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■ Abstract We review some of the most recent advances in the area of wavelet
applications in medical imaging. We first review key concepts in the processing of
medical images with wavelet transforms and multiscale analysis, including time-
frequency tiling, overcomplete representations, higher dimensional bases, symmetry,
boundary effects, translational invariance, orientation selectivity, and best-basis selec-
tion. We next describe some applications in magnetic resonance imaging, including
activation detection and denoising of functional magnetic resonance imaging and en-
coding schemes. We then present an overview in the area of ultrasound, including
computational anatomy with three-dimensional cardiac ultrasound. Next, wavelets in
tomography are reviewed, including their relationship to the radon transform and ap-
plications in position emission tomography imaging. Finally, wavelet applications in
digital mammography are reviewed, including computer-assisted diagnostic systems
that support the detection and classification of small masses and methods of contrast
enhancement.
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INTRODUCTION

In this section, we describe the motivation for wavelet and other linear time-
frequency localization transforms, explain how the simplest wavelet transforms
are computed, and point to some of their mathematical properties. We then discuss
several of the many generalizations that have been developed and are needed for
specific applications.

There now exists considerable literature on wavelets and related time-frequency
transforms, which is aimed at many different audiences. Among the textbooks on
signal processoring, those by Vetterli & Kovacevic (1), Strang & Nguyen (2), and
Mallat (3) cover a wide range of different approaches. Vetterli & Kovacevic are
linked most closely to DSP; Strang & Nguyen aim to lay a bridge between DSP and
mathematical analysis; and Mallat is the most wide-ranging of the three. A slightly
older text, also covering several angles, is that of Daubechies (4). Details about
the materials summarized in the initial section of this review can be found in all of
these books, as well as in virtually every textbook on wavelets, together with many
primary reference citations (4a). We have therefore left out detailed references
in these first subsections; later in this review, we provide detailed references to
material that is not as widely available in textbooks. Other reviews of wavelets in
biomedical applications can be found, for example, in works by Unser & Aldroubi
(5) and by Unser (6).

Motivation

Wavelets constitute a tool to decompose, analyze, and synthesize functions, with
an emphasis on time-frequency localization. A simple wavelet decomposition of
a functionf of time t can be written as the expansion

f (t) =
∑
j,k∈Z

cj,kψ j,k(t) (1)

For the moment, the variablet is one-dimensional (1-D), but we can also deal
with higher dimensions (see below). In the above equation, the functionsψ j,k are
the wavelets; they are generated by scaled and translated versions of a “parent”
functionψ , in the following way:

ψ j,k(t) = 2 j/2ψ(2 j t − k) for j, k ∈ Z (2)

We have restricted our attention mainly to square integrable waveletsψ with
certain properties. The basic requirements are thatψ be well localized in both
time and frequency and thatψ be an oscillating function; mathematically, this last
requirement is made explicit by requiring thatψ ∈ L1 and

∫
ψ = 0. In practice,

we often make the more stringent requirement that the Fourier transformψ̂ ofψ be
mostly concentrated on a region away from zero; that is,ψ should be a bandpass
function; with the normalizations implicit in Equation 1, this concentration region
would consist of (essentially) the union of two intervals, [−2π,−π ] ∪ [π, 2π ].
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Figure 1 The “Mexican hat” waveletψ(x) = (1− x2)e−x2/2 (left), together with two examples
of translates and dilates. (In each case, the tick corresponds tox = 0.) For thisψ , the{ψ j,k} values
do not constitute an orthonormal basis.

Figure 1 shows diagrams of a possible generating waveletψ and two scaled and
translated versions of it. The dilation (indexed byj ) affects the wavelet by shrinking
or stretching its support; normalizing, as in Equation 2, which ensures that all of
theψ j,k wavelets have the same energy, also affects their amplitude. Note that the
dilation can also be interpreted as changing the frequency concentration of the
wavelets; whereasψ is mostly localized in frequency in the band [π, 2π ], ψ j,k is
localized in frequency mostly in [2jπ, 2 j+1π ]. The parameterk indicates where
in time the wavelets are localized; becauseψ(2 j t − k) = ψ [2 j (t − 2− j k)], the
waveletψ j,k is localized neart = 2− j k, and becausek moves with unit steps, we
use a translation step 2− j at scalej . Wavelet families exist for which one does not
dilate systematically by multiples of 2 and many other generalizations; for this
introduction, we assume multiples of 2.

Theψ j,k wavelets are thus localized in frequency and in time; the expansion
(Equation 1) therefore corresponds to a time-frequency localized expansion. There
are many frameworks in physics, engineering, computer science, and mathematics,
in which time-frequency expansions are useful, and ideas from all of these different
fields have contributed to the development of wavelets and related tools.

A well-known and much older time-frequency–localized expansion is given by
the windowed Fourier transform, in which functionsf to be analyzed are simi-
larly written as a superposition of elementary building blocks, now obtained by
modulating and translating an envelope function:

f (t) =
∑

m,n∈Z
am,ngm,n(t) (3)

wheregm,n(t) = e−imω0t g(t − nt0). If the window functiong is well localized in
time and frequency, for instance,∼t = 0, and around zero frequency (there is no
need to require thatg be essentially bandpass in this case; approximately bandlim-
itedg values suffice), then eachgm,n is localized at aroundmω0 in frequency and
aroundnt0 in time.

Time-frequency–localized expansions and their generalizations to higher di-
mensions (for images, one should then talk rather about an expansion with local-
ization in space as well as in spatial frequency) are used in many different contexts.

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
0.

2:
51

1-
55

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

K
T

H
 R

oy
al

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(S
w

ed
en

) 
on

 1
2/

13
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



P1: FDR/fty/ftt/fok P2: FhN/FOP QC: FDR

July 10, 2000 11:39 Annual Reviews AR106-19

?
514 LAINE

They help break complicated signals into simpler components and may therefore
be useful in the analysis or segmentation of such complex signals, in the recogni-
tion or detection of particular features, and in compression as well as denoising.
Below, various applications illustrating these uses are presented.

The difference between a wavelet transform and a windowed Fourier transform
lies in how each achieves time-frequency localization. By their construction, high-
frequency wavelets are very narrow; they pack all of the oscillations of the basic
wavelet into a small interval; low-frequency wavelets, obtained by stretching the
basic wavelet, are much wider (see Figure 1). In contrast with a wavelet transform,
the basic building blocks in a windowed Fourier expansion are all given by trans-
lating a given window and using it as an envelope for a range of frequencies, as
shown by the definition of thegm,n above; these functions have therefore all of the
same “width” in time asg itself. (This fact is also illustrated by Figure 7a andb
below.) Which of the two transforms is the most useful depends on the types of sig-
nals analyzed. If the signal consists mostly of time-harmonic components, which,
even at high frequencies, have a long correlation time, then a windowed Fourier
transform, with building blocks that share these characteristics, is best. If the sig-
nal consists of a wide range of frequencies, with much shorter correlation times
for the high frequencies than for the low frequencies (which is typically the case
with transients superposed on more slowly changing components or short-lived
transients between smoother parts of the signal), then the “zoom-in” quality of
the wavelet transform is more useful, because it has a very small field of vision
for high frequencies but can be used to view low frequencies at a larger scale.
Figure 2a andb are caricatures of signals that are natural candidates for efficient
representation via a windowed Fourier analysis vs a wavelet analysis.

As discussed below, some applications work best with tools that can be viewed
as intermediate between wavelets and windowed Fourier transforms.

Figure 2 (a) A simple example of a signal for which a windowed Fourier transform is better
suited than a wavelet transform. (b) A simple example of a signal with transients for which a
wavelet transform is better suited than a windowed Fourier transform.
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Algorithms

So far we have not addressed how the coefficients in any of the proposed expansions
above can be computed. In many applications, the waveletψ in a wavelet expansion
of type 1 is chosen so that theψ j,k values constitute an orthonormal family. In that
case, thecj,k values are simply given by scalar products with theψ j,k wavelet
values themselves:

cj,k =
∫

f (t)ψ j,k(t) dt = 〈 f, ψ j,k〉
This calculation gives an explicit formula, but does not yet solve the problem;
if we had to carry out the corresponding large number of integrations to find
those coefficients, then the transform would not be practical. Fortunately, smooth
and well-localized wavelet bases are also associated with fast transforms. These
fast trasforms are linked to the existence, for any reasonable wavelet basis, of an
underlying multiresolution analysis. That is, if we denote byPJ( f ) a partial sum
of Equation 1,

PJ( f ) =
∑
j<J

∑
k∈Z
〈 f, ψ j,k〉ψ j,k

then these partial sums can be viewed as successively finer approximations off
(asJ increases). These values ofPJ( f ) can also be written as

PJ( f ) =
∑
k∈Z
〈 f, φJ,k〉φJ,k

whereφ, the scaling function, is linked toψ ; for k ∈ Z, the values ofφJ,k,
defined in the same way as theψ j,k in Equation 3, constitute an orthonormal set
of functions. Clearly,

PJ+1( f ) = PJ( f )+
∑
k∈Z
〈 f, ψJ,k〉ψJ,k (4)

where the two pieces in the right-hand side are orthogonal. It follows that one
can obtain each of these two pieces by performing an appropriate orthogonal
projection operation onPJ+1( f ). More specifically, there exist sequences(hn)n∈Z
and(gn)n∈Z (independent ofj ) such that

〈 f, ψ j,k〉 =
∑

n

gn−2k〈 f, φ j+1,n〉;

〈 f, φ j,k〉 =
∑

n

hn−2k〈 f, φ j+1,n〉
(5)

Carrying out a full fast wavelet transform of this type consists then in the following
two steps.

