mention that both exten-
sions (Egs. (5) and (6)) are limited to a
single scale.

Unsharp Masking is Included
Within a DDWT Framework

Next, we prove that unsharp masking
with a Gaussian lowpass filter can be in-
cluded in a dyadic wavelet framework for
enhancement by considering two special
cases of linear enhancement.

In the first case, transform coefficients
of channels 0 < m < N — 1 are enhanced
(multiplied) by the same gain Go > 1, or
Gm=Go>1,0<m< N- 1. The system
frequency response is thus:

N—
V((D) = 2 m m (('0) + CN (('0)

m=0

=Gy X, Cp(®)—(Gy —1)Cp ()
m=0

=Gy —(Gp ~1)Cy ()
=1+(Gy —1)[1- Cy(w)]

The input-output relationship of the
system is then simply:

5Ti1= s[i1+ (Go = D{sli] - slil e [T} 7)

Since Cy(w) is approximately a Gauss-
ian lowpass filter, Eq. (7) may be seen as
the 1-D counterpart of Eq. (5).

In the second case, transform coeffi-
cients of a single channel p, 0 < p<Nare
enhanced (multiplied) by a gain G, > 1,
thus:

V(o)= Y.C,(0)+G,C,(w)
m:tp
ZO (@) +(G, ~1)C, ()
=1 +(G’, - I)Cp((,l)) (8)

Using the filter class of Eq. (1), the
input-output relationship of the system
defined in Eq. (8) can be written as:
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S=o[i]-(G, —1)- A{SBLT ()

where B[] is the impulse response of an
approximate Gaussian filter. Similarly,
Eq. (9) may be seen as the 1-D counterpart
of Eq. (6). The inclusion of these two
forms of unsharp masking clearly demon-
strate the flexibility and versatility of this
dyadic wavelet framework.

Figure 3 shows an example of linear
enhancement using uniform gains across
scales. This example clearly demonstrates
an increase of local contrast marked by a
steeper slope and localized emphasis (un-
dershooting and overshooting). Note that
the observed undershooting and over-
shooting associated with the strong edge
is much larger than that of the weaker
edge. Therefore, linear enhancement tech-
niques are especially well suited for the
enhancement of microcalcifications.

80 100 120 140 160 180 200 220 240 260 280

3. Three level linear enhancement (solid
line) for G,, = 10, overlayed with the
original signal (dotted line).

Nonlinear Enhancement by
Functional Mapping

However, linear enhancement tends
only to emphasize strong edges, which
can lead to inefficient usage of the dy-
namic range available on a display screen.
For example, mammograms enhanced by
a linear operator containing a single obvi-
ous (high intensity) macrocalcification
will result in gross rescaling within the
available dynamic range of a display. This
makes the detection of subtle features of
importance to mammography more diffi-
cult. Below, we show how this problem
may be solved by a simple nonlinear
method. Linear enhancement can be seen
as a mapping of wavelet coefficients by a
linear function Ep(x) = Gmx. A direct ex-
tension of linear enhancement is a non-
linear mapping function, described next.
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Filter Selection and Enhancement
Function Design

For linear enhancement, selection of
the filters G(®) (and thus K(®)) make little
difference. However, the selection of fil-
ters is critical for the nonlinear case. We
chose a discrete Laplacian operator as the
filter G(w). A discrete Laplacian operator
can be implemented by the filter:

Glw) = ~4[sin %T or g[n]=1{1-2.1}

such that g[n] * s{n] = s[n + 1] — 2s|n] +
s[n—11.

In addition, both filters H(®) and K(w)
can be symmetric:

o fol2)]

, I L) S A
and K(w)= W =7 E(‘) {Lm[?ﬂ

|2 2

Our guidelines for designing a non-
linear enhancement function were:

(1) An area of low contrast should be
enhanced more than an area of high con-
trast. This is equivalent to saying that
small values of w;,[i] should be assigned
larger gains.

(2) A sharp edge should not be blurred.

In addition, an enhancement function
may be further subjected to the con-
straints:

(1) Monotonicity, in order not to
change the position of local extrema, nor
create new extrema.

