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ABSTRACT 

Wavelet transforms and other multi-scale analysis functions have been used for compact signal 

and image representations in de-noising, compression and feature detection processing problems 

for about twenty years. Numerous research works have proven that space-frequency and space-

scale expansions with this family of analysis functions provided a very efficient framework for 

signal or image data. 

The wavelet transform itself offers great design flexibility. Basis selection, spatial-frequency 

tiling, and various wavelet threshold strategies can be optimized for best adaptation to a 

processing application, data characteristics and feature of interest. Fast implementation of wavelet 

transforms using a filter-bank framework enable real time processing capability. Instead of trying 

to replace standard image processing techniques, wavelet transforms offer an efficient 

representation of the signal, finely tuned to its intrinsic properties. By combining such 

representations with simple processing techniques in the transform domain, multi-scale analysis 

can accomplish remarkable performance and efficiency for many image processing problems.   
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Multi-scale analysis has been found particularly successful for image de-noising and 

enhancement problems given that a suitable separation of signal and noise can be achieved in the 

transform domain (i.e. after projection of an observation signal) based on their distinct 

localization and distribution in the spatial-frequency domain. With better correlation of 

significant features, wavelets were also proven to be very useful for detection 

{jin_Mallat_1992a} and matching applications {jin_Strickland_1995}.  

One of the most important features of wavelet transforms is their multi-resolution representation. 

Physiological analogies have suggested that wavelet transforms are similar to low level visual 

perception. From texture recognition, segmentation to image registration, such multi-resolution 

analysis gives the possibility of investigating a particular problem at various spatial-frequency 

(scales). In many cases, a “coarse to fine” procedure can be implemented to improve the 

computational efficiency and robustness to data variations and noise.    

Without trying to cover all the issues and research aspects of wavelet in medical imaging, we 

focus our discussion in this chapter to three topics: image de-noising/enhancement, image 

segmentation and image registration using wavelet transforms. We will introduce the wavelet 

multi-scale analysis framework and summarize related research work in this area and describe 

recent state-of-the-art techniques.  

1. Introduction 

Wavelets have been widely used in signal and image processing for the past 20 years. Although a 

milestone paper by Grossmann and Morlet {jin_Grossman_1984} was considered as the 

beginning point of modern wavelet analysis, similar ideas and theoretical bases can be found back 

in early 20th century {jin_Haar_1910}. Following two important papers in late 1980s by S. Mallat 

{jin_Mallat_1989} and I. Daubechies {jin_Daubechies_1988}, more than 9,000 journal papers 

and 200 books related to wavelets have been published {jin_Unser_2003a}.  
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Wavelets were first introduced to medical imaging research in 1991 in a journal paper describing 

the application of wavelet transforms for noise reduction in MRI images. {jin_Weaver_1991}. 

Ever since, wavelet transforms have been successfully applied to many topics including 

tomographic reconstruction, image compression, noised reduction, image enhancement, texture 

analysis/segmentation and multi-scale registration. Two review papers in 1996 {jin_Unser_1996} 

and 2000 {jin_Laine_2000} provide a summary and overview of research works related to 

wavelets in medical image processing from the past few years. Many related works can also be 

found in the book edited by A. Aldroubi and M. Unser {jin_Aldroubi_1996}. More currently, a 

special issue of IEEE Transactions on Medical Imaging {jin_Unser_2003a} provides a large 

collection of most recent research works using wavelets in medical image processing. 

The purpose of this chapter is to summarize the usefulness of wavelets in various problems of 

medical imaging. The chapter is organized as follows. Section 2 overviews the theoretical 

fundamentals of wavelet theory and related multi-scale representations. As an example, the 

implementation of an over-complete dyadic wavelet transform will be illustrated. Section 3 

includes a general introduction of image de-noising and enhancement techniques using wavelet 

analysis. Section 4 and 5 will summarize the basic principles and research works in literature for 

wavelet analysis applied to image segmentation and registration.    

2. Wavelet Transform and Multi-scale Analysis 

One of the most fundamental problems in signal processing is to find a suitable representation of 

the data that will facilitate an analysis procedure. One way to achieve this goal is to use 

transformation, or decomposition of the signal on a set of basis functions prior to processing in 

the transform domain. Transform theory has played a key role in image processing for a number 

of years, and it continues to be a topic of interest in theoretical as well as applied work in this 

field. Image transforms are used widely in many image processing fields, including image 

enhancement, restoration, encoding, and description {jin_Jain_1989}.  
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Historically, the Fourier transform has dominated linear time-invariant signal processing. The 

associated basis functions are complex sinusoidal waves i te ω  that correspond to the eigenvectors 

of a linear time-invariant operator. A signal ( )f t  defined in the temporal domain and its Fourier 

transform ˆ ( )f ω , defined in the frequency domain, have the following relationships 

{jin_Jain_1989; jin_Papoulis_1987}: 

 ˆ ( ) ( ) ,i tf f t e dtωω
+∞ −

−∞
= ∫   (1) 

 1 ˆ( ) ( ) .
2

i tf t f e ω dω ω
π

+∞

−∞
= ∫  (2) 

Fourier transform characterizes a signal ( )f t  via its frequency components. Since the support of 

the bases function i te ω  covers the whole temporal domain (i.e infinite support), ˆ ( )f ω  depends 

on the values of ( )f t  for all times. This makes the Fourier transform a global transform that 

cannot analyze local or transient properties of the original signal ( )f t .  

In order to capture frequency evolution of a non-static signal, the basis functions should have 

compact support in both time and frequency domain. To achieve this goal, a windowed Fourier 

transform (WFT) was first introduced with the use of a window function w(t) into the Fourier 

transform {jin_Mallat_1998}: 

 ( , ) ( ) ( ) .iSf t f w t e dωτω τ τ
+∞ −

−∞
= −∫ τ  (3) 

The energy of the basis function , ( ) ( ) i tg t w t e ξ
τ ξ τ −= −  is concentrated in the neighborhood of  time 

τ  over an interval of size tσ , measured by the standard deviation of 2g . Its Fourier transform 

is )(
,ˆ ˆ( ) ( ) ig w e τ ω ξ

τ ξ ω ω ξ − −= − , with energy in frequency domain localized aroundξ , over an interval 

of size ωσ . In a time-frequency plane ( , )t ω , the energy spread of what is called the atom  

is represented by the Heisenberg rectangle with time width

, ( )g tτ ξ

tσ  and frequency width ωσ . The 
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uncertainty principle states that the energy spread of a function and its Fourier transform cannot 

be simultaneously arbitrarily small, verifying: 

 
1 .
2t ωσ σ ≥  (4) 

Shape and size of Heisenberg rectangles of a windowed Fourier transform therefore determine the 

spatial and frequency resolution offered by such transform.  

Examples of spatial-frequency tiling with Heisenberg rectangles are shown in Figure 1.  Notice 

that for a windowed Fourier transform, the shape of the time-frequency boxes are identical across 

the whole time-frequency plane, which means that the analysis resolution of a windowed Fourier 

transform remains the same across all frequency and spatial locations. 

      
   (a)      (b)       (c)        (d) 

Figure 1: Example of spatial-frequency tiling of various transformations. x-axis: spatial resolution. y-

axis: frequency resolution. (a) discrete sampling (no frequency localization 

). (b) Fourier transform (no temporal localization). (c) windowed Fourier transform (constant 

Heisenberg boxes). (d) wavelet transform (variable Heisenberg boxes). 

To analyze transient signal structures of various supports and amplitudes in time, it is necessary 

to use time-frequency atoms with different support sizes for different temporal locations. For 

example, in the case of high frequency structures, which vary rapidly in time, we need higher 

temporal resolution to accurately trace the trajectory of the changes; on the other hand, for lower 

frequency, we will need a relatively higher absolute frequency resolution to give a better 

measurement on the value of frequency. We will show in the next section that wavelet transform 

provide a natural representation which satisfies these requirements, as illustrated in Figure 1 (d). 
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2.1 Continuous Wavelet Transform  

A wavelet function is defined as a function 2 ( )Lψ ∈ \ with a zero average {jin_Grossman_1984; 

jin_Mallat_1998}: 

     ( ) 0.t dtψ
+∞

−∞
=∫                    (5) 

It is normalized 1ψ = , and centered in the neighborhood of 0t = . A family of time-frequency 

atoms is obtained by scaling ψ  by s and translating it by u:  

 ,
1( ) ( ).u s

t ut
ss

ψ ψ −
=  (6) 

A continuous wavelet transform decomposes a signal over dilated and translated wavelet 

functions. The wavelet transform of a signal at time u and scale s is performed as: 2 ( )f L∈ \

 *
,

1( , ) , ( ) ( ) 0u s
t uWf u s f f t dt

ss
ψ ψ

+∞

−∞

−
= = ∫ =

.
 (7) 

Assuming that the energy of ˆ ( )ψ ω is concentrated in a positive frequency interval centered at η , 

the time-frequency support of a wavelet atom , ( )u s tψ is symbolically represented by a Heisenberg 

rectangle centered at ( , / )u sη , with time and frequency supports spread proportional to s and 1/s 

respectively. When s varies, the height and width of the rectangle change but its area remains 

constant, as illustrated by Figure 1 (d). 

For the purpose of multi-scale analysis, it is often convenient to introduce the scaling function φ , 

which is an aggregation of wavelet functions at scales larger than 1. The scaling function φ  and 

the wavelet function ψ  are related through the following relations:  

 
2 2

1
ˆ ˆ( ) ( ) dss

s
φ ω ψ ω

+∞
= ∫  (8) 

The low-frequency approximation of a signal f at the scale s is computed as: 
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 ( , ) ( ), ( )sLf u s f t t uφ=< − > , (9) 

with 

 1( )s
tt
ss

φ φ ⎛ ⎞= ⎜ ⎟
⎝ ⎠ .