1. Starting from fine-scale samples off , of the type fk = f (2−Jk), the scalar
productssJ,k = 〈 f, φJ,k〉 are computed, which can be done by a simple
preprocessing filter; becausesJ,k = 2−J/2[ f (2−Jk)+ O(2−J)], it often
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suffices, for signal analysis applications, to use the approximation
sJ,k ≈ 2−J/2 f (2−Jk).

2. Next, as many levels as desired are computed by filtering and
down-sampling, corresponding to Equation 5:

sj,k =
∑

n

hn−2ksj+1,n; cj,k =
∑

n

gn−2ksj+1,n (6)

The values ofcj,k are then the desired wavelet coefficients, that is, coefficients
such that Equation 1 holds. In practice, one often stops at some coarsest level
(which we set to bej = 0, for convenience), effectively replacing Equation 1 by

f (t) =
∑
k∈Z

s0,kφ0,k(t)+
J−1∑
j=0

∑
k∈Z

cj,kψ j,k(t) (7)

noting that we have no coefficients beyond the finest-scaleJhere, because no finer-
scale information onf can be derived from only the samplesf (2−Jk). Because
the transform(sJ,k)k∈Z → [(cj,k)0≤ j<J,k∈Z, (s0,k)k∈Z] is orthonormal, it can be
inverted by the transpose operation; more specifically, for allj ,

sj+1,n =
∑

k

[hn−2l sj,l + gn−2l cj,l ] (8)

Together, decomposition and reconstruction Equations 6 and 8, respectively, can
be represented in block diagram format, which is familiar to electrical engineers,
as shown in Figure 3.

The fast-wavelet transform is therefore simply a critically sampled subband
filter bank with exact reconstruction.

In Figure 4, we show the plot of a waveletψ(t) and of the absolute value of its
Fourier transform, for an orthonormal wavelet family, corresponding to FIR filters
H andG of length 20.

Mathematical Properties

Wavelet transforms have many mathematical properties that stem from their ability
to “zoom in” on singularities. For instance, we can characterize the smoothness of

Figure 3 Block diagram corresponding to Equations 6 and 8 (see text).
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(a) (b)

Figure 4 (a) An example of a waveletψ for which theψ j,k values constitute an orthonormal
basis. Thisψ is identically zero outside an interval of length 19; it corresponds to a fast wavelet
transform with FIR filters with 20 taps. (b) Absolute value|ψ̂ | of the Fourier transform of the
function in panela.

a function by the rate of exponential decay inj of its wavelet coefficientscj,k:∫ ∣∣∣∣ dl

dtl
f (t)

∣∣∣∣2dt <∞⇔
∑
j,k∈Z

22 j l |cj,k|2 <∞

This can also be used locally, that is, around individual timest. In this case some
extra mathematical conditions of a technical nature are needed to make rigorously
correct statements (see references below); “morally,” it is still the case that the
smoothness off at t0 is given by the rate of decay inf of max{|cj,k|; k ∈ Sj (t0)},
whereSj (t0) is the set of indicesk for which t0 is in the support ofψ j,k (typically,
this means that|t0 − 2− j k| ≤ 2− j L, whereL is the length of the FIR filtersH
andG).

Concretely, this means that we can classify different timest (or, for images,
different positions in the image) by how fast the associated wavelet coefficients
decay; this classification method enables one to find edges or other special features.
Adjusting, at those special locations, the decay rate of thesecj,k values can then be
used to enhance those features. This step is used, for instance, in the mammography
applications below. Characterization of smoothness of a function by the decay of its
wavelet coefficients is but one example of a mathematical property of wavelets that
can be very useful in applications. More mathematical properties, with applications
in signal analysis, are discussed by Mallat (3) and Meyer (7).

Higher Dimensional Wavelet Bases

In one dimension, the Fourier transform̂ψ is mostly concentrated on [−2π,−π ]∪
[π, 2π ], if the values ofψ j,k defined by Equation 3 constitute an orthonormal basis
(see Figure 4b). The Fourier transform̂ψ of the accompanying scaling function
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Figure 5 Projection of f ontoVj or Wj “captures” the frequency content off for |ξ | ≤
π2 j orπ2 j ≤ |ξ | ≤ 2π2 j , respectively; together, this information is equivalent to capturing
the frequency content off for |ξ | ≤ 2π2 j , that is, the projection off ontoVj+1.

ψ is concentrated on [−π, π ]. More generally, the values ofψ j,k, for fixed j ,
span a space of functionsWj with Fourier transforms concentrated onπ2 j ≤
|ξ | ≤ 2π2 j ; the values ofφ j,k spanVj , consisting of functions with Fourier
transforms concentrated on|ξ | ≤ π2 j . Equation 5, corresponding to the transition
from Vj+1 = Vj ⊕Wj to the two component spacesVj andWj , and its converse
(Equation 6) can schematically be represented as in Figure 5. (Note that this is a
schematic representation only; the filters in an orthonormal wavelet transform are
not sharp cut-off filters in frequency. Because all of the transforms are orthonormal,
all of the aliasing and distortions that might be a consequence of using nonideal
filters are cancelled in the reconstruction of Equations 5 and 6, justifying the
schematic representation in Figure 5.)

With this interpretation of the 1-D wavelet transform, it is now easy to define
a two-dimensional (2-D) wavelet transform that has similar features. Figure 6
shows a schematic representation of how the spaceVj+1, corresponding toξ with
max(|ξ1|, |ξ2|) ≤ π2 j+1, can be split intoVj (corresponding to the central square,
i.e. ξ with max(|ξ1|, |ξ2|) ≤ π2 j ) and three additional pieces:

(a) |ξ1| ≤ π2 j , π2 j ≤ |ξ2| ≤ 2π2 j ;

(b) |ξ2| ≤ π2 j , π2 j ≤ |ξ1| ≤ 2π2 j ;

(c) π2 j ≤ |ξ1| ≤ 2π2 j , π2 j ≤ |ξ2| ≤ 2π2 j

The spaceVj is spanned by the orthonormal familyϕ j ;k1,k2(x1, x2)=
φ j,k1(x1)φ j,k2(x2), wherek1, k2 ∈ Z; the three other pieces that, together withVj ,
make upVj+1, are spanned by, respectively,ψa

j ;k1,k2
(x1, x2)=φ j,k1(x1)ψ j,k2(x2),

ψb
j ;k1,k2

(x1, x2)=ψ j,k1(x1)φ j,k2(x2), andψc
j ;k1k2

(x1, x2)=ψ j,k1(x1)ψ j,k2(x2). The
corresponding fast transforms are given, as suggested by these formulas, by imple-
menting Equations 5 and 6 on both rows and columns of a given fine-scale array
(sj+1;n1,n2)n1,n2∈Z, leading to two-dimensional arrayssj (use filterH on both rows
and columns),ca

j (H on row index andG on column index),cb
j (G on row index

andH on column index), andcc
j (G on both row and column indices).

The same construction can be used in higher dimensions. Ind dimensions,
this construction uses 2d−1 differentd–dimensional wavelets, which are usually
indexed by the vertices of the cube [0, 1]d that differ from(0, . . .0).
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Figure 6 Schematic representation of the decomposition ofVj+1 into Vj and three addi-
tional pieces, for a 2-D–wavelet basis.
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There exist many other constructions for multidimensional wavelets, in which
the wavelets are not separable (i.e. cannot be written as a product of two 1-D func-
tions); even the dilation underlying the construction can be replaced by a matrix
instead of the simple multiplication by 2 that is underlying the formulas above. For
practical implementation, the construction given here is often preferable, because
it is easier; for certain specific applications, some of the other constructions may
offer real advantages, however, making it worthwhile to go to a more burdensome
implementation.

One can also construct a 2-D basis, starting from the 1-D orthonormal basis
[ψ j,k(x); j, k ∈ Z] by constructing all of the productsψ j1,k1(x1)ψ j,k2(x2) with
j1, j2, k1, k2 ∈ Z. These constitute an orthonormal basis, but the scaling in the
two variables is now decoupled. If the signal under study shows such decoupling
in its fine-scale features, then this tensor product basis may be better adapted than
the 2-D wavelet basis given above; for images, however, one typically finds that
coupling the scaling in the two variables, resulting in a single scale parameterj as
above, gives better results.