(2) Antisymmetry, E(—x) = —E(x), in
order to preserve phase polarity for “edge
crispening.”

A simple piecewise linear function that
satisfies these conditions is shown in Fig-
ure 4:

x—(K-1T . if x<-T
E(x)=4Kx , if T

x+(K—1)T,if.\‘>T (10)
where K > 1. Note that for 7 > max
{Iw[n]l}, each wavelet coefficient will be
multiplied by a gain of Ko , reducing the
function to a linear function. This implies
that our nonlinear algorithm includes un-
sharp masking as a subset.

Threshold Selection
For each level m, an enhancement op-
erator £, has two parameters: threshold
Tm and gain K,, . In our experimental
studies, gain was the same value across
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4. Enhancement function E(x), for T =
0.5 and K = 20.

-02
80 100 120 140 160 180 200 220 240 260 280

5. 1-D contrast enhancement by three-
level dyadic wavelet analysis with a non-
linear operator, t = 0.06 and G, = 20.
(solid line: enhanced signal; dotted line:
original signal).

levels, such that K,y =Ko ;0<m< N— 1,
and T,, was set in two distinct ways, ac-
cording to the two considerations men-
tioned earlier in this section.

(1) For the purpose of enhancing weak
features, we set threshold T, = t X X max
{lwm [n]l}, where 0 < ¢ < 1 was user
specified. By setting a small 7 across lev-
els, we assured that weak features at dis-
tinct scales were always favored and
effectively enhanced. Figure 5 shows a
numerical example of nonlinear enhance-
ment. Note that enhancement of both
edges is accomplished (especially the
weak edge).

(2) To make efficient use of the dy-
namic range of the computer screen,
thresholds were bound in the following
way: At each level, the magnitudes of
wavelet coefficients were quantized
into 1024 bins, and a distribution (his-
togram) h was computed. For a user
specified 1, 0 <t < 1, an actual threshold
Tn was computed such that
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6. (a) Distribution of wavelet coefficient magnitudes for level 1. (b) Distribution of
wavelet coefficient magnitudes after enhancement processing (¢ = 0.002 and G = 20).

(Sninln))/ (S)-ohln])=1. Thus. the
threshold 7, divided the range of wavelet
coefficients into two regions. The region
with values larger than the threshold 7,
was then compressed, and the lower re-
gion stretched. Figure 6 shows a sample
result for the digital mammogram exhib-
ited in Fig. 10 (a).

We claim that our multiscale algorithm
provides a marked improvement over tra-
ditional techniques in two respects:

1. The efficient multiscale (or multi-
mask) decomposition localizes searches
for features existing within distinct scales,
making the traditional “try-and-fail” strat-
egy of window selection unnecessary.

2. The nonlinear algorithm enhances
small features within each scale without
blurring the edges of larger features. Thus
making possible the simultaneous en-
hancement of features of various size.

Furthermore, artifacts possibly created
by a nonlinear enhancement operator can
be limited by judicious selection of filters
and design constraints. For example, the
arguments presented below assure that no
new extrema (artifacts) will be created
within each channel.

1. Filters are zero-phase. No spatial
shifting of features exists in the transform
space.

2. E(x) is a monotonically increasing
function, and thus will not produce new
extrema points.

3. The reconstruction filters are simply
zero-phase smoothing filters.

The nonlinear enhancement methods
described above do not take into account
the presence of noise. In general, noise
exists in a digitized image due to the im-
aging device and quantization. As a result
of nonlinear processing, noise may be am-
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plified and may diminish the benefits of
contrast enhancement. In the next section,
we present a method to accomplish de-
noising.

Incorporating Denoising into
Enhancement

Unfortunately, denoising is a very dif-
ficult problem. Fundamentally, there is no
absolute boundary to distinguish a feature
from noise. Even if there are known char-
acteristics for a particular type of noise, it
may be theoretically impossible to com-
pletely separate the noise from features of
interest. Therefore, denoising methods
may be seen as ways to suppress very high
frequency and incoherent components of
an input signal.