 (10) 

For a one-dimensional signal f, the continuous wavelet transform (7) is a two-dimensional 

representation. This indicates the existence of redundancy that can be reduced and even removed 

by sub-sampling the scale parameter s and translation parameter u. 

An orthogonal (non-redundant) wavelet transform can be constructed constraining the dilation 

parameter to be discretized on an exponential sampling with a fixed dilation steps and the 

translation parameter by integer multiples of a dilation dependent step {jin_Daubechies_1992}. 

In practice, it is convenient to follow a dyadic scale sampling where 2is =  and  , with i 

and k integers. With dyadic dilation and scaling, the wavelet basis function, defined as: 

2iu = ⋅k

2

,

( , )

1 2( )
22

j

j n jj
j n Z

t ntψ ψ
∈

⎧ ⎫⎛ ⎞−⎪ ⎪=⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

form an orthogonal basis of . 2 ( )L R

For practical purpose, when using orthogonal basis functions, the wavelet transform defined in 

Equation (7) is only computed for a finite number of scales ( 2J ) with J=0,…,N, and a low 

frequency component ( , 2 )JLf u  (often referred to as the DC component) is added to the set of 

projection coefficients corresponding to scales larger than 2J  for a complete signal 

representation.  

In medical image processing applications, we usually deal with discrete data. We will therefore 

focus the rest of our discussion on discrete wavelet transform rather than continuous ones.  
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2.2 Discrete Wavelet Transform and Filter Bank 

Given a 1-D signal of length N, { ( ), 0, , 1}f n n N= −" , the discrete orthogonal wavelet 

transform can be organized as a sequence of discrete functions according to the scale 

parameter 2 js = : 

 { }[1, ],{ }J j j JL f W f ∈  (11) 

where (2 , 2 )J J
JL f Lf n=  and . (2 ,2 )j j

jW f Wf n=

Wavelet coefficients jW f at scale 2 js =  have a length of / 2 jN  and the largest decomposition 

depth J is bounded by the signal length N as ( 2sup( ) logJ N= ). 

For fast implementation (such as filter bank algorithms), a pair of conjugate mirror filters (CMF) 

h and g can be constructed from the scaling function φ and wavelet function ψ  as follows: 

1[ ] ( ), ( )
22
th n t nφ φ=< − >  and 

1[ ] ( ), ( )
22
tg n t nψ φ=< − >                    (12) 

A conjugate mirror filter k satisfies the following relation: 

2 2ˆ ˆ( ) ( ) 2k kω ω π+ + =  and ˆ(0) 2k =              (13) 

It can be proven that h is a low-pass filter, and g is a high-pass filter. The discrete orthogonal 

wavelet decomposition in Equation (11) can be computed by applying these two filters to the 

input signal, and recursively decompose the low-pass band, as illustrated in Figure 2. A detailed 

proof can be found in {jin_Daubechies_1992}.  

For orthogonal basis, the input signal can be reconstructed from wavelet coefficients computed in 

Equation (11) using the same pair of filters, as illustrated in Figure 3.  
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Figure 2: Illustration of orthogonal wavelet transform of a discrete signal f(n) with CMF. A two-level 

expansion is shown.  

 
Figure 3: Illustration of inverse wavelet transform implemented with CMF. A two-level expansion is 

shown. 

It is easy to prove that the total amount of data after a discrete wavelet expansion as shown in 

Figure 2 has the same length to the input signal. Therefore, such transform provides a compact 

representation of the signal suited for data compression as wavelet transform provides a better 

spatial-frequency localization. On the other hand, since the data was downsampled at each level 

of expansion, such transform performs poorly on localization or detection problems. 

Mathematically, the transform is variant under translation of the signal (i.e. is dependent of the 

downsampling scheme used during the decomposition), which makes it less attractive for analysis 

of non-stationary signals. In image analysis, translation invariance is critical to preserve all the 

information of the signal and a redundant representation needs to be applied.  

f(n) 

h[-n] 

g[-n] 

v 2 

v 2 

L1 f

W1 f

L2 fh[-n] v 2

W2 f g[-n] v 2

downsampling by 2 v 2

f(n)

g ^ 2 W2 f 

h h^ 2 ^ 2L2 f L1 f 

g ^ 2W1 f

upsampling by 2 ^ 2
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In the dyadic wavelet transform framework proposed by Mallat and Zhong {jin_Mallat_1992b}, 

sampling of the translation parameter was performed with the same sampling period as the input 

signal to preserve translation invariance.  

A more general framework of wavelet transform can be designed with different reconstruction 

and decomposition filters that form a bi-orthogonal basis. Such generalization provides more 

flexibility in the design of the wavelet functions. In that case, similarly to Equation (11), the 

discrete dyadic wavelet transform of a signal s(n) is defined as a sequence of discrete functions 

  (14) [1, ]{ ( ),{ ( )} } ,M m m M nS s n W s n ∈ ∈]

where ( ) ( )MS s n s nMφ= ∗  represents the DC component, or the coarsest information from the 

input signal.  

Given a pair of wavelet function ( )xψ and reconstruction function ( )xχ , the discrete dyadic 

wavelet transform (decomposition and reconstruction) can be implemented with a fast filter bank 

scheme using a pair of decomposition filters H, G and a reconstruction filter K 

{jin_Mallat_1992b}. 

 ˆ(2 ) ( ) ( ),i se Hω ˆφ ω ω φ−= ω

ˆ

  

 ˆ (2 ) ( ) ( ),i se Gωψ ω ω ψ−= ω

ˆ

 (15) 

 ˆ (2 ) ( ) ( ).i se Kωχ ω ω χ= ω   

where s is a ( )xψ dependent sampling shift. The three filters satisfy: 

 2( ) ( ) ( ) 1.H G Kω ω ω+ =  (16) 

Defining ( ) ( )i s
sF e Fωω ω−= , where F is either H, G or K, we can construct a filter bank 

implementation of the discrete dyadic wavelet transform as illustrated in Figure 4. Filters 

(2 )mF ω  defined at level m+1 (i.e., filters applied at wavelet scale ) are constructed by 2m
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inserting  zeros between subsequent filter coefficients from level 1 (2m −1 ( )F ω ). Non-integer 

shifts at level 1 are rounded to the nearest integer. This implementation design is called 

“algorithme à trous” {jin_Holschneider_1989; jin_Shensa_1992}, and has a complexity that 

increases linearly with the number of analysis levels. 

 
Figure 4: Filter bank implementation of a one-dimensional discrete dyadic wavelet transform 

decomposition and reconstruction for three levels of analysis. ( )sH ω∗ denotes the complex conjugate 

of ( )sH ω . 

In image processing applications, we often deal with two, three or even higher dimensional data. 

Extension of the framework to higher dimension is quite straightforward. Multi-dimensional 

wavelet bases can be constructed with tensor products of separable basis functions defined along 

each dimension. In that context, a N-D discrete dyadic wavelet transform with M analysis levels 

is represented as a set of wavelet coefficients:  

 { }1 2
[1, ],{ , , , }N

M m m m m MS s W s W s W s ="
 (17) 
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where  represents the detailed information along the kth coordinate at scale m. 

The wavelet basis is dilated and translated from a set of separable wavelet functions 

,k
mW s s ψ=< >k

m

N, 1,k kψ = " as for example in 3D: 

 
1 2 3

31 2
, , , 3 / 2

1( , , ) ( , , ), 1, 2,3.
2 2 2 2

k k
m n n n m m m m

z nx n y nx y z kψ ψ −− −
= =  (18) 

 

Figure 5: Filter bank implementation of a multi-dimensional discrete dyadic wavelet transform 

decomposition (left) and reconstruction (right) for two levels of analysis.  

In this framework, reconstruction with a N-D dyadic wavelet transform requires a non-separable 

filter  to compensate the inter-dimension correlations. This is formulated in a general context 

as: 

NL

 
2

1 1 1
1 1

( ) ( ) ( , , , , , ) ( ) 1
NN

l l N l l N l
l l

K G L Hω ω ω ω ω ω ω− +
= =

+ =∑ ∏… …  (19) 

Figure 5 illustrates a filter bank implementation with a multi-dimensional discrete dyadic wavelet 

transform. For more details and discussions we refer to {jin_Koren_1998}. 
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2.3 Other Multi-scale Representations 

Wavelet transforms are part of a general framework of multi-scale analysis. Various multi-scale 

representations have been derived from the spatial-frequency framework offered by wavelet 

expansion, many of which introduced to provide more flexibility for the spatial-frequency 

selectivity or better adaptation to real world applications.  

In this section, we briefly review several multi-scale representations derived from wavelet 

transforms. Readers with intention to investigate more theoretical and technical details are 

referred to the text books on Gabor analysis {jin_Feichtinger_1998}, wavelet packets 

{jin_Wickerhauser_1993}, and the original paper on brushlet {jin_Meyer_1997}.  

2.3.1 Gabor Transform and Gabor Wavelets 

In his early work, D. Gabor {jin_Gabor_1946} suggested an expansion of a signal  in terms 

of time-frequency atoms  defined as. 