Generalizations

The wavelet bases discussed above, of which one example is given in Figure 4,
are orthonormal bases associated with fast transforms that can be useful for many
applications. They are, however, not ideal for all situations. Figure 2a illustrates
a function for which the windowed Fourier transform is a better tool than the
wavelet transform. Even for functions with sharp, well-localized transients, it may
be useful to step outside the framework of orthonormal wavelet bases as defined
above.

Symmetry A first observation is that the waveletψ given in Figure 4a is not
symmetric; this lack of symmetry is characteristic for all reasonably smoothψ

for which theψ j,k values defined by Equation 2 generate an orthonormal-wavelet
basis corresponding to FIR filtersH andG. For certain applications, symmetry is
desirable; this can be achieved by switching to generalizations of the orthonormal-
wavelet bases illustrated above. One possible generalization is to relinquish or-
thonormality in a carefully controlled way, so that the resulting wavelets still share
many of the important mathematical properties of orthonormal-wavelet bases; in
this construction of biorthogonal wavelets (8; see also the textbook references
given above), the block diagram of Figure 3 is replaced by a similar diagram, in
which the reconstruction filters̃H andG̃ differ from the decomposition filtersH
andG. Another possible generalization that retains orthonormality is to introduce,
even in one dimension, several waveletsψ1, . . . ψ l , as described by Alpert &
Rokhlin (9), Geronimo et al (10), and Strang & Strela (11).

Boundary Effects In practical applications, one never works with an infinite
array of data; this means that the constructions above, suited for work onRd (or, in

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
0.

2:
51

1-
55

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

K
T

H
 R

oy
al

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(S
w

ed
en

) 
on

 1
2/

13
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



P1: FDR/fty/ftt/fok P2: FhN/FOP QC: FDR

July 10, 2000 11:39 Annual Reviews AR106-19

?
WAVELET APPLICATIONS IN BIOMEDICAL IMAGING 521

sampled form, onZd), must be adapted to finite domains, which can be achieved in
several ways. For simple situations, periodizing the problem may suffice; often it is
useful to be a little more careful and to introduce specially adapted filters near the
boundaries to take care of boundary effects. A construction of such filters is given
by Cohen et al (12) for the orthonormal case; a very simple and natural way to
construct boundary filters for biorthogonal wavelets is given by Sweldens’ lifting
scheme [Sweldens (13), Sweldens & Schr¨oder (14); see also Vetterli & Kovacevic
(1)].

Translational Invariance Wavelet bases, as defined by Equation 2 or by any of
the generalizations mentioned above, are highly noninvariant under translations,
as shown by their definition; for scalej , the translation step is 2− j ; this scale
dependence means that the whole family of building blocks(ψ0,k; k ∈ Z) ∪
(ψ j,k; 0≤ j ≤ J − 1, k ∈ Z), used, for example, in reference 7, is invariant only
under translations by much large unit steps, which means that the wavelet transform
obtained from a shifted version of a data set may differ markedly from the wavelet
transform of the original data set. Algorithmically, this result is a consequence of
the down-sampling by 2 in Equation 5 or in Figure 3. If the values ofsj+1,n are
replaced bỹsj+1,n = sj+1,n+1, then the sequencess̃ j andc̃ j , obtained from filtering
and down-sampling̃sj+1, are different fromsj andcj ; in the down-sampling that
computes thesj andcj , we “throw away” the odd-indexed entries of̄H ×sj+1 and
Ḡ × sj+1; the s̃ j,k andc̃ j,k are equal to these missing entries. A simple solution
to reintroduce translation invariance is to omit down-sampling at every step. This
results in an expansion in a redundant family, by using, at every scalej , where
0≤ j ≤ J − 1, all of the functionsψ(2 j t − 2 j−Jl ), wherel ∈ Z (instead of only
those for whichl = 2J− j k andk ∈ Z, corresponding to Equation 2); because of
the redundancy, these wavelets then have to be renormalized appropriately. The
redundant family can also be viewed as the union of several different orthonormal
bases, with the special property that computing all of the coefficients in the 2J

different bases can be done inO(N log N) operations, starting withN data of
type f (2−Jk), wheren0 ≤ k ≤ N + n0. (In a variation on this idea, one can also
choose to forgo down-sampling at only the firstJ0 levels, resulting in 2J0 different
bases, and translation invariance for steps of width 2−J0 instead of the smaller-
width 2−J .) Such redundant representations have been shown to be very useful in
noise reduction (15) or in detection and parameter extraction. Some applications
described below use this type of translation-invariant, redundant wavelet transform.

Orientation Selectivity As shown in Figure 5, the standard definition of higher
dimensional wavelets leads to bad orientational localization. This is particularly
apparent forψc, which localizes around the directionξ1 = ξ2 as well as around the
orthogonal directionξ1 = −ξ2. Several solutions have been proposed and used to
address this. If one uses the same construction to go from one to two dimensions,
as explained earlier, starting, however, from complex functionsψ and φ that
concentrated mostly on one half of the frequency axis (see 4 for an example), then
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the resulting 2-D basis will concentrate mostly around only one of the directions,
namelyξ1 = ξ2, at the price of having to work with complex wavelets. (Note that
this approach introduces redundancy if one works with real signals only, because
N real data are transformed intoN complex coefficients or 2N real numbers.)
Other constructions that similarly introduce a complex transform and that lead to
even better separation of different quadrants in the frequency plane are given by
brushlets (see 16). We describe some applications below in which brushlets are
used, because of their better orientation selectivity, compared with normal wavelet
bases. There also exist constructions that have even better orientation selectivity, at
the cost of being nonseparable and even more redundant, such as the steerable filter
banks of Freeman & Adelson (17), which they applied to biomedical imaging.

Time-Frequency Tiling Figure 7a and b illustrate the difference in time-fre-
quency localization between the windowed Fourier transform and the wavelet
transform. For both types of transform, there exist variants that adapt, to some
extent, the time-frequency tiling.

In a standard wavelet transform as described above, one computes at every scale
a set of wavelet coefficients (cj,k) and scaling coefficients (sj,k); thecj,k coefficients
are stored as such (or post-processed later, if desired); thesj,k coefficients have to
undergo further filtering and down-sampling. This procedure leads to progressively
narrower frequency bins as one descends to lower frequencies and correspondingly

Figure 7 Schematic representation of the time-frequency localization for different bases.
Panel: (a) Wavelets, (b) windowed Fourier transform (or local cosine transform with fixed
window), (c) a wavelet packet basis, and (d) a local cosine transform with various windows.
In all cases, this is a schematic representation only. In each case, the basis functions do in
fact overlap in time and in frequency.
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wider time spreading (see Figure 7b). If not only thesj,k but also thecj,k are filtered
and down-sampled, then one can introduce similar frequency band splitting at
higher frequencies, which means that every time we have performed a convolution
(with eitherH̄ or Ḡ) and down-sampling, we have had the choice either to keep the
resulting coefficient sequence as is or to replace it with two sequences, obtained by
convolving byH̄ andḠ and down-sampling. Every combination of choices leads
to an expansion in a corresponding orthonormal wavelet packet basis. Figure 7c
gives an example of the time-frequency localization corresponding to one such
wavelet packet basis choice. [Note that, for each such tiling, one can construct
special filter banks, not obtained by cascading the simple filtersH andG, that will
do an even better job of localizing closely to that tiling. The interesting aspect
of wavelet packets is that the cascading structure allows, again withO(N log N)
operations forN data, computation of coefficients for a large number of different
bases, making it possible to adapt the basis to the data (see below).]

The windowed Fourier transform described above does not lead to interesting
bases with good localization in time and frequency. It is interesting that this ob-
struction no longer exists if one replaces complex exponentials by cosines or sines,
as shown by the constructions of Malvar (18) and Coifman & Meyer (19). It turns
out, moreover, that it is then possible to use different overlapping windows with
various lengths. Concretely, the basis functions are then

gm,n(t) =
√

2

ln
cos

[
π

(
m+ 1

2

)
t − tn

ln

]
wn(t)

where the window functionswn are concentrated mostly on [tn, tn+1] and ln =
tn+1− tn; thewn functions overlap with their neighbors and have to satisfy certain
technical conditions. [For details, see the original references or Wickerhauser
(20), Auscher et al (21), or the textbooks quoted earlier.] Figure 7d gives the
time-frequency localization of an example of such a local cosine basis.

Best-Basis Selection Coifman & Wickerhauser (22) proposed to take advantage
of the fast simultaneous transform into many different wavelet packet bases by
choosing, after the transform, the basis that gave the most compact representation
of the data. The same idea can be used for other fast simultaneous transforms or to
regroup windows in a local cosine transform, leading to adaptive window length
selection. The searches for the best basis within a family are typically implemented
through a tree algorithm.