A very simple method of denoising
that is equivalent to low-pass filtering is
naturally included in a dyadic wavelet
framework. That is, simply discard sev-
eral channels of high spatial frequency,
and enhance channels of lower frequency.
The problem associated with this linear
denoising approach is that edges are
blurred significantly, rendering it unsuit-
able for contrast enhancement. In order to
achieve edge-preserved denoising, more
sophisticated methods based on wavelet
analysis have been proposed. Mallat and
Hwang [32] connected noise behavior to
singularities. Their algorithm was based
on a multiscale edge representation. The
algorithm traced modulus wavelet max-
ima to evaluate local Lipschitz exponents
and deleted maxima points with a negative
Lipschitz value. In addition, Donoho [33]
proposed nonlinear wavelet shrinkage.
This algorithm reduced wavelet coeffi-
cient values towards zero, based on a
level-depedent threshold.

A denoising stage based on wavelet
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shrinkage can be incorporated into our
enhancement algorithm. However, there
are two arguments which favor shrinking
gradient coefficients instead of Laplacian
coefficients [34].

In the previous section, we argued that
nonlinear enhancement should be per-
formed on Laplacian coefficients. There-
fore, in order to incorporate denoising into
our enhancement algorithm, we split the
Laplacian operator into two cascaded gra-
dient operators. Note that:

G, (@)= —4[sin(2'"" m)]2

. {[./wlzcd[%}ﬂ[(,m/qu(%ﬂ ifm=0

2
[011(2'"7'(0)] otherwise

an

where G#(®) = 2j sin(w).

Denoising by wavelet shrinkage [33]
can then be incorporated into this struc-
ture, as illustrated in Fig. 7, where the
shrinking operator can be written as:

|x| - Tn iflxl > Tn‘

0 otherwise.

C(x) = sign(x) {

Gfw) = »Gfo) > E(x) *>

7. Incorporating wavelet shrinkage into
an enhancement framework (level one
shown).

For our application to digital mammogra-
phy, we have chosen a shrinking operator
that is a piece-wise linear and monotoni-
cally non-decreasing function, which will
not introduce artifacts.

Two Dimensional Extension
For processing digital mammograms,
the one-dimensional structures presented
above were simply extended for two di-
mensions. We first adopted the method
proposed by Mallat [31}, shown in Fig. &,
1+|H(0)

2

where filter L{w) = , and H(w),

K(w) and G(w) were the same filters used
in the 1-D case.

However, experimentally we observed
that if we simply modified the two ori-
ented wavelet coefficients independently,
orientation distortions were introduced.
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8. Two-dimensional dyadic wavelet transform (two levels shown).
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9. Denoising and enhancement for the 2-D case (level one shown).
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10. (a) Original mammogram M63. (b) Nonlinear enhancement with denoising, N =

5, Gm =20, ¢t = 0.02 (Type 2 thresholding).

These potentially disastrous artifacts were
avoided by applying a denoising opera-
tion to the magnitude of gradient coefti-
cients, and then applying a nonlinear
enhancement operation on the sum of the
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Laplacian coefficients, as shown in Fig. 9.
For the two oriented gradient coefficients
wx| and wy) , the magnitude M and phase

P were computed as M:,lwxl2 +wy12
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and P = arctan(wyi/wx), respectively.
The denoising operation was then applied
to M, obtaining M’. The denoised coeffi-
cients were then simply restored as wx’|=
M’* cos (P) and wy’1= M"* sin( P), respec-
tively. For the enhancement operation,
notice that the sum of two Laplacian com-
ponents is isotropic. Therefore, we com-
puted the sum of the two Laplacian
components as S = wx2 + wy2 and C =
wx2/S. A nonlinear enhancement operator
was then applied to S only, producing §".
Thus, the two restored components were
wx2=S"*Candwy>2=8"*(1-C).

Experimental Results

In this section, we present some sam-
ples of our experimental results. Film ra-
diographs of the breast were digitized
using a sampling size of 210 microns, on
a Kodak laser film digitizer, with 10-bit
quantization (contrast resolution).