( )s t

, ( )m ng t

 , ,
,

( ) ( ),m n m n
m n

s t c g t=∑  (20) 

 where ,  are constructed with a window function , combined to a complex 

exponential:  

, ( )m ng t ,m n Z∈ ( )g x

  (21) 2
, ( ) ( ) .i mbt

m ng t g t na e π= −

D. Gabor also suggested that an appropriate choice for the window function  is the Gaussian 

function due to the fact that a Gaussian function has the theoretically best joint spatial-frequency 

resolution (uncertainty principle). It is important to note here that the Gabor elementary functions 

 are not orthogonal and therefore require a bi-orthogonal dual function 

( )g x

, ( )m ng t ( )xγ for 

reconstruction {jin_Bastiaans_1981}. This dual window function is used for the computation of 

the expansion coefficients  as: ,m nc
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 2
, ( ) ( ) ,i mbx

m nc f x x na e πγ −= − dx∫  (22) 

while the Gaussian window is used for the reconstruction. 

The biorthogonality of the two window functions ( )xγ  and is expressed as: ( )g x

 2( ) ( ) .i mbx
m ng x x na e dxπγ δ δ−− =∫  (23) 

From Equation (21), it is easy to see that all spatial-frequency atom  share the same 

spatial-frequency resolution defined by the Gaussian function . As pointed out in the 

discussion on short-time Fourier transforms, such design is sub-optimal for the analysis of signals 

with different frequency components.  

, ( )m ng t

( )g x

A wavelet-type generalization of Gabor expansion can be constructed such that different window 

functions are used instead of a single one {jin_Porat_1988} according to their spatial-frequency 

location. Following the design of wavelets, a Gabor wavelet ( ) ( ) i tx g t e ηψ = is then obtained with 

a Gaussian function 
2

22
2 1/ 4

1( ) e
( )

t

g t σ

σ π

−

=  {jin_Mallat_1998}.  

Extension of Gabor wavelet to 2-D is expressed as:  

 ( cos sin )( , ) ( , ) .k ki x yk x y g x y e η α αψ − +=  (24) 

Different translation and scaling parameters of ( , )k x yψ constitute the wavelet basis for 

expansion. An extra parameter kα provides selectivity for the orientation of the function. We 

observe here that the 2-D Gabor wavelet has a non-separable structure that provides more 

flexibility on orientation selection than separable wavelet functions. 

It is well known that optical sensitive cells in animal’s visual cortex respond selectively on 

stimuli with particular frequency and orientation {jin_Hubel_1962}. Equation (24) described a 

wavelet representation that naturally reflects this neuro-physiological phenomenon. Gabor 
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expansion and Gabor wavelets have therefore been widely used for visual discrimination tasks 

and especially texture recognition {jin_Daugman_1988; jin_Porat_1989}.    

2.3.2 Wavelet Packets 

Unlike dyadic wavelet transform, wavelet packets decompose the low frequency component as 

well as the high frequency component in every sub-bands {jin_Coifman_1992}. Such adaptive 

expansion can be represented with binary trees where each sub-band high or low frequency 

component is a node with two children corresponding to the pair of high and low frequency 

expansion at the next scale. An admissible tree for an adaptive expansion is therefore defined as a 

binary tree where each node has either 0 or 2 children, as illustrated in Figure 6 (c). The number 

of all different wavelet packet orthogonal basis (also called a wavelet packets dictionary) equals 

to the number of different admissible binary trees, which is of the order of 22
J

, where J is the 

depth of decomposition {jin_Mallat_1998}.  

   
                       (a)               (b)                                              (c) 

Figure 6: (a) Dyadic wavelet decomposition tree. (b) Wavelet packets decomposition tree. (c) An 

example of an orthogonal basis tree with wavelet packets decomposition. 

Obviously, wavelet packets provide more flexibility on partitioning the spatial-frequency domain, 

and therefore improve the separation of noise and signal into different sub-bands in an 

approximated sense (this is referred to the near-diagonalization of signal and noise). This property 

can  greatly facilitate the enhancement and de-noising task of a noisy signal if the wavelet packets 

basis are selected properly {jin_Coifman_1995b}. In practical applications for various medical 
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imaging modalities and applications, features of interest and noise properties have significantly 

different characteristics that can be efficiently characterized separately with this framework.  

A fast algorithm for wavelet-packets best basis selection was introduced by Coifman and 

Wickerhauser in {jin_Coifman_1995b}. This algorithm identifies the “best” basis for a specific 

problem inside the wavelet packets dictionary according to a criterion (referred to as a cost 

function) that is minimized. This cost function typically reflects the entropy of the coefficients or 

the energy of the coefficients inside each sub-band and the optimal choice minimizes the cost 

function comparing values at a node and its children. The complexity of the algorithm is 

 for a signal of N samples.  ( log )O N N

2.3.3 Brushlets 

Brushlet functions were introduced to build an orthogonal basis of transient functions with good 

time-frequency localization. For this purpose, lapped orthogonal transforms with windowed 

complex exponential functions, such as Gabor functions, have been used for many years in the 

context of sine-cosine transforms {jin_Malvar_1990}.  

Brushlet functions are defined with true complex exponential functions on sub-intervals of the 

real axis as:  

             (25) , , , 1 ,( ) ( ) ( ) ( ) (2 ) ( ) (2 )j n n n j n n j n n n j n nu x b x c e x v x a e a x v x a e a x+ += − + − − − − 1 −

nwhere  and . The two window functions and  are derived from the 

ramp function : 

1n nl a a+= − / 2n nc l= nb v

r

 ,       (26) 
0 1

( )
1 1

if t
r t

if t
⎧ ≤−⎪⎪=⎨⎪ ≥⎪⎩

and  

 .        (27) 2 2( ) ( ) 1,r t r t t+ − = ∀ ∈

The bump function v is defined as:  
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 ( ) , [ , ]t tv t r r t ε ε
ε ε

⎛ ⎞ ⎛ ⎞−⎟ ⎟⎜ ⎜= ∈ −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
.  (28) 

The bell function  is defined by: nb

 

2

2

/ 2 [ / 2 , / 2

( ) 1 [ / 2 , / 2 ]
/ 2 [ / 2 , / 2 ]

n
n n

n n

n
n n

t lr if t l l

b t if t l l
l tr if t l l

ε ε
ε

ε ε

ε ε
ε

⎧ ⎛ ⎞+⎪ ⎟⎪ ⎜ ∈ − − − +⎟⎪ ⎜ ⎟⎟⎜⎪ ⎝ ⎠⎪⎪⎪⎪= ∈ − + −⎨⎪⎪ ⎛ ⎞⎪ −⎪ ⎟⎜ ∈ − +⎟⎪ ⎜ ⎟⎟⎜⎪ ⎝ ⎠⎪⎪⎩

]

n .                     (29) 

An illustration of the windowing functions is provided in Figure 7. 

 

1  

0 . 5  

a n - ε  a n + εa n  a n + 1a n + 1a n + 1 - ε

v ( x )  

v ( x )  

b n ( x )

l n  2 ε  2 ε  

 

Figure 7: Windowing functions  and bump functions v  defined on the interval .  nb 1,n na aε ε+
⎡ ⎤− +⎣ ⎦

Finally, the complex-valued exponentials are defined as:  ,j ne

 
( )2

,
1( )

n

n

x ai j
l

j n
n

e x e
l

π −−
= .  (30) 

In order to decompose a given signal f along directional texture components the Fourier transform 

f̂ of the signal and not the signal itself is projected on the brushlet basis functions: 

 , ,
ˆ

n̂ j n j
n j

f f u=∑∑ ,   (31) 
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with the brushlet basis functions and ,n ju ,n̂ jf  the brushlet coefficients. 

The original signal f  can then be reconstructed by: 

 , ,n̂ j n j
n j

f f w=∑∑ ,   (32) 

where  is the inverse Fourier transform of , which is expressed as:  ,n jw ,n ju

 { }2
,

ˆ ˆ( ) ( 1) ( ) 2 sin( ) ( )n ni a x i l x j
n j n n n n nw x l e e b l x j i l x v l x jπ π π= − − − + ,       (33) 

with  and  the Fourier transforms of the window functions  and . Since the Fourier 

operator is a unitary operator, the family of functions  is also an orthogonal basis of the real 

axis. We observe here the wavelet-like structure of the  functions with scaling factor and 

translation factor 

n̂b v̂ nb v

,n jw

,n jw nl

j . An illustration of the brushlet analysis and synthesis functions is provided in 

Figure 8, below. 

 

n

j
l
−

n

j
l

 

(a) (b) 

na ε−  1na ε+ +

frequency time 

5

0
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10-2 
2 

0 
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10-1 

 

Figure 8: (a) Real part of analysis brushlet function . (b) Real part of synthesis brushlet function 

. 

,n ju

,n jw

Projection on the analysis functions  can be implemented efficiently by a folding operator and 

Fourier transform (FT). The folding technique was introduced by Malvar {jin_Malvar_1990} and 

is described for multidimensional implementation by Wickerhauser in {jin_Wickerhauser_1993}. 

,n ju
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These brushlet functions share many common properties with Gabor wavelets and Wavelet 

packets regarding the orientation and frequency selection of the analysis but only brushlet can 

offer an orthogonal framework with a single expansion coefficient for a particular pair of 

frequency and orientation.   

3. Noise Reduction and Image Enhancement Using Wavelet 

Transforms 

De-noising can be viewed as an estimation problem trying to recover a true signal component X 

from an observation Y where the signal component has been degraded by a noise component N: 

 .Y X N= +  (34) 

The estimation is computed with a thresholding estimator in an orthonormal basis 0{ }m m Ng ≤ <Β =  

as {jin_Donoho_1994b}: 

 
1

0

ˆ ( , )
N

m m
m

mX X g gρ
−

=

= ∑  (35) 

where mρ  is a thresholding function that aims at eliminating noise components (via attenuating 

of decreasing some coefficient sets) in the transform domain while preserving the true signal 

coefficients. If the function mρ  is modified to rather preserve or increase coefficient values in the 

transform domain, it is possible to enhance some features of interest in the true signal component 

with the framework of Equation (35). 