One can even decide to use several bases, when different components of the
signal have such widely different characteristics (e.g. harmonic components vs
transients in sounds and edges vs texture in images) that they are most efficiently
represented in different bases; this approach is sometimes called basis pursuit, and
its approximation properties are mathematically less well understood at present.
See Mallat (3) or Wickerhauser (20) for more details.
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WAVELETS IN BIOMEDICAL IMAGING: Analysis
and Quantification

In this section, we review some of the more recent applications of wavelets in
biomedical imaging. We first describe methods of denoising magnetic resonance
(MR) imaging (MRI) signals to improve the signal-to-noise ratio (SNR) in func-
tional imaging. In addition, we review previous wavelet-based encoding schemes
for MRI and present some recent results with complex wavelets. We then review
recent applications of wavelets in ultrasound imaging, including denoising and
singularity detection in Doppler ultrasound, tissue characterization in cardiac ul-
trasound, and methods of boundary detection for quantification of cardiac volumes.
We also report on a method of analysis that uses an orientation-sensitive basis and
computes cardiac output from echos collected from a true 3-D transducer. Next,
we summarize previous work related to wavelets in computed tomography. This
area is one of the most rigorously studied applications and includes relationships
between the radon transform, limited angle tomography, the wavelet-vaguelette
decomposition, and more recent nonlinear approaches that attempt to overcome
the limitations of single-valued decomposition methods. Finally, we review ap-
plications in the area of digital mammography, including methods of contrast
enhancement and detection of masses. We describe some recent efforts to develop
computer-aided diagnostic (CAD) systems that incorporate wavelet-based meth-
ods of lesion detection. We also describe the need to use nonlinear methods for
enhancement of subtle mammographic features in dense radiographs.

Wavelet Applications in Magnetic Resonance Imaging

Applications of the wavelet transform are appearing in conventional MRI, as well
as in functional MRI (fMRI). First, we review postprocessing techniques of MRI
and fMRI data with wavelets and then discuss wavelet-encoding schemes.

Denoising and Enhancement of Magnetic Resonance Imaging DataAmong
the first to take advantage of the properties of wavelet analysis for MRI, Healy
et al (23, 24) described simple and effective techniques for image denoising and
contrast enhancement based on extraction of multiscale edges. Separable cubic
spline wavelets, as first derivatives of the corresponding scaling function, were
applied to image data to obtain multiscale gradients. The scaling function per-
formed as a smoothing operator that stabilized the gradients against noise. From
the multiscale gradients, multiscale edge representations were computed as lo-
cal maxima of gradient magnitudes along the direction of each gradient. These
multiscale edge representations were then processed for noise removal or contrast
enhancement. After that, image reconstruction was performed in two phases: (a)
reconstruction of multiscale gradients from edge representation through alternate
projection onto a set of wavelet-reproducing kernels and onto a set of consistency
constraints and (b) image reconstruction through an inverse wavelet transform.
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The general concept of multiscale edge representation and the corresponding im-
age reconstruction process were previously developed by Mallat & Zhong (25, 26).
However, in Healy’s paper, processing for noise removal included the construction
of tree structures of multiscale edges (tracing of edges through scale space) and
thresholding of the tree branches via a metric computed for each branch (a product
of gradient magnitude and “length” of branch). The underlying assumption of this
algorithm was that key features of the image (signal) would persist through scale
space, that is, exist at multiple scales, whereas edges caused by noise would appear
only at finer scales and would be lower in magnitude. For contrast enhancement,
the magnitude of multiscale edges was stretched, either by a constant factork for
all scales or by a set of scale variable factorskj (differentks for each scale). The
latter approach attempts to suppress noise amplification at small scales. A com-
bination of denoising and enhancement has also been applied. Promising results
were observed, although a tradeoff between noise removal and preservation of
image details was also observed. Further optimization for threshold selection and
edge stretching remains to be achieved.

Another interesting algorithm with the wavelet transform for denoising MRI
data was presented by Nowak (27). His work was based on the assumption that
MR images should be modeled by the Rician distribution (28, 29). Rician noise
is non-zero mean and depends on local signal intensity. It introduces a signal-
dependent bias to the observations, which can reduce the contrast of an image.
For a high SNR, Rician noise tends to the Gaussian distribution. Because of this
complication, estimation from noisy data is especially challenging in MRI. Nowak
proposed two wavelet domain-filtering algorithms to estimate a signals from its
magnitude imagex. Wavelet coefficientsdI of an image were computed and mod-
ified for d̂I = αI · dI , where the collections ofαI resembled a wavelet domain
filter. One algorithm derivedαI under an assumption of Gaussian noise and worked
well for high SNR. Another algorithm operated on the squared-magnitude MR im-
age. Using the properties of the wavelet transform and the noncentral chi-square
distribution, Nowak showed that wavelet coefficients of the squared-magnitude
values ofx2 are unbiased estimators of wavelet coefficients of the squared signal
s2. Furthermore, the scaling coefficients of the squared-magnitude image were
biased estimators by a constant value. Building on these observations, the second
algorithm removed the bias as well as noisy wavelet coefficients, providing im-
proved image contrast for high SNR and low SNR. Results have been shown for
simulated data, MRI data, and low SNR MRI data (27).

fMRI is an important emerging technique in the field. Here wavelets have been
mainly used for noise removal and detection of activation areas in the brain. Next
we describe these applications after a brief overview of fMRI principles.

Functional Magnetic Resonance Imaging fMRI is a noninvasive method of
measuring spatially distributed brain activity as a function of local vasodila-
tions (30). A local vasodilation is characterized by the hemodynamic response,
which is slow and has a time scale on the order of seconds. fMRI techniques are
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based on the changes associated with the ratio of oxyhemoglobin to deoxyhe-
moglobin, commonly referred to as the “BOLD” (blood oxygenation level depen-
dent) effect. Oxyhemoglobin is diamagnetic, whereas deoxyhemoglobin is para-
magnetic. As the erythrocytes are confined to vasculature, the change in the ratio of
oxy/deoxyhemoglobin causes magnetic susceptibility variations locally. Protons
diffusing through this region have dephasing effects. Thus, an MR sequence that
is sensitive to a magnetic susceptibility variation can be used in a temporal se-
quence to observe these changes in signal as a function of time (30, 31). Typically,
an echo planner gradient echo sequence is used for image acquisition. Basically,
this implies that the level of blood oxygenation acts as an inherent contrast agent,
giving rise to temporal signal changes of T2∗ that are∼2%–6% from a baseline
(resting state) to an activation state.

Owing to the small magnitude of the detectable signal, scanner-induced noise,
and intrinsic biological heterogeneity, the images typically have poor SNRs. Prob-
lems with BOLD methods have been attributed to the presence of artifacts that are
associated with head and/or vessel motion (32), as well as vascular inflow (33, 34)
and drainage effects (35). Hence, detection and localization of areas of activation
are difficult tasks that challenge the state of the art.

Denoising in Functional Magnetic Resonance ImagingTo improve the SNR of
fMRI data, wavelet-based denoising schemes have been applied before detection
of activation. Hilton et al (36) computed an orthonormal wavelet decomposition
and applied a nonlinear soft-thresholding operation to each coefficient at the finer
scales. The denoising operator was formulated as (37, 38):

TS( f, λ) =


f − λ if f ≥ λ
f + λ if f ≤ −λ
0 if | f | ≤ λ

(9)

Of fundamental importance to signal recovery is the choice of the thresholdλ.
Global and data-driven approaches have been investigated. The first method was
the “VisuShrink” universal threshold introduced by Donoho & Johnstone (37):

λ = σ
√

2 log(n)

wheren is the number of data samples. Because typically the true value of the stan-
dard deviationσ of the noise is not known, it is estimated by ˜σ = MAD/0.6745,
whereMAD is the median absolute value of the finest-scale wavelet coefficients
(37). The second method used was a data-analytic approach that considered both
the magnitudes and spatial relationships of empirical wavelet coefficients when de-
terminingλ. A thresholdλν was selected separately for each levelν of coefficients
by examining the coefficients at each level and recursively removing large coeffi-
cients, until the remaining coefficients resembled a sequence of white noise, based
on some given criterion. This approach assumed data of a Gaussian distribution. An
orthogonal wavelet transform of this data then yielded empirical coefficients that
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had independent normal distributions with varianceσ 2 and meansµ1, . . . , µn.
Statistical testing of the null hypothesisH0, that coefficients only contain noise
µn = 0, then was used to determine coefficients containing mostly signal. These
selected coefficients were removed and tests repeated, until the remaining set of
coefficients behaved as white noise. Finally, the thresholdλν was set toσ times
the largest coefficient (in absolute value) in each set, the amount by which all of
coefficients in the corresponding level were shrunk. After denoising, detection of
activation was performed on fMRI data sets by a standardt-test. The effect of de-
noising on the analysis was measured by an increase or decrease in the magnitude
of thet-statistic, because an increase of thet-statistic corresponds to the improved
discriminating power of the test. Although reported results were mixed for dif-
ferent data sets (increase, nearly no change, and decrease), Hilton et al suggest a
potential for thresholding strategies by using wavelet representations (36).