Figure 10 (a) shows a digital mammo-
gram of size 400x512 containing a stellate
lesion. Figure 10 (b) shows a nonlinear
enhancement of the radiograph. The struc-
ture of the lesion is more clearly shown,
as well as the boundary tissue of the
breast. The local effect of contrast en-
hancement can be appreciated more pre-
cisely by the detail of the scan line
comparison shown in Fig. 11.

Figure 12 (a) shows a digital mammo-
gram of size 512x512 containing stellate
lesions. Figure 12 (b) shows the image
after processing by nonlinear enhance-
ment. The structure and borders of the
lesions are well defined, as are the vascu-
lar, nipple and glandular tissues. The
benefit of contrast enhancement can be
seen by the subtle variations of the scan
line profile compared in Fig. 13.

PART 2: INTERVAL WAVELETS

We next describe a method for accom-
plishing an interactive paradigm for adap-
tive contrast enhancement [23-26, 28]. In
this study, we have investigated Deslauri-
ers-Dubuc interpolation wavelets [35, 36]
constructed on the interval to compute a
multiscale representation. Mammograms
were reconstructed from transform coeffi-
cients modified at each level by local and
global nonlinear operators. This repre-
sentation was attractive because it sub-
dued the “edge effects” of traditional
multiresolution representations (based on
perodization of a finite signal to a signal
on aline; or simply adding zeros to extend
a signal on a line). The shape of the basis
functions for these representations can be

541

Authorized licensed use limited to: Columbia University. Downloaded on April 23, 2009 at 13:05 from IEEE Xplore. Restrictions apply.



11. Sample horizontal scan line from
M63 (107 pixels from the top) compar-
ing enhancement with original profile
(dotted line: original, solid line: en-
hanced)

symmetric or antisymmetric, and allow
for perfect reconstruction. In this paper,
we applied this analysis to decompose an
arbitrary region of interest of a mammo-
gram, so that a selected region could be
analyzed independent of its surrounding
context.

In many applications, a signal has fi-
nite length, such that the signal lives on
the interval [0, 1}, or in the two-dimen-
sional case, an image. Cohen and
Daubechies [37] and Jawerth {40] adapted
multiresolution analysis on the line to “life
on the interval,” where a sequence of suc-
cessive approximation spaces on the inter-
val were constructed as:

Ujez V; =L7[0.1].Njez V; = {0}

By defining W; as an orthogonal com-
plement of V;in -Vj—{ , V;— = V;@W;, the
space L’ [0, 1] can be represented as a
direct sum L2 [0, 1] = ®jcz W;.

Deslauriers-Dubuc Interpolation

In this study, we investigated multire-
solution representations of the Deslauri-
ers-Dubuc fundamental functions [35,
36). Figure 14 shows a fundamental solu-
tion of Deslauriers-Dubuc interpolation
and its associated wavelet (D = 3).

Donoho [38] showed how to adapt the
Deslauriers-Dubuc interpolating trans-
form to “life on the interval.” Suppose that
0j« is a scaling function on the line. The

scaling functions on the interval \y‘j",’f’ v

can be derived as follows:

(1) Within the interior of the interval,
they are simply the same as on the real
line:
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(a)

(b)

12. (a) Original mammogram image M87. (b) Nonlinear enhancement with denois-
ing, N =5, G = 20,1t = 0.1 (Type 1 thresholding).

oM =0, D<k<2/—D-1

(2) On the edges of the interval, they
are dialations of the boundary adjusted
functions:
oimer =272 (27 x ~k), 0< k< D, and
=229 (27 x~2) —k -1},

intery

¢j,2’—k—1
for 0<k<D
Thus for the spaces V;[0, 1] we can define
the functions:
left
07y 0<ks D
9k D<k<2/-D-1
okt n i .
o7 2/ -D-1<k<2/

interv _
bk =

Similarly, we can construct wavelets on
the interval for the detail spaces W;[0, 1]:

200

150

100

50 100

150 200 250 300 350 400 450 500

13. Sample horizontal scan line from
MS87 (located 210 lines from the top)
comparing enhancement with original
profile (dotted line: original, solid line:
enhanced).