Figure 9 illustrates a multi-scale enhancement and de-noising framework using wavelet 

transforms. An over-complete dyadic wavelet transform using bi-orthogonal basis is used. Notice 

that since the DC-cap contains the overall energy distribution, it is usually kept untouched during 

the procedure. As shown in this figure, thresholding and enhancement functions can be 

implemented independently from the wavelet filters and easily incorporated into the filter bank 

framework. 
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Figure 9: A Multi-scale framework of de-noising and enhancement using discrete dyadic wavelet 

transform. A three level decomposition was shown. 

3.1 Thresholding operators for de-noising 

As a general rule, wavelet coefficients with larger magnitude are correlated with salient features 

in the image data. In that context, de-noising can be achieved by applying a thresholding operator 

to the wavelet coefficients (in the transform domain) followed by reconstruction of the signal to 

the original image (spatial) domain.  

Typical threshold operators for de-noising include hard thresholding: 

 
,

( ) ;
0,T

x Tx if
x

x Tif
ρ

>⎧
= ⎨ ≤⎩

 (36) 

soft thresholding (wavelet shrinkage) {jin_Donoho_1995b}: 

 

,
( ) , ;

0,
T

x T if x T
x x T if x T

if x T
ρ

⎧ − ≥
⎪= + ≤⎨
⎪ <⎩

−  (37) 

and affine(firm) thresholding{jin_Gao_1997}: 
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TT xx T if
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Tx T if x T

if x T

ρ

⎧ ≥
⎪

− ≤ ≤ −⎪ +⎪= ⎨ − ≤ ≤⎪
⎪

<⎪⎩

         (38) 

The shapes of these thresholding operators are illustrated in Figure 10.  

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

 
           (a)              (b)              (c) 

Figure 10: Example of thresholding functions, assuming that the input data was normalized to the 

range of [-1,1]. (a) Hard thresholding. (b) Soft thresholding. (c) Affine thresholding. The threshold 

level was set to T=0.5; 

3.2 Enhancement Operators 

Magnitude of wavelet coefficients measures the correlation between the image data and the 

wavelet functions. For first-derivative based wavelet, the magnitude therefore reflects the 

“strength” of signal variation. For second-derivative based wavelets, the magnitude is related to 

the local contrast around a signal variation. In both cases, large wavelet coefficient magnitude 

occurs around strong edges. To enhance weak edges or subtle objects buried in the background, 

an enhancement function should be designed such that wavelet coefficients within certain 

magnitude range were to be amplified. 

General guidelines for designing a non-linear enhancement function  are {jin_Laine_1995}:  ( )E x
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1. An area of low contrast should be enhanced more than an area of high contrast. This is 

equivalent to say that smaller values of wavelet coefficients should be assigned larger 

gains. 

2. A sharp edge should not be blurred. 

In addition, an enhancement function may be further subjected to the following constraints 

{jin_Koren_1995}: 

1. Monotonically increasing: Monoticity ensures the preservation of the relative strength of 

signal variations, and avoids changing location of local extrema, or creating new extrema.  

2. Anti-symmetry: ( ( ) ( )E x E x− = − ): This property preserves the phase polarity for “edge 

crispening”.  

A simple piecewise linear function {jin_Laine_1994a} that satisfies these conditions is plotted in 

Figure 11 (a): 

 
( 1) ,

( ) , .
( 1) ,

x K T if x T
E x Kx if x T

x K T if x T

− − <⎧
⎪

−
= ≤⎨
⎪ + − >⎩

 (39) 

Such enhancement is simple to implement, and was used successfully for contrast enhancement 

on mammograms {jin_Fan_1996; jin_Koren_1998; jin_Laine_1994b}.  

From the analysis in previous sub-section, wavelet coefficients with small magnitude were also 

related to noise. A simple amplification of small magnitude coefficients as performed in Equation 

(39) will certainly also amplify noise components. This enhancement operator is therefore limited 

to contrast enhancement of data with very low noise level, such as mammograms or CT images. 

Such problem can be alleviated by combining the enhancement with a de-noising operator 

presented in the previous sub-section {jin_Laine_1995}. 
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A more careful design can provide more reliable enhancement procedures with a control of noise 

suppression. For example, a sigmoid function {jin_Laine_1994a},  plotted in Figure 11 (b) can be 

used: 

  (40) ( ) [ ( ( )) ( ( ))],E x a sigm c x b sigm c x b= − − − +

where 

 
1 , 0

( (1 )) ( (1 ))
a and b

sigm c b sigm c b
= <

− − − +
1,<  

and  is defined as:  ( )sigm y 1( ) .
1 ysigm y

e−=
+

 The parameters b and c respectively control the 

threshold and rate of enhancement. It can be easily shown that E(x) in Equation (40) is continuous 

and monotonically increasing within the interval  [ 1,1]− . Furthermore, any order of derivatives of 

E(x) exists and is continuous. This property avoids creating any new discontinuities after 

enhancement.   
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           (a)                (b)               

Figure 11: Example of enhancement functions, assuming that the input data was normalized to the 

range of [-1,1]. (a) Piecewise linear function. T=0.2, K=20. (b) Sigmoid enhancement function. b=0.35, 

c=20. Notice the different scales of the y-axis for the two plots. 

 23



3.3 Selection of Threshold Value 

Given the basic framework of de-noising using wavelet thresholding as discussed in the previous 

sections, it is clear that the threshold level parameter T  plays an essential role. Values too small 

cannot effectively get rid of noise component, while values too large will eliminate useful signal 

components. There are a variety of ways to determine the threshold value T as we will discuss in 

this section.  

Depending on whether or not the threshold value T changes across wavelet scales and spatial 

locations, the thresholding can be: 

1. Global Threshold: a single value T is to be applied globally to all empirical wavelet 

coefficients at different scales. .T const=  

2. Level-Dependent Threshold: a different threshold value T is selected for each wavelet 

analysis level (scale).  J is the coarsest level for wavelet expansion 

to be processed. 

( ), 1,..., .T T j j J= =

3. Spatial Adaptive Threshold: the threshold value T varies spatially depending on local 

properties of individual wavelet coefficients. Usually, T is also level-dependent. 

 ( , , ).jT T x y z=

While a simple way of determining T is a percentage of coefficients maxima, there are different 

adaptive ways of assigning the T value according to the noise level (estimated via its variance σ ): 

1. Universal Threshold: 2 logT σ= n  {jin_Coifman_1995a}, with n equal to the sample 

size. This threshold was determined in an optimal context for soft thresholding with 

random Gaussian noise.  This scheme is very easy implement, but typically provides a 

threshold level larger than with other decision criteria, therefore resulting in smoother 

reconstructed data. Also such estimation does not take into account the content of the 

data, but only depends on the data size. 
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2. Minimax Threshold: nT Tσ=  {jin_Donoho_1994a}, where  is determined by a 

minimax rule such that the maximum risk of estimation error across all locations of the 

data is minimized. This threshold level depends on the noise and signal relationships in 

the input data.  

nT

3. Stein Unbiased Estimated of Risk (SURE): Similar as minimax threshold but  is 

determined by a different risk rule {jin_Donoho_1995a; jin_Stein_1981}.  

nT

4. Spatial Adaptive Threshold: 2 / XT σ σ= {jin_Chang_2000}, where Xσ is the local 

variance of the observation signal, which can be estimated using a local window moving 

across the image data or, more accurately, by a context-based clustering algorithm.  

In many automatic de-noising methods to determine the threshold value T, an estimation of the 

noise variance σ  is needed. Donoho and Johnstone {jin_Donoho_1995c} proposed a robust 

estimation of noise level σ  based on the median absolute value of the wavelet coefficients as: 

 1( ( , , ) )
0.6745

median W x y z
σ =  (41) 

where  is the most detailed level of wavelet coefficients. Such estimator has become very 

popular in practice and is widely used.  

1W

3.4 Summary 

In general, multi-scale de-noising techniques involve a transformation process and a thresholding 

operator in the transform domain. Research dedicated on improving such technique has been 

explored along both directions. Various multi-scale expansions have been proposed aiming at 

better adaptation to signal and feature characteristics. Traditionally, an orthogonal base was used 

for expansion {jin_Donoho_1995b}, which leads to a spatial variant transform. Various artifacts, 

e.g. pseudo-Gibbs phenomena were exhibited in the vicinity of discontinuities. Coifman and 

Donoho {jin_Coifman_1995a} proposed a translation invariant thresholding scheme, which 
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averages several de-noising results on different spatial shifts of the input image. Laine et al. 

{jin_Laine_1994b} prompted to an over-complete representation which allows redundancy in the 

transform coefficients domain, and provides a translation invariant decomposition. Wavelet 

coefficients in an over-complete representation have the same size as the input image, when 

treated as a sub-band image. Many de-noising and enhancement techniques can be applied within 

a multi-scale framework for spatial-frequency adaptation and solve certain noise amplification 

problems. For a better separation of noise and signal components in the transform domain, other 

multi-scale representations have also been widely investigated. Examples such other multi-scale 

representations can be found in previous section 2.3.  