Activation Detection in Functional Magnetic Resonance ImagingRuttimann
et al (39) proposed a wavelet-based procedure for fMRI analysis to detect activated
regions of the brain that correspond to a simple activation task (finger tapping).
Their method benefited from the fact that a smooth and spatially localized sig-
nal can be represented by a small set of localized wavelet coefficients, whereas
the power of noise is uniformly spread throughout a wavelet transform space.
By applying an orthogonal wavelet decomposition to averaged difference images
of “on” and “off” blocks, a two-step statistical-testing procedure was developed.
First, wavelet-space partitions with a large SNR were located, followed by subse-
quent testing for significant wavelet coefficients that were restricted within these
partitions. This resulted in a higher SNR and a smaller number of statistical tests,
yielding a lower detection threshold compared with purely spatial-domain testing
and, thus, a higher detection sensitivity without increasing type I errors (i.e. reject
H0 when, in fact,H0 is true). Here the authors assume that the difference images
andgi (En) (En is the pixel location) can be characterized bygi (En) = f (En)+ ei (En),
where f (En) is an unknown deterministic signal that is common to all replica-
tions andei (En) is a homogeneous random field of identically and independently
distributed Gaussian noise,iid ∼ N(0, σ 2). The distributions for the individual
wavelet coefficients for each of them directional channels at resolution levelj are
then derived. After selecting channels of significant signal power, the estimated
signal f̃ was reconstructed through an inverse wavelet transform from the signifi-
cant coefficients of these channels, selected from a two-sidedz-test with an overall
significance level. The procedure was applied to two different imaging protocols
for fMRI, PRESTO, and echo planar imaging (EPI), and results were compared
with those from testing in the spatial domain. In general, the activation areas de-
tected with the wavelet method were at similar locations, but were more compact
and smoother compared with pure spatial-domain testing. This observation was
more pronounced for the PRESTO protocol than for EPI, owing to inherent signal
properties of image acquisition (lower SNR of PRESTO). In addition, a crude
estimation of the signal bandwidth could be obtained from the first testing stage
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as 2− j∗ times the sampling rate, withj ∗ the smallestj (highest-resolution level),
where at least one of the directional channels carried significant signal power.

In another approach, wavelet and statistical analyses were jointly applied to
achieve activation detection (40). In addition, multidimensional wavelet analysis
has been used (41). Moreover, denoising of fMRI data through monotonic filtering,
similar to wavelet-based methods, has been proposed (42).

Other applications of the wavelet transform to MRI data include truncation ar-
tifact reduction by Kok et al (43). Truncation artifacts in MR images stem from
the truncation of complex MR data in the Fourier domain (k-space). It was shown
that the application of a wavelet shrinkage algorithm (37, 38) to MR images re-
duced these artifacts. A soft-thresholding procedure was used in this case. Opti-
mal performance of truncation artifact reduction by wavelet-based thresholding,
compared with other bases, was shown with a strong definition of artifact-free
truncation. Shift-invariant transforms outperformed decimated ones (43). More
recently, a wavelet compression method was used to reduce model information for
active appearance models (44), which also included training sets of MR images.
Further work has been done in denoising of diffusion maps from MR acquisition
(45), MR image compression (46, 47), and segmentation of blood vessles in MR
flow-sensitive imaging (48).

Finally, in a related paper, denoising of electron microscopic images with
wavelets was described (49).

Wavelet-Encoding Schemes for Magnetic Resonance ImagingThe use of a
wavelet transform to encode has been described in various 2-D and 3-D MRI
applications (50–53). In contrast to conventional phase encoding, in which or-
thonormal Fourier harmonics are used to encode spins across an entire field of
view (FOV), wavelet encoding uses an orthogonal set of spatially localized func-
tions. This encoding scheme offers the immediate potential of localized or focused
imaging and direct motion artifact reduction. The design flexibility of such encod-
ing may even help to develop a variety of new NMR sequences. However, practical
applications of wavelet encoding have been limited so far because of low SNRs
and vulnerability to artifacts.

Conventional Fourier phase encoding weights all spins within an entire FOV at
each step, with a constant but phase-modulated complex-encoding profile (i.e. a
Fourier harmonic). With wavelet encoding, spins are weighted at each step with a
spatially localized profile. As a consequence, the inherent SNR is low. In addition,
spins are encoded with distinct flip angles. Thus all spins do not experience the
same excitation and relaxation sequence. This can complicate image contrast and
interfere with wavelet encoding. When sufficient relaxation is absent, such as for
a large flip angle or short repetition time (TR), care must be taken to minimize
the spatial variance of spin relaxation across an entire FOV. Otherwise, severe
artifacts may occur. In case spin relaxation is dominated by a wavelet encoded
radio-frequency (rf) pulse such as in a 3-D gradient echo sequence (53), proper
encoding order can increase effective TR substantially.
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However, wavelet encoding schemes offer great flexibility, because a set of
orthonormal encoding profiles can be constructed from any scaling/wavelet func-
tion set by proper spatial translation and dilation (4, 54). For a given true encoding
resolution and spatial support, a scaling functionφ(t) and wavelet functionψ(x)
pair should be designed with the following goals in mind: (a) maximum energy∫
φ2(x)dx and

∫
ψ2(x)dx, while maintaining the same peak amplitude to maxi-

mize the SNR for a given maximum flip angle, (b) acceptable rippling (or duration)
and peak power of required rf excitation pulses, and (c) sufficient reconstruction
stability in the presence of noise. Sinc and Haar (50) bases are two extreme cases.
Most studies in the literature have adopted Lemarie-Battle and Daubechies bases
from existing wavelet processing paradigms (51–53). As an alternative and to
best satisfy the conditions above, an array of real as well as complex scaling and
wavelet functions was designed and verified through simulations (55). The concept
of wavelet encoding has also been extended to other basis functions, as adapted
waveform encoding (24). Common to all of these encoding schemes is that phase
encoding is replaced by an rf pulse excitation with a wavelet- or more general
waveform-shaped excitation profile along they-axis,ψ(y). The signal produced
is then simply the inner product of the excited profile with the spin density along
the y-axis. Waveforms that have been reported in the literature include wavelet
packets (22), line scans (impulse profiles), Hadamard, and multiple Hadamard
functions (24).

Because wavelet encoding relies on selective rf pulses in the presence of a linear
gradient to produce orthonormal encoding profiles, it remains to rf hardware im-
perfections. Modulator side-band suppression leakage and quadrature phase error,
transceiver offsets, and nonlinearity are precalibrated and adjusted before data ac-
quisition. To avoid chemical shifts, varying rf waveform and constant gradients are
used for wavelet encoding. An rf waveform is first approximated on first order by a
Fourier transform of the optimized spatial encoding profiles and then corrected for
any nonlinearities between flip angle and NMR signal through numerical iteration
so that large flip angles can be used (22, 56). The encoding order can be inter-
leaved to minimize the spatial variance of spin relaxation and also to maximize
the effective TR.

An example is given for table-driven wavelet-encoding acquisition and image
reconstruction, implemented on a whole-body 4.23 T MRI system at Columbia
University (55). Figure 8a shows a conventional spin-echo image of a water phan-
tom, constructed with 256 horizontal frequency encodings and 64 vertical gradient
phase encodings (TR, 500 ms; TE, 30; NEX, 1; FOV, 200 mm; and slice thickness,
4 mm). Phase encoding was then replaced with a 64-wavelet encoding implemented
by the first 90◦ rf pulse (4-ms duration). Encoding was focused to the central1

4
vertical FOV. An optimized spline-based scaling/wavelet function pair at level
M = 3 was selected to build the orthonormal encoding profiles. The complete
set of functions is shown in Figure 9. A sample reconstruction image is shown in
Figure 8b. It is artifact free and yields superior spatial resolution to that expected
from focused encoding alone.
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Figure 8 (a) Conventional phase en-
coding. (b) Localized wavelet encod-
ing.

Figure 9 Orthogonal scaling/wavelet functions. E1 shows the scaling functions and E2–E8
are three scales of wavelets. From E9 on, the same but translated set of functions is repeated.
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Figure 10 An example of optimized complex scale/wavelet functions.

To achieve optimal noise propagation, the use of a class of complex Daubechies
scale/wavelet functions (57) was introduced (EX Wu, J Baude, JM Lina, AF Laine,
submitted for publication). For MRI, these functions are easily implemented be-
cause of the complex nature of rf excitation pulses. In general, complex wavelet
bases were found to yield better noise propagation properties for localized MRI
encoding than purely real wavelet bases. A number of complex wavelet bases for
optimal noise propagation were designed. They provided an SNR gain factor of 2.5,
while still maintaining localized encoding without loss of a practical implemen-
tation. In addition to optimization of wavelet basis functions, localized encoding
profiles were combined into subgroups in an orthogonal fashion (see Figure 10).
This increased the energy under all encoding profiles and thus further increased
the SNR without affecting analytical reconstruction (EX Wu, J Baude, JM Lina,
AF Laine, submitted for publication). Benefits associated with choosing a set of
orthogonal excitation profiles were also described previously (23).