In addition, Donoho [38] showed that if jo
is a non-negative integer satisfying 20>

1 . - .
‘Vf{' 0<k<|D/2] 2D + 2 (defining non-interacting bounda-
wiier =4y, | D/2]<k<2/ - D/2]  ries), then thereexists a collection of func-
‘l!;ifh' 2/ -|DI2]<k< 27 tions ¢’;’,’f”’ and \u’;’,’f”’ such that every fe
C[0, 1] has a representation:
1.2
08
o8 06
06 0.4
04 \
02 02
0 -0.4
06
02 4 2 1 0 1 2 3 3 2 1 0 1 2 3

(b)

14. (a) Refinement relation for Deslauries-Dubuc interpolation. (b) Interval wavelet

plot, D =3.
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Table 1: Filters for D= 3.*

n 0 1 2 3
LEFon 1.0000 o 0 0
LEFin 0.3125 0.9375 -0.3125 0.0625
REF.-2 -n 2.1875 -2.1875 1.3125 -0.3125
REF-1 .-n 1.0000 0 0 0

* LEF = Left edge filter
REF = Right edge filter

Table 2: Interior Filter for D =3

n 0 1 2

3

4 5 6 7

0.5625

UF(n) -0.0625| 0

1.0000

0.5625 0 -0.0625 0

2/
intery interv
KO+ Y Xd v
J2jo k=0

2J0~1

=% s
k=0

with a uniform convergence of partial
sums j < j; as j1 — oo. For a detailed
construction of q)jf’,i"" and wi{',’f”’ please
refer to reference [38]. Tables 1 and 2
show the discrete filters used in our study
for the case of D = 3. Figure 15 shows the
boundaries of the associated interval wav-
elets. An example of the processing struc-
tures for the one dimensional case is
shown is Fig. 16.

Enhancement Techniques

To accomplish multiscale contrast en-
hancement, both local and global tech-
niques for image enhancement were
applied to each multiresolution repre-
sentation. For the interval wavelet basis,
there were four components in the trans-
form space: horizontal, vertical, diagonal,
and a DC component, represented by d';,
d's, d's; ', respectively, where i is the
transform level. Let s be the original mam-
mogram, g be the function designed to
emphasize features of importance within
a selected level i, and L be the number of
levels in a transform. Then an enhanced
image may be given by:

L

§= 2w el ) a3 ) o))

i=l (12)

In general, by defining a function g, we

can denote specific enhancement schemes

for modifying the coefficients within dis-
tinct levels of scale-space.

Local Enhancement Techniques

A problem for image enhancement in
digital mammography is the ability to em-
phasize mammographic features while re-
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ducing the enhancement of noise. In [23-
26] we presented a local enhancement
technique for digital mammography
based on multiscale edges. In this study,
local enhancement was supported by:

di(m.n) ={d§ (m,n), if e'.(m,n) < Tf
g'd{(m,n), if &' (m,n)>T"
where m and n denote d coordinates in the
spatial domain, ¢' was the edge set corre-
sponding to transform space component
d', g' was a local gain, and 7' was a
threshold at level i, g' and 7" were selected
adaptively. The edge set ' of d'; was the
local maxima of d'i along the horizontal
direction. For d'; and d'3, the direction was
along the vertical and diagonal orienta-
tions (45°), respectively. Specifically:

é'(m,n) =
|di(m n)‘ if ’dl' (m,n)‘ > Idli(m+ l,n)'and
e ld,’(m,n)l > Idl'(m - l,n)]
0 otherwise

The processing of d>and d'3 is similar. By

replacing d'1; d'2 and &3 in Eq. (1) with
corresponding modified components a; ,
éﬁ and ,3; we obtain an enhanced image

~

s.

Multiscale Adaptive Gain

In this approach, we suppressed pixel
values of very small amplitude, and en-
hanced only those pixels that were larger
than a certain threshold, 7, within each
level of transform space. We designed the
following function to accomplish this
non-linear operation [28]:

)= a[sigm(c(y - b)) - sigm(—c(y + b))]

(13)
where:
a= 1
B sigm(c(1 - b)) - sigm(—c(1 + b))

0<b<l,
sigm(y, jis defined
byso EM0) =
sigm(y) =
& (y) 1+

and, b and c control the threshold and rate
of enhdncement, respectively. It can be
easily shown that fy) is continuous and
monotonically increasing within the inter-
val [-1, 1] (similar to histogram equaliza-
tion). Furthermore, a derivative of f(y) of
any order exists and is continuous. There-
fore, enhancement accomplished by f (y)
will not introduce any new discontinuities
(artifacts).