The magnitude of the wavelet coefficients is related to the correlations between the signal and the 

wavelet basis function, which is the only criterion to determine whether or not noise variation 

appears. Therefore, the selection of the wavelet basis is a critical step in the design of the de-

noising and enhancement procedure. Wavelet basis constructed from derivatives of spline 

functions {jin_Koren_1996} were shown to have many advantages in de-noising and 

enhancement. Such wavelet functions, either symmetric or anti-symmetric, are smooth with 

compact support. Higher order spline function resembles Gaussian function, therefore providing 

ideal spatial-frequency resolution for signal analysis. Moreover, modulus of wavelet coefficients 

using first derivative spline wavelets are proportional to the magnitude of a gradient vector 

{jin_Kalifa_2003}. Analysis over such modulus therefore provides extra information on 

directional correlations, and is especially important for three or higher dimensional data analysis. 

Other wavelet basis functions have also been developed to provide specific adaptation to different 

type of signals. To name a few, slantlet {jin_Selesnick_1999}, curvelet {jin_Candes_1999a; 

jin_Starck_2002}, ridgelet {jin_Candes_1999b} were designed to improve the correlations with 

edge information, and were used for edge-preserved de-noising, while Fresnelets functions, based 

on B-spline functions {jin_Liebling_2003}, were designed for processing of digital holography.   

 26



In a parallel direction, many research works on multi-scale de-noising focused on improving 

thresholding operators. In the following discussion, “thresholding operator” is a rather general 

concept that include both de-noising and enhancement operators as described before. A 

determination of thresholding method includes both selection of the thresholding operator and a 

decision or estimation of the threshold parameters (threshold level, enhancement gain etc.). Some 

examples of thresholding operators designed to improve the basic thresholding rules as shown in 

Equations (36)-(37)-(38) include the nonnegative garrote thresholding {jin_Gao_1998}:  

 2

0,
( ) ,

,
G
T

if x T
x Tx if x T

x

ρ
⎧ ≤
⎪= ⎨

− >⎪⎩

 (42) 

and the SCAD thresholding {jin_Antoniadis_2001; jin_Gao_1998}:  

 

( ) max(0, ), 2
( ) (( 1) ( )) /( 2), 2 .

,

SCAD
T

sign x x T if x T
x x Tsign x if T x T

x if x T
ρ α α α α

α

⎧ −
⎪= − − − < ≤⎨
⎪ >⎩

≤
 (43) 

On the other hand, cross-validation {jin_Jansen_1997; jin_Nason_1996; jin_Weyrich_1995} and 

recursive hypothesis testing procedure {jin_Ogden_1996} were investigated for automatically 

determining the threshold level T. 

3.5  State-of-the-Arts and Applications: 

In this section, we review two examples of multi-scale de-noising. To illustrate the power of 

multi-scale analysis, two extreme cases of medical imaging modalities (ultrasound and 

PET/SPECT) with high noise level and complicated noise patterns were considered. A more 

detailed description of these clinical applications can be found in {jin_Angelini_2001; 

jin_Jin_2003}.  
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3.5.1  Spatial-Temporal Analysis of Real Time 3D Cardiac Ultrasound Using Brushlet 

{jin_Angelini_2001} 

Recent development of a real-time three-dimensional (RT3D) ultrasound imaging modality that 

captures an entire cardiac volume instantaneously with fixed geometric parameters over a 

complete cardiac cycle raises new issues and challenges for de-noising and volume extraction. On 

one hand, resolution of RT3D is lower than with previous 2D and 3D generations of ultrasound 

modalities and the level of speckle noise is very high. On the other hand the amount of 

information recorded per cardiac cycle is much bigger as this is a true 3D+Time modality. 

Because of the fast acquisition time and the true three-dimensional nature of the transducer, there 

exists a strong coherence of surfaces in 3D space and time for echocardiograms recorded from 

moving cardiac tissue that should be exploited for optimal de-noising and enhancement. 

A simple observation of ultrasound images reveal the absence of true boundaries between the 

blood cavity and the myocardium muscle tissue.  The myocardial wall is rather depicted as a field 

of bright moving texture and the de-noising problem can therefore be approached as a texture 

characterization task. Approaches for texture classification and de-noising can be divided into 

structural and statistical methods adapted respectively to macro and micro textural elements. 

Recent work on texture characterization and more specifically de-noising of ultrasound data via 

spatio-temporal analysis include steerable filters and Gabor oriented filters {jin_Chen_2001; 

jin_Mulet-Parada_1998}. Both techniques are non-orthogonal and therefore suffer from non-

complete partitioning of the Fourier domain. As we showed in previous section, brushlets allow 

more flexibility on the partitioning of the Fourier domain and work with an orthogonal basis that 

provides perfect reconstruction of an original signal. In this application, modifications from the 

original implementation which extended the analysis to three and four dimensions and performed 

the analysis in an overcomplete framework have been made. 

Brushlet basis functions decompose an n-D signal along specific spatial directions via analysis of 
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its Fourier domain. As they only depends on spatial frequency content, brushlet decompositions 

are invariant to the intensity or contrast range in the original data. This makes them very suitable 

and a powerful basis for the analysis of RT3D ultrasound where choosing a single global 

intensity-based edge threshold is not possible due to position dependent attenuation of the signal.  

There are as many basis functions as there are subintervals in the Fourier domain defining 

brushstrokes associated with the center frequency of each interval. The tiling of the Fourier 

domain therefore determines the resolution and orientation of the brushlet basis functions as 

illustrated in Figure 12 (a). 
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Figure 12: (a) Orientation and oscillation frequency of brushlet analysis functions in 2D. The size of 

each sub-quadrant in the Fourier plane determines the resolution of the analysis function while the 

position of the sub-quadrant center determines the orientation of the analysis function. (b) 

Illustration of selected brushlet orientation and oscillation frequencies. Fourier plane size , center 

frequency 

NL

na  and subintervals size  are provided for each 2D brushlet basis function. nl

The resolution of each brushstroke is inversely proportional to the size of the interval, as 

illustrated in Figure 12 (b). The major difference between the brushlet basis and wavelet packets 

is the possibility of any arbitrary tiling of the time-frequency plane and the perfect localization of 
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a single frequency in one coefficient.  

Spatial De-noising via Thresholding 

De-noising was performed via thresholding of the brushlet coefficients. In the case of RT3D 

ultrasound, speckle noise components are concentrated in the high frequency coefficients without 

specific direction whereas cardiac structures are decomposed in the low frequency components 

along different orientations. Decorrelation of signal and noise in the frequency domain was 

therefore performed by removing the higher-frequency components and thresholding only the 

lower-frequency components prior to reconstruction. De-noising performance was compared for 

processing in 2D and 3D to demonstrate the advantage of extending the brushlet analysis to 3D as 

illustrated in Figure 13, below, for a set of six long-axis and six short-axis slices. 
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Original 
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3D Denoising 

Original 

2D Denoising 

3D Denoising 

 

Figure 13: 2D vs. 3D spatial de-noising on RT3D ultrasound data. (a) Series of six consecutive short-

axis slices extracted from a clinical data set. (b) Series of six consecutive long-axis slices extracted 

from the same clinical data set. 

 30



Qualitatively, it was observed that the third dimension improved the quality of the de-noised data 

in terms of spatial resolution at the cost of loosing some contrast. When compared to 2D de-

noising, 3D de-noising produced smoother features with better-localized contours. Specifically, 

small local artifacts not persistent in adjacent slices were eliminated and inversely weak contours 

persistent in adjacent slices were enhanced. This phenomenon can be best appreciated in the 

short-axis examples where the resolution is the lowest. 

Improving De-noising by Including Time: Results on a Mathematical Phantom 

To quantitatively evaluate potential de-noising performance improvement brought by including 

the temporal dimension, initial testing was performed on a mathematical phantom. The phantom, 

plotted in Figure 14, consisted of an ovoid volume growing in time that schematically mimicked 

aspects of the left ventricle with an inner gray cavity surrounded by a thick white wall on a black 

background. The size of a single volume was 64×64×64 and there were 16 frames growing in 

time. The volume increased by 70 % over 16 time frames, similar to the average ejection fraction 

in normal patients. 

 

11  88  

TTiimmee  

16
 

Figure 14: Mathematical phantom. Ovoid volume with 16 frames growing in time.  

The phantom was corrupted with two types of noise: (1) Multiplicative speckle noise with 

uniform distribution, (2) Multiplicative speckle noise with Rayleigh distribution. 

The level of speckle noise was set so that the SNR of the noisy data was equal to -15dB. Cross 

sectional slices through a single volume of the noisy phantoms are displayed in Figure 15.  

 31



 

(a) (b)  

Figure 15: Mathematical phantom corrupted with speckle noise. (a) Speckle noise with uniform 

distribution. (b) Speckle noise with Rayleigh distribution.  

De-noising was carried out with both 3D and 4D brushlet analysis. Regular tiling was applied 

with four subintervals in each dimension. Volumes were reconstructed after resetting the higher 

frequency coefficients and hard thresholding the lower frequency coefficients at 25 % of their 

maxima. Results for a single slice are provided in Figure 16. 

These results revealed that including the temporal dimension greatly improved the de-noising 

performance. From a qualitative point of view, the contrast of the de-noised slices was improved 

and with a higher definition of borders and more homogeneity inside the white and gray areas. 

Quantitatively, SNR values were improved by 50 % between 3D and 4D de-noising.  