Wavelet Applications in Ultrasound

A fundamental principle used in methods of multiscale denoising and segmentation
with wavelet analysis considers a transform domain in which features of interest
in a signal can be decorrelated from noise, allowing for a selective reconstruction
or segmentation of signal features.

Denoising and Singularity Detection in Doppler UltrasoundDoppler ultra-
sound echoes from cardiac structures are rich in detail and highly nonstation-
ary. Thus, time-frequency and time-scale analysis are well-suited analytical tools
(59). Physiology of the cardiovascular system and heart rate signal is governed by
nonlinear chaotic dynamics. Recent studies have shown that an adaptive wavelet
denoising method for Doppler ultrasound fetal heart rate (FHR) recordings can iso-
late deterministic nonlinear structures that were concealed by the noise (60, 61).
A complete review of the time-frequency and time-scale analytical tools that
have been applied to Doppler ultrasound is offered elsewhere (59). Short-time
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Fourier transform, Wigner-Ville transform, wavelet transforms, and model-based
time-frequency representations are tested. Their comparison showed little advan-
tage of using logarithmic analysis intervals with a wavelet transform (Hamming
wavelets). If only general features of a time-frequency structure are of interest,
short-time Fourier transforms or wavelet transform can be used. But, if details of
the time-structure are important, components from other time-frequency analytical
tools provide superior results.

Another use of Doppler ultrasound is in the detection of small gas bubbles in
flowing blood, called microemboli. Ultrasonic recordings from moving microem-
boli in the middle cerebral artery produce a Doppler-shifted transient reflection.
In this case matched-filter detectors that use a wavelet transform produced bet-
ter results than short-time Fourier transforms (62). Doppler shift signals show a
chirping behavior that is caused by acceleration and deceleration of the emboli
during their transit through a sample volume. Time-scale chirp detectors provided
an overall improvement in detection of∼0.5–0.7 dB.

Tissue Characterization in Cardiac Ultrasound Echoplanar ultrasound is a use-
ful diagnostic tool for imaging organs and soft tissues in the human body. Accurate
diagnosis based on tissue visual appearance is very difficult owing to the low reso-
lution of ultrasonic images and the presence of speckle noise. Pathological tissues
often reveal changes in their acoustical properties and can be detected by ultrasound
as textural patterns with distinct characteristics from normal tissue.

Mojsilovic et al (63, 64) have shown that a scale-frequency method based on
separable and nonseparable wavelet transforms is appropriate for the characteri-
zation of ultrasonic texture for liver and myocardial tissue. Advantages of a mul-
tiscale analysis approach to ultrasound characterization include invariance to gain
settings of the transducer, good discrimination of speckle noise in the higher-
frequency channels, and powerful assessment of singularities at different scales.
In the context of tissue characterization, texture features are extracted via first-
and second-order statistics on the analysis coefficients, followed by a binary clas-
sification (normal vs diseased). Nonseparable wavelet transforms (65) such as the
quincunx transform have been shown to be more robust to noise and less sensitive
to rotation than separable wavelet transforms.

Neskovic et al (66) showed that a wavelet-based tissue characterization method
applied to 2-D transthoracic ultrasound can differentiate between viable my-
ocardium with recovery potential and myocardial necrosis in the early postin-
farction period. In a similar study, Venkatesh (67) showed that the gradient im-
age of multiscale representations can discriminate between healthy and diseased
liver.

In most of these studies, feature vectors derived from wavelet-based texture cha-
racterization were used with either minimum-distance type classifiers or Bayesian-
type classifiers or as neural network inputs for unsupervised classification.

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
0.

2:
51

1-
55

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

K
T

H
 R

oy
al

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(S
w

ed
en

) 
on

 1
2/

13
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



P1: FDR/fty/ftt/fok P2: FhN/FOP QC: FDR

July 10, 2000 11:39 Annual Reviews AR106-19

?
WAVELET APPLICATIONS IN BIOMEDICAL IMAGING 533

Denoising of Speckle Noise in UltrasoundThe formation of ultrasound im-
ages under coherent waves results in a granular noisy pattern called speckle. It
is caused by the constructive and destructive interference of back-scattered sig-
nals owing to tissue inhomogeneity. Speckle noise formation is dependent on the
organ tissue property and the orientation of the transducer beam during an ac-
quisition. Speckle noise introduces sharp changes in an image intensity profile.
A second artifact, the attenuation artifact, alters the intensity of equally signifi-
cant structures, depending on their orientation. These artifacts are inherent in the
physics of ultrasound and cannot be eliminated during acquisition. Speckle noise
significantly degrades image quality, making visual diagnosis difficult and fur-
ther processing, such as segmentation and edge detection, extremely challenging.
Speckle noise reduction techniques include compounding and filtering. The com-
pounding technique averages a series of images of one target at different times
(cardiac ultrasound) or for different scanning directions (liver, kidney,. . .). Earlier
filtering and denoising techniques include adaptive median filtering (68, 69) and
homomorphic Wiener filtering. More recently, Guo et al (70) first reported tech-
niques that use wavelet transforms and thresholding of analysis coefficients before
reconstruction. These methods have been widely used for more robust and accurate
denoising, because they enable the used to balance noise suppression and signal
preservation.

The general framework for methods of wavelet-based denoising is (a) com-
putation of multiscale analysis coefficients with a wavelet transform, (b) hard or
soft thresholding of the coefficients at each scale, and (c) reconstruction of the
signal via an inverse wavelet transform. Thresholding of the coefficients is aimed
at eliminating coefficients that encode noise components (usually in the high fre-
quencies or low scales) and enhancing coefficients that correspond to true signal
components (usually in the low frequencies or high scales). Hard thresholding of
coefficients resets to zero those coefficients whose magnitude is below a certain
threshold, while preserving coefficients above that threshold. Nonlinear thresh-
olding of wavelet coefficients, first introduced by Lai et al (35) and Donoho &
Johnstone (71), weights the coefficients with a curve, depending on their magni-
tude, as illustrated in Figure 11. The basic soft-thresholding operator is defined

Figure 11 (a) Hard-thresholding operator. (b) Soft-thresholding operator.
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in Equation 9, and the hard-thresholding operatorsρH with threshold parameterλ
applied on signalf are defined below.

TH ( f, λ) =
{

f if | f | > λ

0 if | f | ≤ λ (10)

Xiang & Zhang (72) utilized the same threshold across scale, whereas Zong
et al (73) selectively applied adaptive denoising and enhancement threshold oper-
ators at each scale, by using a sigmoid-shaped weighting curve. They showed that
a fine- to coarse-scale space analysis of cardiac B-scan ultrasound on a logarithmic
scale could differentiate behaviors of cardiac features from noise. The efficiency
of denoising is usually validated by an overall improvement in the consistency
of manual tracing of borders by physician experts. Hao & Gao (74) introduced
a preprocessing step that separates an original image into two parts—the out-
put of adaptive median filtering and the difference between the original and the
filtered image. Both parts are then denoised independently via wavelet threshold-
ing and then recombined to produce the final output. The authors conclude that the
combination of adaptive filtering and wavelet coefficient thresholding provides a
most effective speckle reduction when compared with single filtering or wavelet
analysis alone. Rakotomamonj & Marche (75) recently presented a novel method
for lesion enhancement by using a statistical estimator of noise-free signal in a
wavelet transform space. ROC analysis has shown that their method performed
better than a traditional maximum-likelihood estimator for lesion detection.

Multiresolution Edge Detection Multiresolution edge detection methods have
been developed to extract edges at different scales (25, 76–78). Simple multireso-
lution algorithms include spatial filtering of a fixed image with filters of different
sizes or blurring of an image with Gaussian filters of distinct size before edge
detection (79, 80). The output of existing multiresolution segmentation is gener-
ally a composite edge map that contains edges at multiple scales. Multiresolution
segmentation has been extended to wavelet analysis by Mallat et al (25, 81). More
recently Boukerroui et al (82, 83) presented an original multiresolution segmenta-
tion method on echocardiographic data based on gray-level statistics.

An important issue in multiscale segmentation is the diminution of dimen-
sion between the spatial domain and the transform domain, which is caused by
the twofold down-sampling in traditional dyadic wavelet analysis. This down-
sampling is problematic when manipulating transform coefficients, because there
is not a homomorphism between the original signal and coefficient domains. The
theory of overcomplete multiscale analysis has been developed to overcome this
mathematical limitation. Overcomplete multiscale representations are well suited
for image segmentation because they avoid aliasing effects that are introduced by
critically sampled representations (3) and that yield a shift invariant representa-
tion in which image features are identically localized in both the spatial domain
and transform domain. However, overcompleteness is still not always provided in
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the multiscale-segmentation methods reported in the literature, and the absence
of direct homomorphism between the original and transform spaces can lead to
erroneous localization of edges across scales. Obviously in a dyadic framework,
interpolation across scale is required for tracking, and there is a lack of mathe-
matics to support the validity of segmentation methods. In another recent work of
Setarehdan & Soraghan (84, 85), they present a fuzzy, multiscale edge detection
algorithm for ultrasonic data that combines edges at different scales with a fuzzy
operator to obtain an optimized tradeoff between detection and localization. Be-
cause of the down-sampling at each scale, however, they had to define degrees of
edginess for edge point location at each scale.