Experimental Results and Discussion

Preliminary results have shown that
the multiscale processing techniques de-
scribed above can make unseen or barely

13| 14 15

L ’ |

Sample signal length 2’ = 16, D = 3.

L Support of left wavelet, [0-1].

1 Support of interior wavelet, [2-13].

R Support of right wavelet, [14-15].

15. Example of interval wavelet boundaries.
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—  Refine '

S

V2
L

D‘ 4\2

discard one sample out of two
| K multiplication by x

sj+1

division by K

discard one sample out of two

insert one zero between each sample

Symbol \_T_l

(b)
an
— left =L U
oA
Refine

Symbol @ means process  (f

means convolve with filter B

(o)

16. Processing overview for analysis and synthesis by interval wavelets. In the above

diagrams, K = V2 . For simplicity, only one-dimensional case is shown. (a) Decompo-
sition structure. (b) Reconstruction structure. (c) Refinement processing structure.

seen features of a mammogram more ob-
vious, without requiring additional radia-
tion. Our study suggests that these
techniques can improve the visualization
of features of importance to mammogra-
phy and assist the radiologist in the early
detection of breast cancer.

Mathematical models of phantoms
were constructed to validate our enhance-
ment techniques against false positives
arising from possible artifacts introduced
and to evaluate contrast improvement
quantitatively. Our models included fea-
tures of regular and irregular shapes and
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sizes of interest in mammographic imag-
ing, such as microcalcifications, cylindri-
cal and spicular objects, and conventional
masses. Techniques for “blending” a nor-
mal mammogram with the images of
mathematical models were developed.
The purpose of these experiments was to
test the performance of our processing
techniques on inputs known “a priori,”
using mammograms where the objects of
interest were deliberately obscured by
normal breast tissues. The “imaging” jus-
tification for “blending” is readily appar-
ent; a cancer is visible in a mammogram

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

because of its (slightly) higher X-ray at-
tenuation, which causes a lower radiation
exposure on the film in the appropriate
region of a projected image.

Figure 18 (a) shows an example of a
mammogram whereby the mathematical
phantom shown in Fig. 18 (b) has been
blended into a clinically-proven cancer-
free mammogram Fig. 18 (a). The image
shown in Fig. 18 (c) was constructed by
adding the amplitude of the mathematical
phantom image to the cancer free mam-
mogram, followed by local smoothing.

Before applying our processing tech-
niques, a computer simulated phantom
was developed to both characterize and
optimize each wavelet based enhance-
ment algorithm [13], such as the levels of
analysis, threshold (T) and gain (c) pa-
rameter values. This early study enabled
us to compute an enhancement factor
(EF), which was used to quantitatively
measure algorithm performance. EF was
defined as the ratio of output to input
contrast noise ratios (CNR). The study
found that computed EF values correlated
well with the feature detection perform-
ance of radiologists.

In addition, radiologists at Shands
Hospital at the University of Florida vali-
dated that processing the blended mam-
mogram with our local enhancement
techniques introduced no significant arti-
facts and preserved the shapes of the
known mammographic features (calcifi-
cations, dominant masses, and spicular
lesions) contained in the original mathe-
matical phantom.

Enhancement by multiscale edges pro-
vided a significant improvement in local
contrast for each feature included in the
blended mammogram. A quantitative
measure of contrast improvement can be
defined by a contrast improvement index

(CID), CII = SBrocessed | yhere Chrocessed
Original

and Coriginal are the contrast values for a

region of interest in the processed and

original images, respectively.

In this paper we adopted a version of
the optical definition of contrast intro-
duced by Morrow, et al. [39]. The contrast
C of an object was defined by C = u;

f+b
where f was the mean gray-level value of
a particular object in the image (fore-
ground), and b was the mean gray-level
value of a surrounding region (back-
ground). This definition of contrast has
the advantage of being independent of the
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17. (a) Interactive selection of ROI by radiologist. (b) ROI is processed based on ten-
sor product: each row is processed, followed by the processing of each column.