A second motivation for performing multidimensional analysis on cardiac clinical data is to take 

full advantage of the continuity of spatial and temporal frequency content of multidimensional 

RT3D signals. The high level of speckle noise in ultrasound clinical data sets recorded with the 

real-time 3D transducer, the non-uniform absorption coefficients of cardiac tissues and the 

motion of the heart contribute to the addition of artifacts that can either add echo-like signals 

inside the cavity or suppress echo signals from the myocardium wall. These artifacts complicate 

the segmentation task by introducing artificial edges inside the cavity or destroying edges at the 

epicardial and endocardial borders. Since these artifacts are not persistent in time, including the 
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temporal component in the analysis helps resolve them. To illustrate the aptitude of the brushlet 

analysis to repair missing contour information, the previous mathematical phantom was modified 

by removing a part of the white wall in the eighth time frame. Both 3D analysis on the time frame 

with the defect and 4D brushlet analysis applied to the sixteen time frames were computed after 

corruption with Rayleigh speckle noise. Results are displayed in Figure 17, below. 
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Figure 16: De-noising of mathematical phantom with 3D and 4D brushlet analysis. (a) Results for 

phantom corrupted with uniformly distributed speckle noise. (b) Results for phantom corrupted with 

Rayleigh distributed speckle noise. (a.1-b.1) Original slices. (a.2-b.2) Slices de-noised with 3D 

brushlet expansion. (a.3-b.3) Slices de-noised with 4D brushlet expansion. SNR values are indicated 

for each slice.  

Results showed a remarkable correction of the wall defect with the 4D (3D + time) brushlet de-

noising that could not be obtained with 3D analysis alone. This type of artifact is similar to the 

dropouts in echo signals that result in loss of myocardium tissue in some frames or the 
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introduction of tissue-like signals inside the cavity. Such artifacts are not persistent in time and 

could be removed with the inclusion of temporal dimension in the de-noising process. 

 

(a) (b) (c) 
 

Figure 17: (a) Original noisy slice with defect. (b) De-noised slice with 3D brushlet analysis (c) De-

noised slice with 4D brushlet analysis.  

 

Figure 18: Spatio-temporal de-noising with brushlet expansion on RT3D ultrasound data illustrated 

on four long axis and four short axis slices.  

Finally, experiments on clinical data sets, as illustrated in Figure 18, showed the superior 

performance of spatio-temporal de-noising versus simple spatial de-noising and Wiener filtering 
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on RT3D ultrasound data. Adding the time dimension lead to images with better contrast and 

sharper contours while preserving the original textural aspect of the ultrasound data. Wiener 

filtering provided good results but introduced blurring artifacts that severely altered the quality of 

the short-axis de-noised views. This type of artifact is unacceptable in medical applications where 

anatomical structure detail needs to be preserved. It was also observed that the epicardium 

borders were enhanced with sharper contrast when combining brushlet spatial and temporal de-

noising. Such enhancement is very desirable for quantification of LV mass and wall thickness 

analysis that require segmentation of both the myocardial endocardial and epicardial borders.  

3.5.2  Cross-scale Regularization for Tomographic Images {jin_Jin_2003} 

Tomographic image modalities such as PET and SPECT rely on an instable inverse problem of 

spatial signal reconstruction from sampled line projections. Tomographic reconstruction includes 

back projection of the sinogram signal via Radon transform and regularization for removal of 

noisy artifacts. Because the Radon transform is a smoothing process, back projection in the 

presence of additive noise is an ill-posed inverse problem that requires a regularization of the 

reconstructed noise component, which can become very large. Standard regularization methods 

include filtered back-projection (FBP) with non-linear filtering corrections, expectation-

maximization (EM) and maximum a posteriori (MAP) estimators {jin_Farquhar_1998; 

jin_Hudson_1994; jin_McLachlan_1997; jin_Shepp_1982}. The most commonly used 

tomographic reconstruction method combines a low-pass filter, for noise suppression, and a ramp 

filter for standard Filtered Back-projection algorithm. The cut-off frequency of the low-pass filter 

controls the balance between signal-to-noise ratio (SNR) and spatial resolution. While high 

frequency noise is eliminated after low-pass filtering, useful high frequency information, such as 

sharp varied signals and edges, are also attenuated. In addition, noise components in low 

frequency bands still exist. For these two reasons, tomographic images reconstructed with FBP 

algorithms often suffer from over-smoothness or/and low SNR. Post-processing including de-
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noising and enhancement is therefore helpful on improving image qualities for reliable clinical 

interpretation.  

As low-pass filtering has always been considered one of the most fundamental de-noising 

techniques, embedding a multi-scale de-noising module to partially replace the low-pass filtering 

operator in the FBP algorithm can potentially improve the image quality of reconstruction in 

terms of both spatial resolution and signal-to-noise ratio. The intuitive approach to combine FBP 

and de-noising is therefore to preserve more high-frequency features during the FBP 

reconstruction, by using a low-pass filter with higher cut-off frequency, or removing the low-pass 

pre-filtering. The extra amount of noise kept with the high-frequency signal components is then 

further processed via a multi-scale de-noising operator. An illustration of the de-noising 

performance is provided in Figure 19 for simple comparison between traditional FBP using a 

clinical console (Low-pass filter using Hann filter with cut-off frequency set to 0.4), and the 

proposed two-step processing. It can be observed that the second method, based on FBP using 

Hann filter with a higher cut-off frequency, generates a reconstructed image containing more 

detailed information as well as more significant noisy features. After multi-scale de-noising 

(combining Wavelet Packets thresholding and brushlet thresholding), image quality was 

markedly improved showing more anatomical details and spatial information. 
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Figure 19: Illustration on a clinical brain SPECT slice of the combination of multi-scale de-noising 

and traditional FBP with higher cut-off frequency to improve tomographic reconstruction. 

Thresholding on Three Dimensional Wavelet Modulus  

Both PET and SPECT image reconstructed using FBP display strong directional noise patterns. 

Most feature-based de-noising methods, including wavelet thresholding, are based on edge 

information and are not suited for directional noise components that resemble strong edges. 

Indeed edge information alone cannot accurately separate noise from meaningful signal features 

in a single image. A novel approach to overcome this limitation is to apply the multi-scale 

analysis and de-noising scheme using three-dimensional wavelet expansion that integrates edge  

information along continuous boundaries in 3-D space. In three-dimensions, such integration can 

accurately separate anatomical surfaces from noisy components that donnot exhibit a directional 

pattern across adjacent tomographic slices. Unlike traditional wavelet de-noising techniques, 

thresholding was performed on the modulus of the wavelet coefficients (“wavelet modulus”). A 

first derivative of the cubic spline function was used for the wavelet basis function which 
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approximates the first derivatives of a Gaussian function and therefore benefits from the 

following properties: 

1. By the uncertainty principle {jin_Mallat_1998}, the Gaussian probability density 

function is optimally concentrated in both time and frequency domain, and thus is 

suitable for time-frequency analysis.  

2. Derivatives of Gaussian function can be used for rotation-invariant processing 

{jin_Freeman_1991}.  

3. The Gaussian function generates a causal (in a sense that a coarse scale depends 

exclusively on the previous finer scale) scale space. This make possible scale-space 

“tracking” of emergent features {jin_Babaud_1986}.  

Because the wavelet basis 1 2 3, ,ψ ψ ψ  are first derivative of a cubic spline function θ , the three 

components of a wavelet coefficient  are proportional 

to the coordinates of the gradient vector of the input image s smoothed by a dilated version of 

1 2 31 2 3 , , ,( , , ) , , 1,2,3k k
m m n n nW s n n n s kψ=< > =

θ . 

From these coordinates, one can compute the angle of the gradient vector, which indicates the 

direction in which the first derivative of the smoothed s has the largest amplitude (or the direction 

in which s changes the most rapidly). The amplitude of this maximized first derivative is equal to 

the modulus of the gradient vector, and therefore proportional to the wavelet modulus: 

2 21 2 3
m m m m

2
M s W s W s W s= + +

          (44)
 

Thresholding this modulus value instead of the coefficient value consists of first selecting a 

direction in which the partial derivative is maximum at each scale, and then thresholding the 

amplitude of the partial derivative in this direction. The modified wavelet coefficients are then 

computed from the thresholded modulus and the angle of the gradient vector. Such paradigm 

applies an adaptive choice of the spatial orientation in order to best correlate the signal features 

with the wavelet coefficients. It can therefore provide a more robust and accurate selection on 
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correlated signals comparing to traditional orientation selection along three orthogonal Cartesian 

directions.  

                
                    (a)                                         (b)                                           (c) 

           
                        (d)                                   (e)                                             (f) 
Figure 20: (a) A brain PET image from a 3D data set with high level of noise, (b)~(f) Modulus of 

wavelet coefficients at expansion scale 1 to 5. 

Figure 20 illustrates the performance of this approach at de-noising a clinical brain PET data set 

reconstructed by FBP with a ramp filter. The reconstructed PET images, illustrated for one slice 

in Figure 20(a), contain prominent noise in high frequency but donnot express strong edge 

features in the wavelet modulus expansions at scale 1 through 5 as illustrated in Figure 20(b)~(f). 

Cross-scale Regularization for Images with low SNR 

As shown in Figure 20(b), very often in tomographic images, the first level of expansion (level 

with more detailed information) is overwhelmed by noise in a random pattern.  Thresholding 

operators determined only by the information in this multi-scale level can hardly recover useful 

signal features from the noisy observation. On the other hand, wavelet coefficients in the first 
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level contain the most detailed information in a spatial-frequency expansion, and therefore 

influence directly the spatial resolution of the reconstructed image.  