Phase-based feature extraction methods have also been applied to echocardio-
graphic data (86, 87). In their work, Noble et al showed that, by using log-Gabor
wavelet functions, steplike cardiac boundaries could be selectively extracted based
on the value of their local phase signature, which is different from the ridgelike
structures associated with speckle noise. Nonorthogonal waveletlike Gabor filters
have been widely used in biomedical applications (88, 89). The main advantage
of phase-based, spatiotemporal ultrasonic edge detection methods is that they are
intensity invariant. As mentioned above, tissue attenuation in ultrasound images is
position dependent, which makes intensity or gradient-based segmentation meth-
ods inappropriate (90–92). A similar approach was presented by Brandt et al (93),
which used quadrature filters instead of Gabor-like analytical functions for the
segmentation of cardiac boundaries in 2-D+ time echocardiographic data.

Computational Anatomy: Automatic Segmentation of Left Ventricular (LV)
Volumes from 3-D Cardiac Ultrasound The recent introduction of real-time
acquisition via 3-D ultrasound obviates the need for slice registration and recon-
struction, leaving segmentation as the remaining barrier to an automated, rapid,
and therefore clinically applicable calculation of accurate LV cavity volumes and
ejection fractions.

Because it provides such a rich description of the temporal and spatial environ-
ment of any area of interest, 3-D ultrasound also offers the potential for increased
sensitivity in detecting subtle wall motion abnormality that is indicative of is-
chemia (e.g. during an exercise stress test), compared with fast MRI techniques.
New spatio-temporal segmentation methods that use both spatial and temporal
coherence of data are being developed for the extraction of cardiac borders and
the reconstruction of beating hearts. Sarti et al (94) presented a nonlinear multi-
scale analytical method for 3-D echocardiographic data that combines the effect of
the regularized Perona-Malik anisotropic diffusion in space (79) and the invariant
movie multiscale analysis of Alvarez & Morel (95) in time. This method can filter
out the noise component while preserving the coherent space-time structures.

A new spatio-temporal directional analysis tool called the brushlet, first in-
troduced by Meyer & Coifman in 1997 (16), has been shown to be remarkably
effective in the analysis of ultrasound data. Angelini et al (96) developed di-
rectional denoising and segmentation in three dimensions for feature extraction,
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by identifying efficient brushlet projection coefficients within sets of redundant
articulated (orientation-rich) bases. An example of a set of coefficients for an
overcomplete transform in 12 different directions is displayed in Figure 12.

Clinical cardiac volumes were analyzed with the brushlet basis for tiling of
the Fourier domain in 64 cubes with overcomplete representations. This analysis
provided a decomposition of four brushstrokes, which were represented by paired
diagonal cubes. The brushstroke orientation in each of the three directions was
±45◦ for each cube.

Visualization in 3-D used isosurfaces and isovolumes at selected levels. The
level was set as the maximum value of each gradient volume in the transform
domain. The “marching cube” algorithm (96a) was used for the isovolume com-
putation. Results that are displayed in Figure 13 showed the ability of the transform
domain to isolate dynamical information from the filling of the LV cavity and the
position of the papillary muscles during the entire cardiac cycle.

Wavelets in Tomographic Reconstruction

The radon transform is the mathematical basis of positron emission tomography
imaging, computer tomography, and single positron emission computerized to-
mography imaging. In two dimensions, the radon transform is equivalent to the
X-ray transform and is defined by

R f (α, s) =
∫

x ∈R2,x.α=0
f (x + sα) dx for α ∈ S and s ∈ R (11)

(a) (b) (c)

Figure 12 (a) Original cardiac ultrasound slice (64× 64 pixels) from four-dimensional data.
(b) Real part of coefficients for a 16-quadrant tiling (4× 4× 4 tiling in x × y× z directions) of
the Fourier plane. A total of 12 distinct directions are covered by the 16 quadrants in the(x − y)
plan. In the overcomplete framework, each coefficient quadrant has the same dimension as the
original image matrix. (c) A 2-D brushlet basis function for a particular direction and frequency.
The direction is determined by the position of the quadrant in the Fourier plan. The frequency of
the brushlet basis function, equivalent to the resolution of the brushlet basis, is determined by the
size of the quadrant in the Fourier plan.
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Figure 13 Visualization of 3-D volume of left-ventricular cavity in time for one cardiac
cycle. (a, b) Systolic phase (ejection of blood from the left ventricle). (c, d) Diastole phase
(filling of blood from right atrium to right ventricle).

whereS is the unit circle. For a detailed presentation of the radon transform and
its properties, we refer the reader elsewhere (97).

Inverting the radon transform is necessary to reconstruct images from to-
mographic data. However, this inverse problem is ill-posed, because the radon
transform acts as a smoothing transform whose inverse is unbounded and because
the observed dataY are always in practice contaminated by a perturbation error in
the observation process, which can be modeled as an additive noiseZ:

Y = R f + Z (12)

When applying the inverseR−1 of the radon transform to the observed dataY,
the noise valueR−1Z becomes large, and the quality of the reconstructed im-
age is poor, which suggests that the problems of tomographic data denoising and
tomographic data reconstruction are completely intertwined. The classical regu-
larization procedures to solve this inverse problem are linear-filtering methods and
the most popular approach, filtered back projection (FBP), which is computed by
an iterative algorithm.

First studies of the relations between wavelet transforms and the radon transform
were conducted by Holschneider (98) and Walnut (99) to derive radon inversion
schemes. Peyrin et al (100) showed that a 2-D wavelet transform of the tomo-
graphic image can be constructed from the wavelet transform of its projections.
Many researchers have rapidly developed various wavelet-based tomographic
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reconstruction techniques that are basically combinations of a discrete or a con-
tinuous 1-D wavelet transform of the projection data with linear FBP (101–108).
The main concern underlying these approaches is local reconstruction. Bhatia et al
(109) combined this type of approach with an MAP model, using a quadratic
regularization of the 1-D projection data (109). In another paper (110), the 1-D
projection data were back-projected on a different basis to derive a sparse formu-
lation of the problem, using again a maximum a posteriori (MAP) model of the
image.

A 2-D wavelet decomposition in the image domain has also proven to be a valu-
able tool for tomographic reconstruction. Delaney & Bresler (111) have studied
its use to implement a numerically efficient classical FBP algorithm, and it has
also been used to implement Tikhonov’s regularization methods in different regu-
larity spaces such as Sobolev spaces (112) and Besov spaces (N Lee & B Lucier,
submitted for publication).

Sahiner & Yagle (114) and Olson (115) have investigated the use of the wavelet
transform to solve the limited-angle tomographic reconstruction problem, when
projection data are missing over a range of angles.

The use of wavelets in tomographic reconstruction is justified by two properties
of wavelets; they are adapted both to the behavior of the operator to be inverted
and to the type of signals one wants to recover. That is, if one chooses orthogonal
wavelets of sufficient regularity and with enough vanishing moments, the radon
transform operator is nearly diagonal in the orthogonal basis. But, in contrast to
the Fourier basis, which is used in linear-filtering reconstruction methods, the
wavelet basis also provides a compact representation of spatially heterogeneous
data such as medical images and, in that sense, also provides a diagonalization of
prior information on medical images. The work of David Donoho on the use of a
wavelet-vaguelette decomposition (WVD) for the inversion of the radon transform
is based on these two ideas (116).

In the WVD approach, the functionf to be recovered is decomposed in a
wavelet basis

f =
∑
j,k

〈 f, ψ j,k〉ψ j,k (13)

Let us denote9 j,k = Rψ j,k. Donoho showed that there exist constantsβ j,k such
that the family of scaled functions(9 j,k/β j,k) j,k is a Riesz basis of the rangeR(R)
of the radon transform and, for anyf ∈ L2(R2), the WVD is defined by

f =
∑
j,k

cj,k〈R f, 9 j,k/β j,k〉ψ j,k (14)

where(cj,k) j,k are known scalars.
The WVD can be viewed as a nonlinear wavelet-based analog of the windowed

singular value decomposition (windowed SVD) approach, defined as follows: let
R∗ be the adjoint operator ofR.R∗R is a compact operator, whose eigenfunctions
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and eigenvalues are respectively denoteden andkn, and lethn be the normalized
imagehn = Ren

||Ren|| . If none of the eigenvalueskn is zero, the SVD is defined by

f =
∑

n

k−1
n 〈R f, hn〉en (15)

Because the eigenvalues ofR∗R tend to zero, we define the windowed SVD by
picking weightswn close to 1 forn small and close to 0 forn large, and we obtain
the windowed SVD estimator

f̃ =
∑

n

wnk−1
n 〈Y, hn〉en (16)

The windowed SVD encompasses, in its theoretical definition, many linear ap-
proaches (117); linear FBP is actually a windowed SVD estimator for special
values ofwn, as is Tikhonov’s quadratic-regularization method. Moreover, it has
been proven that the windowed SVD can provide a linear estimator that is optimal
in a minimax sense among all linear estimators (118, 119). A minimax estimator
is an estimator that minimizes the worst case risk over a set2

sup
f ∈2

E|| f̃ − f ||22 (17)

where f̃ is the estimate off and2 is a smoothness set in which we incorporate
our prior information onf and in which f is guaranteed to belong. Examples of
sets2 for minimax estimation are Sobolev spaces, Besov spaces, and bounded
variation sets.