18. (a) Original dense mammogram, M56. (b) Mathematical phantom. (¢) Mammo-

gram M56 blended with phantom image.
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actual range of gray levels in the image.
For each feature included in the mathe-
matical phantom, local masks were de-
fined to separate the foreground and
background regions of each feature in the
blended mammogram.

Figure 19 (a) shows the result after
processing the blended mammogram with
adaptive histogram equalization (AHE).
Figure 19 (b) was obtained after recon-
structing the blended mammogram from
interval wavelet transform coefficients
modified by multiscale adaptive gain
processing (GAIN). Figure 19 (c) shows
the result after processing the blended
mammogram with unsharp masking
(UNS). Figure 19 (d) shows the result
obtained after reconstructing the blended
mammogram from interval wavelet trans-
form coefficients modified by multiscale
edges (EDGE). Figure 20 shows enlarged
areas (16X) containing each feature in the
processed mammogram for each method
of contrast enhancement. The images in
each row of Fig. 20 were rescaled by the
same linear transformation.

Table 3 shows the contrast values for
the original and enhanced mammographic
features shown in Fig. 19, while Table 4
shows the values for CIL From the two
tables, we observed that both GAIN and
EDGE enhancement methods performed
significantly better than unsharp masking
(UNS) and adaptive histogram equaliza-
tion (AHE).

Figure 21 demonstrates the improve-
ment of local contrast accomplished by
GAIN for a sample scan line profile taken
from cross sections of each features. Figure
22 shows the improvement of local contrast
for the same scan line accomplished by the
EDGE method. Note that in all cases con-
trast was improved while preserving the
overall shape of each feature profile.

By applying wavelets constructed on
the interval, we can more efficiently ac-
complish enhancement of an arbitrary re-
gion of interest (ROI) of a digital
mammogram. Figure 23 (a) shows the
enhancement of an arbitrary region of in-
terest using adaptive gain processing of a
DD interval wavelet interpolation basis.
Figure 23 (b) shows the enhancement of
an arbitrary region of interest using mul-
tiscale edges of the same interval wavelet
basis. The decomposition of the selected
ROI was computed by processing hori-
zontal and vertical “scan lines.” Enhance-
ment was then achieved by modifying
only the coefficients within the ROI, and
then simply reconstructing.
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(© (d)

19. Blended mammogram: (a) Enhancement by adaptive histogram equalization, (b)
Enhancement by adaptive gain processing of DD interpolation coefficients, (c) En-
hancement by traditional unsharp masking, (d) Enhancement by multiscale edges of
DD interpolation coefficients.

-

(a) (b) () (d) (e)

20. Contrast enhancement of features in blended mammeogram. Phantom mam-
mographic features from top to bottom: minute microcalcification cluster, microcal-
cification cluster, spicular lesion, circular (arterial) calcification, and a
well-circumscribed mass. (a) Original image. (b) Enhancement by unsharp masking.
(c) Enhancement by adaptive histogram equalization. (d) Enhancement by adaptive
gain processing of DD wavelet coefficients. (e) Local enhancement by multiscale
edges of DD wavelet coefficients.
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By constraining the enhancement to a
specific region, computation costs were
greatly reduced. For example, Table 5
shows the comparison of actual computa-
tion time for processing an entire mammo-
gram (complete image matrix) versus a
selected ROL.

In summary, methods for accomplish-
ing adaptive contrast enhancement by a
multiscale representation were investi-
gated. Contrast enhancement was applied
to features of specific interest to mam-
mography including masses, spicules and
microcalcifications. Multiresolution rep-
resentations provided an adaptive mecha-
nism for the local emphasis of such
features blended into digitized mammo-
grams. In general, improvements in im-
age contrast based on multiscale
processing were superior to those ob-
tained using competitive algorithms of
unsharp masking and adaptive histogram
equalization.