To have more signal-related coefficients recovered, additional information or a priori knowledge 

is needed. Intuitively, an edge indication map could beneficially assist such wavelet expansion 

based on first derivative of spline wavelets. Without seeking external a priori information, it was 

observed that wavelet modulus from the next higher wavelet level can serve as a good edge 

estimation. An edge indication map with values between 0 and 1 (analogous to the probability 

that a pixel is located on an edge) was therefore constructed by normalizing the modulus of this 

sub-band. A pixel-wise multiplication of the edge indication map and the first level wavelet 

modulus can identify the location of wavelet coefficients that are more likely to belong to a true 

anatomical edge and should be preserved, as well as the locations of the wavelet coefficients that 

are unlikely to be related to real edge signal and that should be attenuated. This approach is 

referred to as cross-scale regularization. A comparison between traditional wavelet shrinkage and 

cross-scale regularization to recover useful signals from the most detailed level of wavelet 

modulus is provided in Figure 21.  

     
            (a)                                    (b)                                             (c) 

Figure 21: (a) wavelet modulus in first level of a PET brain image as shown in Figure 20 (a) and (b). 

(b) Thresholding of the wavelet modulus from (a) using a wavelet shrinkage operator. (c) 

Thresholding of the wavelet modulus from (a) with cross-scale regularization.  
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A cross-scale regularization process does not introduce any additional parameter avoiding extra 

complexity for algorithm optimization and automation. We point out that an improved edge 

indication prior can be built upon a modified wavelet modulus in the next spatial-frequency scale 

processed using traditional thresholding and enhancement operator. 

       
(a) FBP Reconstruction (Hann windows) 

       
(b) Adaptive Multi-scale De-noising and Enhancement 

Figure 22: De-noising of PET Brain Data and comparison between unprocessed and multi-scale 

processed images.    

Spatial-frequency representations of a signal after wavelet expansion offer the possibility to 

adaptively process an image data in different sub-bands. Such adaptive scheme can for example 

combine enhancement of wavelet coefficients in the coarse levels, and resetting of the most 

detailed levels for noise suppression. We show in Figure 22 how such adaptive processing can 

remarkably improve image quality for PET images that were usually degraded by low resolution 

and high level of noise. 
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4. Image Segmentation Using Wavelets 

4.1  Multi-scale Texture Classification and Segmentation: 

Texture is an important characteristic for analyzing many types of images, including natural 

scenes and medical images. With the unique property of spatial-frequency localization, wavelet 

functions provide an ideal representation for texture analysis. Experimental evidence on human 

and mammalian vision support the notion of spatial-frequency analysis that maximizes a 

simultaneous localization of energy in both spatial and frequency domain {jin_Beck_1987; 

jin_Julez_1981; jin_Watson_1983}. These psychophysical and physiological findings lead to 

several research works on texture-based segmentation methods based on multi-scale analysis.  

Gabor transform, as suggested by the uncertainty principle, provides an optimal joint resolution in 

the space-frequency domain. Many early works utilized Gabor transforms for texture 

characteristics. In {jin_Daugman_1988} an example is given on the use of Gabor coefficient 

spectral signatures {jin_Daugman_1985} to separate distinct textural regions characterized by 

different orientations and predominant anisotropic texture moments. Porat and Zeevi proposed in 

{jin_Porat_1989} six features derived from Gabor coefficients to characterize a local texture 

component in an image: the dominant localized frequency; the second moment (variance) of the 

localized frequency; center of gravity; variance of local orientation; local mean intensity; and 

variance of the intensity level. A simple minimum-distance classifier was used to classify 

individual textured regions within a single image using these features. 

Many wavelet-based texture segmentation methods had been investigated thereafter. Most of 

these methods follow a three-step procedure: multi-scale expansion, feature characterization, and 

classification. As such, they are usually different from each other from these aspects.  

Various multi-scale representations have been used for texture analysis. Unser {jin_Unser_1995a} 

used a redundant wavelet frame. Laine and Fan {jin_Laine_1993} investigated a wavelet packets 

 42



representation and extended their research to a redundant wavelet packets frame with Lemarié-

Battle filters in {jin_Laine_1996a}. Modulated wavelets were used in {jin_Hsin_1998} for better 

orientation adaptivity. To further extend the flexibility of the spatial-frequency analysis, a multi-

wavelet packets, combining multiple wavelet basis functions at different expansion levels was 

used in {jin_Wang_2002}. An M-band wavelet expansion, which differs from a dyadic wavelet 

transform in the fact that each expansion level contains M channels of analysis was used in 

{jin_Acharyya_2002} to improve orientation selectivity.  

Quality and accuracy of segmentation ultimately depends on the selection of the characterizing 

features. A simple feature selection can use the amplitude of the wavelet coefficients 

{jin_Hsin_1998}. Many multi-scale texture segmentation methods construct the feature vector 

from various local statistics of the wavelet coefficients, such as its local variance 

{jin_Unser_1995a; jin_Wang_2001}, moments {jin_Etemad_1997} or energy signature 

{jin_Acharyya_2002; jin_Laine_1993; jin_Porter_1996}. Wavelet extrema density (WED), 

defined as the number of extrema of wavelet coefficients per unit area, was used in 

{jin_Wang_2002}. In {jin_Laine_1996a}, a 1-D envelope detection was first applied to the 

wavelet packets coefficients according to their orientation, and a feature vector was constructed 

as the collection of envelope values for each spatial-frequency component. More sophisticated 

statistical analysis involving Bayesian analysis and Markov random fields were also used to 

estimate local and long-range correlations {jin_Choi_2001; jin_Zhang_1998}. For other 

examples of multi-scale textural features, 2χ test and histogram testing were used in 

{jin_Li_2000}, “Roughness” based on fractal dimension measurement was used in 

{jin_Charalampidis_2002}.   

Texture-based segmentation is usually achieved by texture classification. Classic classifiers such 

as the minimum distance classifier {jin_Porat_1989}, are easier to implement when the 

dimension of the feature vector is small and the groups of samples are well segregated. The most 
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popular classification procedures reported in the literature are the K-mean classifier 

{jin_Acharyya_2002; jin_Charalampidis_2002; jin_Hsin_1998; jin_Laine_1996a; 

jin_Porter_1996; jin_Unser_1995a; jin_Wang_2001} and the neural networks classifiers 

{jin_Daugman_1988; jin_Etemad_1997; jin_Laine_1993; jin_Zhang_1998}.  

           
                    (a)                           (b)               

           
                     (c)                           (d)               

Figure 23: Sample results using multi-scale texture segmentation. (a) Synthetic texture image. (b): 

segmentation result for image (a) with a 2-class labeling. (c) MRI T1 image of a human brain. (d) 

segmentation result for image (c) with a 4-class labeling.  
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As an example, we illustrate in Figure 23 a texture-based segmentation method on both a 

synthetic texture image and a medical image from a brain MRI data set. The algorithm used for 

this example from {jin_Laine_1996a} uses the combination of wavelet packets frame with 

Lemarié-Battle filters, multi-scale envelope features, and a K-mean classifier. 

4.2   Wavelet Edge Detection and Segmentation 

Edge detection plays important role in image segmentation. In many cases, boundary delineation 

is the ultimate goal for an image segmentation and a good edge detector itself can then fulfill the 

requirement of segmentation. On the other hand, many segmentation techniques require an 

estimation of object edges for their intialization. For example, with standard gradient-based 

deformable models, an edge map is used to determine where the deforming interface must stop. 

In this case, the final result of the segmentation method depends heavily on the accuracy and 

completeness of the initial edge map. Although many research works have made some efforts to 

eliminate this type of inter-dependency by introducing non-edge constraints {jin_Chan_2001; 

jin_Yezzi_1999}, it is necessary and equally important to improve the edge estimation process 

itself.  

As pointed out by the pioneer work of Mallat and Zhong {jin_Mallat_1992b}, first or second 

derivative based wavelet functions can be used for multi-scale edge detection. Most multi-scale 

edge detectors smooth the input signal at various scales and detect sharp variation locations 

(edges) from their first or second derivatives. Edge locations are related to the extrema of the first 

derivative of the signal and the zero crossings of the second derivative of the signal. In 

{jin_Mallat_1992b}, it was also pointed out that first derivative wavelet functions are more 

appropriate for edge detection since the magnitude of wavelet modulus represents the relative 

“strength” of the edges, and therefore enable to differentiate meaningful edges from small 

fluctuations caused by noise.  
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Using the first derivative of a smooth function ( , )x yθ  as the mother wavelet of a multi scale 

expansion results in a representation where the two components of wavelet coefficients at a 

certain scale s are related to the gradient vector of the input image f(x,y) smoothed by a dilated 

version of ( , )x yθ  at scale s. 
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The direction of the gradient vector at a point (x,y) indicates the direction in the image plane 

along which the directional derivative of f(x,y) has the largest absolute value. Edge points (local 

maxima) can be detected as points 0 0( , )x y such that the modulus of the gradient vector is 

maximum in the direction towards which the gradient vector points in the image plane. Such 

computation is closely related to a Canny edge detector {jin_Canny_1986}. Extension to higher 

dimension is quite straightforward.   

Figure 24 provides an example of a multi-scale edge detection method based on a first derivative 

wavelet function. 

To further improve the robustness of such multi-scale edge detector, Mallat and Zhong 

{jin_Mallat_1992b} also investigated the relations between singularity (Lipschitz regularity) and 

the propagation of multi-scale edges across wavelet scales. In {jin_Aydin_1996}, the dyadic 

expansion was extended to an M-band expansion to increase directional selectivity. Also, 

continuous scale representation was used for better adaptation to object sizes {jin_Laine_1997}. 