The SVD is a generic formulation of linear estimation to solve inverse problems.
As a linear technique, its limitations come from the fact that the basis functions of
a SVD derive completely from the operator to be inverted, in our case the radon
transform, and do not incorporate the physical properties of signals. However, it
is essential that the signal be represented by only a few significant coefficients in
the basis functions.

The nonlinear WVD approach responds to the limitations of SVD, because it
efficiently represents both the radon transform and the prior information on spatial
inhomogeneous regularity of a signal. To perform a tomographic reconstruction in
the presence of noisy data, the WVD can be combined with a wavelet shrinkage
method, which attenuates the wavelet coefficients of the acquired data by a certain
amount toward zero. Donoho (116) showed that a WVD is optimal in a minimax
sense among all linear and nonlinear estimators for inverting certain types of
homogeneous linear operators, including the radon transform, and the minimax
rate of convergence for a quadratic loss is faster than the rate of convergence of
SVD or any linear procedure.

Kolaczyk (120) has numerically investigated the use of a WVD for tomographic
reconstruction, whereas Abramovich & Silverman have theoretically and numeri-
cally studied variants of the WVD (121). Very recently, N Lee & B Lucier (submit-
ted for publication) have refined the theoretical results and the numerical approach
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for computing WVD, showing that the WVD method is equivalent to minimiz-
ing a variational formulation with Besov norms. The corresponding experimental
results exhibit significant improvements over FBP methods.

Wavelets in Digital Mammography: Enhancement
and Mass Detection

Wavelets are an attractive analytic tool for accomplishing contrast enhancement
and detection of masses in mammograms, because of the arbitrary shapes and
variable sizes of mammographic findings (typically from a few millimeters to a
centimeter). Multiscale methods have achieved remarkable results when compared
with traditional single-scale techniques in applications of contrast enhancement
(122) and detection of subtle masses (123).

The principal insight in applications of digital radiographs is that diagnostic fea-
tures, such as masses, microcalcifications, and spicular lesions in mammograms,
can be characterized at some distinct scale in a space-frequency representation,
whereas noise and other structures are attenuated or discarded. Contrast enhance-
ment algorithms have relied on overcomplete multiscale representations (124–
129). As mentioned above, overcomplete multiscale representations are desirable
for image enhancement, because they avoid aliasing effects that are introduced
by critical sampling (54) and they yield a shift invariant representation. Figure 14
shows an example for one level of an overcomplete wavelet decomposition of a
spiculated mass. Modification of these coefficients can result in more informative
diagnostic images with enhanced features and an increased SNR without intro-
ducing any local distortions or artifacts (130).

Enhancement of coefficients has been carried out via adaptive nonlinear oper-
ators. However, optimal selection of multiscale basis functions, levels of analysis,
gain/attenuation functions, and parameters needs to be further validated for clinical
soft-copy display platforms. Optimization of contrast enhancement protocols by
using mathematical models has been carried out via image quality assessment with
quantitative measures such as SNR and contrast improvement index (131). Below,
we review some of the more recent work done in this area of medical imaging.

Computer-Assisted Diagnostic Systems for Mammography ScreeningMam-
mography screening is recognized as the most reliable method for the early

Figure 14 Level 5 of an overcomplete dyadic wavelet decomposition of a spiculated mass.Left
to right: original image, approximation image, horizontal details, and vertical details.
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detection of breast cancer. Diagnosis with mammograms is based on reading of
radiographs, which requires visualization of subtle breast tissues combined with
knowledge of anatomical structures and physiology of the breast.

It has been reported that negative mammograms were observed in 10%–30%
of the women who actually have breast cancer (132, 133). Approximately 40%
of these misdiagnosed cancers appear as masses on the mammograms (133) on
postreview. CAD for mammography screening has been developed as a “second
opinion” or as a “prereader,” which prompts attention to suspicious regions, for
example, drawing the attention of radiologists to a tumor that they might otherwise
have overlooked (124, 134, 135). The general approach of CAD schemes is (a)
image preprocessing, normally aided by contrast enhancement, (b) segmentation of
the suspicious region, and (c) feature description and classification within a marked
region. The detection of malignant masses is more challenging because benign
masses and other types of lesions have similar radiographic densities and a variety
of sizes (123). Wavelet transforms, providing the capability to analyze features
over different scales, have been the method of choice for feature enhancement and
detection algorithms that support CAD systems (57, 122, 136–139).

Enhancement of Mammographic Features by Multiscale AnalysisMost radio-
graphic films provide about 256 gray levels of contrast resolution. However, com-
puted imaging modalities with digital detectors can acquire at least 1024 distinct
levels of gray. There is a wealth of dynamic range within these digital images.
However, expert radiologists can detect at most 128 shades of gray. This large
disparity between sensor resolution and human perception has motivated the de-
velopment of image-processing methods that can “data mine” these rich images
and present information within the range of gray scale levels that is perceivable to
the human eye.

Multidimensional feature enhancement via wavelet analysis has been previ-
ously demonstrated and implemented on mammograms (130, 140, 141) and ap-
pears to be a promising tool for processing digital medical images. Further results
are presented elsewhere (142–144, 146–149). In most of these papers, the enhance-
ment process acts on wavelet coefficients at some particular spatial-frequency scale
by boosting, decreasing, or resetting their values. The image is then reconstructed
with the modified coefficients. This simple enhancement technique relies on the
idea that features of interest in a given image are detectable at a particular scale
space, whereas noise and less significant structures may live at other levels of anal-
ysis whose influence can be diminished or eliminated in a reconstructed image.

Previous studies have shown that multiscale analysis is very well adapted for
enhancement of medical images (5, 59). For example, improvement of the contrast
index in a region of a mammogram containing a subtle mass has been described
in detail (122). The image was analyzed with biorthogonal wavelet functions for
three levels and then reconstructed.

Laine & Song (136) first demonstrated nonlinear enhancement of mammo-
grams by adaptively weighting the details computed by using a first derivative
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of a Gaussian wavelet. In later work (137), analysis with a dyadic wavelet and
linear weights was shown to be equivalent to unsharp masking at multiple scales.
Given the arbitrary sizes and shapes of biological structures, continuous scale rep-
resentations (142) can provide more flexibility compared with analytic methods
computed at dyadic scales. Lu & Healy (138) used a multiscale edge representation
to achieve contrast enhancement. Other types of wavelets have been applied, such
as complex Daubechies wavelets (57), and wavelet packets (139). An example of
using global enhancement by multiscale adaptive gain processing (142) is shown
below in Figure 15.

Detection and Classification of Masses in MammogramsIn the research of
Patrick et al (150, 151), a wavelet transform was used to decompose regions of
interest into several scales, from which multiresolution texture features were cal-
culated from the corresponding original images and the wavelet coefficients at each
level. A linear discriminant classifier was then used to identify masses within the
mammogram. Qian et al (152–154) used a directional wavelet transform, which
provided a preprocessing step for segmentation of suspicious areas, to extract mor-
phologic and directional features. In their research, adaptive methods of parameter
selection were proposed for feature enhancement. A wavelet-driven feature extrac-
tion scheme based on a Gaussian Markov random-field model for mammographic
images has also been investigated (155, 156). Adaptive features based on the non-
stationary assumption of a Gaussian Markov nonrandom field were defined for
each pixel of the mammogram, and then segmentation by a fuzzy C-means al-
gorithm was applied to localize mammographic findings. In addition, multiscale
statistical analytical methods that are based on image probability density functions

Figure 15 (a) Original mammogram containing a mass lesion. (b) Enhanced mammogram show-
ing well-defined borders of the mass and clarity of subtle breast tissue and structures.

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
0.

2:
51

1-
55

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

K
T

H
 R

oy
al

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(S
w

ed
en

) 
on

 1
2/

13
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



P1: FDR/fty/ftt/fok P2: FhN/FOP QC: FDR

July 10, 2000 11:39 Annual Reviews AR106-19

?
WAVELET APPLICATIONS IN BIOMEDICAL IMAGING 543

(157) and maximum entropy (158) have also been reported in the literature. Fi-
nally, automated detection and classification of masses have been accomplished by
methods of template matching (159) and artificial neural networks (160, 161). The
range and variety of multiscale bases available for image analysis are very wide
and diversified. However, little work has been done to systematically select the best
basis for accomplishing enhancement and detection of masses (122, 162, 163).
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