Using Deslauriers-Dubuc interpola-
tion interval wavelets, we demonstrated
the enhancement of arbitrary regions of
interest. This can provide radiologists
with an interactive capability for enhanc-
ing only suspicious regions of a mammo-
gram, at a reduced computational cost.

Condlusion

In both studies above, multiresolution
representations provided an adaptive
mechanism for the local emphasis of fea-
tures of importance to mammography. In
general, improvements in image contrast
for multiscale image processing algo-
rithms were superior to those obtained
using existing competitive algorithms.
These initial results are encouraging and
suggest that wavelet based image process-
ing algorithms could play an important
role in improving the imaging perform-
ance of digital mammography.

In Part 2, features blended into the
mammograms were “idealized” repre-
sentations of the types of objects that are
of primary interest to mammographers.
The resultant mammographic images
were appropriate for the purpose of dem-
onstrating improved image contrast made
possible by wavelet based image process-
ing algorithms. These images were also
useful for comparing multiscale wavelet
based algorithms with existing image
processing algorithms. The test results ob-
tained in this study, however, cannot be
directly extrapolated to clinical mammog-
raphy. In addition, it is also important to
study possible image artifacts introduced
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Table 3: Contrast Values*

Feature Coriginal Cuns CAHE CGAIN CEDGE
Minute micrcalcifica- 0.0507 0.0674 0.0428 0.3952 0.6454
tion cluster
Microcalcification 0.0332 0.1227 0.1652 0.3626 0.3678
cluster
Spicular lesion 0.0287 0.0579 0.1025 0.3608 0.3949
Circular (arterial) cal- 0.0376 0.0823 0.1677 0.3014 0.4021
cification
Well-circumscribed 0.0035 0.0052 0.1091 0.0344 0.0397
mass

*Coriginal for features in the orignal blended mammorgram M56, CyNs for enhancement by unsharp masking, CAHE for enhancement by
adaptive histogram equalization, CEDGE for enhancement by multiscale edges obtained from Deslauriers-Dubuc interpolation (EDGE),
and CgaAIN for global enhancement by adaptive gain processing of Deslauriers-Dubuc interpolation (GAIN).

3

Table 4: Contrast Improvement Index*

Feature Cllyns CllaHE CligaiN CllepGe

Minute microcalcification 1.3294 0.8842 7.7949 12.7298
cluster

Microcalcification cluster 3.6958 4.9759 10.9217° 11.0783
Spicular lesion 2.0174 3.5714 12.5714 13.7596
Circular (arterial) calcifica- 2.1888 4.4601 8.0160 11.3429
tion

Well-circumscribed mass 1.4857 31.1714 9.8286+* 11.3429

* Cli for enhancement by unsharp masking (UNS), adaptive histogram equalization (AHE), and by local enhancement of multiscale
edges obtained from Deslauriers-Dubuc interpolation (GAIN).

Table 5: Computation Costs*

Matrix size (number of pixels) Tmatrix TRoI Tmatrix/TROI
512x 512 748 135 5.54
1024 x 1024 5760 135 42.67

unodel 10/30.

*in seconds. Tmatrix represents the time required to process an entire mammogram, while TRoI represents the time to process only a se-
lected ROI. The number of pixels within the ROI shown in Fig. 12 was 76,267. The program was executed on the Sun SparcStation

by new wavelet filters, which may in-
crease the false positive rate.

Thus, it is essential that further studies
be performed to identify the most promis-
ing approaches of multiscale based image
processing algorithms. The identification
of the most appropriate basis functions for
enhancing specific types of mam-
mographic features needs further investi-
gation. The best way of selecting wavelet
coefficients for enhancement, and their
degree of enhancement, also merit sys-
tematic analysis. Ultimately, however, the
objective of any image processing is to
improve the visibility of clinically signifi-

September/October 1995

cant feature. Accordingly, the mast prom-
ising algorithms require clinical evalu-
ation. In the near future, such tests will be
designed to measure the ability of multis-
cale image processing to significantly im-
prove the sensitivity, specificity and
overall accuracy of mammographic inter-
pretation.
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21. Sample scan lines displaying enhancement by the method of adaptive gain proc-
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