Continuity constraints were applied to fully recover a reliable boundary delineation from 2D and 

3D cardiac ultrasound in {jin_Laine_1996b} and {jin_Koren_1994}. In {jin_Dima_2002}, both 

cross-scale edge correlations and spatial continuity were investigated to improve the edge 

detection in the presence of noise. Wilson et al. in {jin_Wilson_1992} also suggested that a 

multi-resolution Markov model can be used to track boundary curves of objects from a multi-

scale expansion using a generalized wavelet transform. 
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           (a)                       (b)              (c)             

  
                                 (d)              (e)             

Figure 24: Example of a multi-scale edge detection method finding local maxima of wavelet modulus, 

with a first-derivative wavelet function. (a) Input image, (b)~(e): Multi-scale edge map at expansion 

scale 1 to 4.  

Given their robustness and natural representation as boundary information within a multi-

resolution representation, multi-scale edges have been used in deformable model methods to 

provide a more reliable constraint on the model deformation {jin_de Rivaz_2000; jin_Sun_2003; 

jin_Wu_2000; jin_Yoshida_1997}, as an alternative to traditional gradient based edge map. In 

{jin_Neves_2003}, it was used as a pre-segmentation step in order to find the markers that are 

used by watershed transform.  

4.3   Other Wavelet-based Segmentation  

One important feature of wavelet transform is its ability to provide a representation of the image 

data in a multi-resolution fashion. Such hierarchical decomposition of the image information 
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provides the possibility of analyzing the coarse resolution first, and then sequentially refine the 

segmentation result at more detailed scales. In general, such practice provides additional 

robustness to noise and local maxima.  

In {jin_Bello_1994}, image data was first decomposed into “channels” for a selected set of 

resolution levels using a wavelet packets transform. A Markov random field (MRF) segmentation 

was then applied to the sub-bands coefficients for each scale, starting with the coarsest level, and 

propagating the segmentation result from one level to initialize the segmentation at the next level.  

More recently, Davatzikos et al. {jin_Davatzikos_2003} proposed a hierarchical active shape 

models where the statistical properties of the wavelet transform of a deformable contour were 

analyzed via principal component analysis (PCA), and used as priors for constraining the contour 

deformations.  

Many research works beneficially used image features within a spatial-frequency domain after 

wavelet transform to assist the segmentation. In {jin_Strickland_1996}. Strickland et al. used 

image features extracted in the wavelet transform domain for detection of microcalcifications in 

mammograms using a matching process and some a priori knowledge on the target objects 

(microcalcification). In {jin_Zhang_2001}, Zhang et al. used a Bayes classifer on wavelet 

coefficients to determine an appropriate scale and threshold that can separate segmentation targets 

from other features.  

5. Image Registration Using Wavelets 

In this sub-section, we give a brief overview of another very important application of wavelets in 

image processing: image registration. Readers with more interest in this topic are encouraged to 

read the references listed in the context. 

Image registration is required for many image processing applications. In medical imaging, co-

registration problems are important for many clinical tasks: 
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1. Multi-modalities study. 

2. Cross-subject normalization and template/atlas analysis.  

3. Patient monitoring over time with tracking of the pathological evolution for the same 

patient and the same modality. 

Many registration methods follow a feature matching procedure. Feature points (often referred to 

as “control points”, or CP) are first identified in both the reference image and the input image. An 

optimal spatial transformation (rigid or non-rigid) is then computed that can connect and correlate 

the two sets of control points with minimal error. Registration has always been considered as very 

costly in terms of computational load. Besides, when the input image is highly deviated from the 

reference image, the optimization process can be easily trapped into local minima before reaching 

the correct transformation mapping. Both issues can be alleviated by embedding the registration 

into a “coarse to fine” procedure. In this framework, the initial registration is carried out on a 

relatively low resolution image data, and sequentially refined to higher resolution. Registration at 

higher resolution is initialized with the result from the lower resolution, and only need to refine 

the mapping between the two images with local deformations for updating the transformation 

parameters.   

The powerful representation provided by the multi-resolution analysis framework with wavelet 

functions have lead many researchers to use a wavelet expansion for such “coarse to fine” 

procedures {jin_Allen_1993; jin_McGuire_2000; jin_Unser_1995b}. As already discussed 

previously, the information representation in the wavelet transform domain offers a better 

characterization of key spatial features and signal variations. In addition to a natural framework 

for “coarse to fine” procedure, many research works also reported the advantages of using 

wavelet sub-bands for feature characterization.  For example, {jin_Zheng_1993} Zheng et al. 

constructed a set of feature points from a Gabor wavelet model that represented local curvature 

discontinuities. They further required that a feature point should have maximum energy among a 
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neighborhood and above a certain threshold. In {jin_Moigne_2002}, Moigne et al. used wavelet 

coefficients with magnitude above 13%~15% of the maximum value to form their feature space. 

In {jin_Dinov_2002}, Dinov et al. applied a frequency adaptive thresholding (shrinkage) to the 

wavelet coefficients to keep only significant coefficients in the wavelet transform domain for 

registration.   

6. Summary 

This chapter provided an introduction to the fundamentals of multi-scale transform theory using 

wavelet functions. The versatility of these multi-scale transforms make them a suitable tool for 

several applications in signal and image processing that can benefit from the following 

advantages: 

1. A wavelet transform decomposes a signal to a hierarchy of sub-bands with sequential 

decrease in resolution. Such expansions are especially useful when a multi-resolution 

representation is needed. Some image segmentation and registration techniques can 

benefit from a “coarse to fine” paradigm based on a multi-resolution framework. 

2. A signal can be analyzed with a multi-resolution framework into a spatial-frequency 

representation. By carefully selecting the wavelet function and the space-frequency 

plane tiling of the transform, distinct components from a noisy observation signal can be 

easily separated based on their spatial-frequency characteristics.  

3. Many important features from an image data can be characterized more efficiently in 

the spatial-frequency domain. Such feature characterization was shown to be extremely 

useful in many applications including registration and data compression. 

We summarized in this chapter some important applications in medical image processing using 

wavelet transforms. Noise reduction and enhancement can be easily implemented by combining 

some very simple linear thresholding techniques with wavelet expansion. Efficient de-noising and 

enhancement improve image quality for further analysis including segmentation and registration.  
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Feature characteristics in wavelet domain were proven to be potentially more efficient and 

reliable when compared to spatial analysis only, and therefore provided more effective 

segmentation and registration algorithms. We point out that many other important applications of 

multi-resolution wavelet transforms, that were beyond the scope of this book, have not been 

covered in this chapter, especially image compression, which is considered as one of the greatest 

achievement of wavelet transform in recent years {jin_Unser_2003b}.  Other important 

applications include tomographic image reconstruction, analysis of functional MRI images 

(fMRI), and data encoding for MRI acquisition.  

Despite the great success of multi-resolutions wavelet transform in medical imaging applications 

for the past twenty years, it continues to be a very active area of research. We list a few resources 

below that are of interest to readers willing to get more knowledgeable in research and 

applications in this area. 

Conference 

SPIE - The International Society for Optical Engineering, has been offering for several years two 

annual dedicated conferences related to wavelet applications: 

1. Wavelets: Applications in Signal and Image Processing. (1993 - current) 

2. Independent Component Analyses, Wavelets, and Neural Networks. (previously Wavelet 

Application.) 

These conferences are held annually during the SPIE Annual Meeting and AeroSense conference.  

Software 

1. Wavelet Toolbox for MATLAB: commercial package included in MATLAB. 

(http://www.mathworks.com) 

2. Wavelab: free MATLAB package for wavelet. (http://www-stat.stanford.edu/~wavelab) 

3. The Rice Wavelet Tools: MATLAB toolbox for filter bank and wavelets provided by Rice 

University. (http://www.dsp.ece.rice.edu/software/) 
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4. WVLT: a wavelet library written in C, which also includes demos and documentation. 

(http://www.cs.ubc.ca/nest/imager/contributions/bobl/wvlt/top.html) 

5. LastWave: a wavelet signal and image processing environment, written in C for 

X11/Unix and Macintosh platforms. It mainly consists of a powerful command line 

language with MATLAB-like syntax which includes a high level object-oriented graphic 

language. (http://www.cmap.polytechnique.fr/~bacry/LastWave/) 

Web Links 

1. www.wavelet.org: offers a “wavelet digest”, an email list that reports most recent news in 

the wavelet community. It also offers a gallery of links to many web resources including 

books, software, demos, research groups and tutorials. Important future events are also 

listed. 

2. www.multiresolution.com: includes useful documentation about multi-resolution image 

and data analysis. Its also proposes a software package and demos for a wide range of 

applications.    
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Study Questions: 

(Q1) What is the uncertainty principle in spatial-frequency analysis? How does the “uncertainty 

principle” affect the selection of signal representation? 

(Q2) How “redundant” is an over-complete wavelet expansion? Use an example of a three 

dimensional signal, with a five level decomposition using the filter bank implementation shown 

in Figure 5.  

(Q3) What is the difference between a Gabor transform and a windowed Fourier transform using 

a Gaussian window? 

(Q4) What is the difference between a wavelet transform and a wavelet packet transform? 

(Q5) What is the advantage of temporal analysis in image de-noising. 

(Q6) Why is a true 3D de-noising needed for PET/SPECT images. 

(Q7) Describe the three major components for accomplishing multi-scale texture segmentation.  

(Q8) Between first and second derivatives, which one is preferred for multi-scale edge detection?  

(Q9) What are the two most useful aspects of wavelet transforms in image registration problems? 
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